Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
DOI:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -261,9 +261,6 @@ with tempfile.TemporaryDirectory() as temp_dir:
|
|
261 |
from collections import Counter
|
262 |
import matplotlib.pyplot as plt
|
263 |
|
264 |
-
# Load dataset
|
265 |
-
dataset = load_dataset("xixu-me/fsl-product-classification")["train"]
|
266 |
-
|
267 |
# Analyze class distribution
|
268 |
class_counts = Counter(dataset['class_name'])
|
269 |
print(f"Number of classes: {len(class_counts)}")
|
@@ -314,7 +311,6 @@ import random
|
|
314 |
from collections import defaultdict
|
315 |
import torch
|
316 |
from torch.utils.data import DataLoader
|
317 |
-
from datasets import load_dataset
|
318 |
|
319 |
def create_few_shot_split(dataset, n_way=5, k_shot=5, n_query=15, seed=None):
|
320 |
"""
|
@@ -369,9 +365,6 @@ def create_few_shot_split(dataset, n_way=5, k_shot=5, n_query=15, seed=None):
|
|
369 |
|
370 |
return support_set, query_set
|
371 |
|
372 |
-
# Example usage
|
373 |
-
dataset = load_dataset("xixu-me/fsl-product-classification")["train"]
|
374 |
-
|
375 |
# Create a 5-way 5-shot episode
|
376 |
support_set, query_set = create_few_shot_split(dataset, n_way=5, k_shot=5, n_query=15)
|
377 |
|
@@ -480,8 +473,7 @@ transform = transforms.Compose([
|
|
480 |
])
|
481 |
|
482 |
# Load dataset
|
483 |
-
|
484 |
-
fsl_dataset = FSLProductDataset(hf_dataset, transform=transform)
|
485 |
|
486 |
# Create episode data
|
487 |
support_data, query_data = fsl_dataset.create_episode_dataloader(
|
@@ -752,7 +744,6 @@ def create_cross_domain_split(dataset, train_ratio=0.6, val_ratio=0.2, test_rati
|
|
752 |
}
|
753 |
|
754 |
# Create cross-domain splits
|
755 |
-
dataset = load_dataset("xixu-me/fsl-product-classification")["train"]
|
756 |
splits = create_cross_domain_split(dataset)
|
757 |
|
758 |
print(f"Train classes: {len(splits['train']['classes'])}")
|
@@ -988,60 +979,6 @@ def create_data_splits(dataset, split_ratios={'train': 0.8, 'test': 0.2},
|
|
988 |
print(f"{split_name.capitalize()} split: {n_samples} samples, {n_classes} classes")
|
989 |
|
990 |
return splits
|
991 |
-
|
992 |
-
# Example usage of utility functions
|
993 |
-
def analyze_dataset(dataset_path="data.tzst"):
|
994 |
-
"""
|
995 |
-
Complete dataset analysis workflow
|
996 |
-
"""
|
997 |
-
print("🔍 Analyzing FSL Product Classification Dataset")
|
998 |
-
print("=" * 50)
|
999 |
-
|
1000 |
-
# 1. Verify dataset integrity
|
1001 |
-
print("\n1. Verifying dataset integrity...")
|
1002 |
-
is_valid = verify_dataset_integrity(dataset_path)
|
1003 |
-
|
1004 |
-
if not is_valid:
|
1005 |
-
return
|
1006 |
-
|
1007 |
-
# 2. Load dataset
|
1008 |
-
print("\n2. Loading dataset...")
|
1009 |
-
try:
|
1010 |
-
dataset = load_dataset("xixu-me/fsl-product-classification")["train"]
|
1011 |
-
print(f"✅ Successfully loaded dataset with {len(dataset)} samples")
|
1012 |
-
except Exception as e:
|
1013 |
-
print(f"❌ Error loading dataset: {e}")
|
1014 |
-
return
|
1015 |
-
|
1016 |
-
# 3. Generate statistics
|
1017 |
-
print("\n3. Generating statistics...")
|
1018 |
-
stats = dataset_statistics(dataset)
|
1019 |
-
|
1020 |
-
print(f"📊 Dataset Statistics:")
|
1021 |
-
print(f" Total samples: {stats['total_samples']:,}")
|
1022 |
-
print(f" Total classes: {stats['total_classes']:,}")
|
1023 |
-
print(f" Avg samples per class: {stats['avg_samples_per_class']:.1f}")
|
1024 |
-
print(f" Min samples per class: {stats['min_samples_per_class']}")
|
1025 |
-
print(f" Max samples per class: {stats['max_samples_per_class']}")
|
1026 |
-
print(f" Std samples per class: {stats['std_samples_per_class']:.1f}")
|
1027 |
-
|
1028 |
-
# 4. Plot distributions
|
1029 |
-
print("\n4. Plotting class distribution...")
