xixu-me commited on
Commit
4599473
·
1 Parent(s): f83ce7f

Enhance README.md with Quick Start guide, updated dataset statistics, and citation information

Browse files
Files changed (1) hide show
  1. README.md +44 -2
README.md CHANGED
@@ -62,7 +62,6 @@ This dataset is designed for **Few-Shot Learning (FSL)** research in product cla
62
  - **Class Numbers**: Non-continuous (some class numbers may be missing)
63
  - **Image Format**: PNG
64
  - **Typical Image Size**: 50-100 KB per image
65
- - **Average Images per Class**: 366.6 (279,747 ÷ 763)
66
  - **Compressed Archive Size**: ~9.9 GB (data.tzst)
67
 
68
  ## Dataset Structure
@@ -84,6 +83,38 @@ data.tzst
84
 
85
  **Note**: Class numbers are not continuous. For example, you might have class_0, class_2, class_5, etc., but not class_1, class_3, class_4. The total number of classes is 763.
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  ## Usage
88
 
89
  ## Installation and Setup
@@ -93,7 +124,12 @@ data.tzst
93
  ```bash
94
  # Create a new virtual environment (recommended)
95
  python -m venv fsl-env
96
- source fsl-env/bin/activate # On Windows: fsl-env\Scripts\activate
 
 
 
 
 
97
 
98
  # Install core dependencies
99
  pip install datasets tzst pillow
@@ -1052,6 +1088,12 @@ for i, (support_data, query_data) in enumerate(dataloader):
1052
  3. **Use data augmentation**: Improve few-shot performance with transforms
1053
  4. **Cache preprocessed data**: Save processed episodes to disk for faster iteration
1054
 
 
 
 
 
 
 
1055
  ## License
1056
 
1057
  This dataset is released under the MIT License. See the [LICENSE file](LICENSE) for details.
 
62
  - **Class Numbers**: Non-continuous (some class numbers may be missing)
63
  - **Image Format**: PNG
64
  - **Typical Image Size**: 50-100 KB per image
 
65
  - **Compressed Archive Size**: ~9.9 GB (data.tzst)
66
 
67
  ## Dataset Structure
 
83
 
84
  **Note**: Class numbers are not continuous. For example, you might have class_0, class_2, class_5, etc., but not class_1, class_3, class_4. The total number of classes is 763.
85
 
86
+ ## Quick Start
87
+
88
+ Get started with the FSL Product Classification dataset in just a few steps:
89
+
90
+ ```python
91
+ from datasets import Dataset
92
+ import os
93
+ from tzst import extract_archive
94
+
95
+ # 1. Extract the dataset
96
+ extract_archive("data.tzst", "extracted_data/")
97
+
98
+ # 2. Load a few samples
99
+ data_dir = "extracted_data"
100
+ samples = []
101
+ for class_dir in sorted(os.listdir(data_dir))[:3]: # First 3 classes
102
+ if class_dir.startswith("class_"):
103
+ class_path = os.path.join(data_dir, class_dir)
104
+ for img_file in os.listdir(class_path)[:5]: # First 5 images
105
+ if img_file.endswith('.png'):
106
+ samples.append({
107
+ 'image': os.path.join(class_path, img_file),
108
+ 'label': int(class_dir.split("_")[1]),
109
+ 'class_name': class_dir,
110
+ 'image_id': img_file.replace('.png', '')
111
+ })
112
+
113
+ print(f"Loaded {len(samples)} sample images from 3 classes")
114
+ ```
115
+
116
+ For complete setup and advanced usage, see the sections below.
117
+
118
  ## Usage
119
 
120
  ## Installation and Setup
 
124
  ```bash
125
  # Create a new virtual environment (recommended)
126
  python -m venv fsl-env
127
+
128
+ # Activate virtual environment
129
+ # On Windows:
130
+ fsl-env\Scripts\activate
131
+ # On macOS/Linux:
132
+ # source fsl-env/bin/activate
133
 
134
  # Install core dependencies
135
  pip install datasets tzst pillow
 
1088
  3. **Use data augmentation**: Improve few-shot performance with transforms
1089
  4. **Cache preprocessed data**: Save processed episodes to disk for faster iteration
1090
 
1091
+ ## Citation
1092
+
1093
+ If you use this dataset in your research, please cite it as shown on the Hugging Face dataset page:
1094
+
1095
+ <https://huggingface.co/datasets/xixu-me/fsl-product-classification?doi=true>
1096
+
1097
  ## License
1098
 
1099
  This dataset is released under the MIT License. See the [LICENSE file](LICENSE) for details.