|
1030 |
-
plot_class_distribution(dataset, top_k=30)
|
1031 |
-
|
1032 |
-
# 5. Save dataset info
|
1033 |
-
print("\n5. Saving dataset information...")
|
1034 |
-
save_dataset_info(dataset)
|
1035 |
-
|
1036 |
-
# 6. Create splits
|
1037 |
-
print("\n6. Creating data splits...")
|
1038 |
-
splits = create_data_splits(dataset, strategy='stratified')
|
1039 |
-
|
1040 |
-
print("\n✅ Dataset analysis complete!")
|
1041 |
-
return dataset, stats, splits
|
1042 |
-
|
1043 |
-
# Run analysis
|
1044 |
-
# dataset, stats, splits = analyze_dataset()
|
1045 |
```
|
1046 |
|
1047 |
## Troubleshooting
|
@@ -1069,26 +1006,7 @@ from tzst import extract_archive
|
|
1069 |
extract_archive("data.tzst", "output/", streaming=True)
|
1070 |
```
|
1071 |
|
1072 |
-
#### 2.
|
1073 |
-
|
1074 |
-
**Problem**: Out of memory when loading the full dataset
|
1075 |
-
|
1076 |
-
**Solution**:
|
1077 |
-
|
1078 |
-
```python
|
1079 |
-
# Use streaming dataset
|
1080 |
-
from datasets import load_dataset
|
1081 |
-
dataset = load_dataset("xixu-me/fsl-product-classification", streaming=True)
|
1082 |
-
|
1083 |
-
# Or load in chunks
|
1084 |
-
def load_dataset_chunked(chunk_size=1000):
|
1085 |
-
dataset = load_dataset("xixu-me/fsl-product-classification")["train"]
|
1086 |
-
for i in range(0, len(dataset), chunk_size):
|
1087 |
-
chunk = dataset.select(range(i, min(i + chunk_size, len(dataset))))
|
1088 |
-
yield chunk
|
1089 |
-
```
|
1090 |
-
|
1091 |
-
#### 3. Non-continuous Class Labels
|
1092 |
|
1093 |
**Problem**: Class labels are not continuous (0, 1, 2, ...)
|
1094 |
|
@@ -1107,7 +1025,7 @@ def map_labels(example):
|
|
1107 |
dataset = dataset.map(map_labels)
|
1108 |
```
|
1109 |
|
1110 |
-
####
|
1111 |
|
1112 |
**Problem**: CUDA out of memory during training
|
1113 |
|
|
|
261 |
from collections import Counter
|
262 |
import matplotlib.pyplot as plt
|
263 |
|
|
|
|
|
|
|
264 |
# Analyze class distribution
|
265 |
class_counts = Counter(dataset['class_name'])
|
266 |
print(f"Number of classes: {len(class_counts)}")
|
|
|
311 |
from collections import defaultdict
|
312 |
import torch
|
313 |
from torch.utils.data import DataLoader
|
|
|
314 |
|
315 |
def create_few_shot_split(dataset, n_way=5, k_shot=5, n_query=15, seed=None):
|
316 |
"""
|
|
|
365 |
|
366 |
return support_set, query_set
|
367 |
|
|
|
|
|
|
|
368 |
# Create a 5-way 5-shot episode
|
369 |
support_set, query_set = create_few_shot_split(dataset, n_way=5, k_shot=5, n_query=15)
|
370 |
|
|
|
473 |
])
|
474 |
|
475 |
# Load dataset
|
476 |
+
fsl_dataset = FSLProductDataset(dataset, transform=transform)
|
|
|
477 |
|
478 |
# Create episode data
|
479 |
support_data, query_data = fsl_dataset.create_episode_dataloader(
|
|
|
744 |
}
|
745 |
|
746 |
# Create cross-domain splits
|
|
|
747 |
splits = create_cross_domain_split(dataset)
|
748 |
|
749 |
print(f"Train classes: {len(splits['train']['classes'])}")
|
|
|
979 |
print(f"{split_name.capitalize()} split: {n_samples} samples, {n_classes} classes")
|
980 |
|
981 |
return splits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
982 |
```
|
983 |
|
984 |
## Troubleshooting
|
|
|
1006 |
extract_archive("data.tzst", "output/", streaming=True)
|
1007 |
```
|
1008 |
|
1009 |
+
#### 2. Non-continuous Class Labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1010 |
|
1011 |
**Problem**: Class labels are not continuous (0, 1, 2, ...)
|
1012 |
|
|
|
1025 |
dataset = dataset.map(map_labels)
|
1026 |
```
|
1027 |
|
1028 |
+
#### 3. CUDA/GPU Issues
|
1029 |
|
1030 |
**Problem**: CUDA out of memory during training
|
1031 |
|