xxazz commited on
Commit
c73309a
·
1 Parent(s): cabddf3

Upload 4 files

Browse files
Files changed (4) hide show
  1. nq-dev.jsonl.gz +3 -0
  2. nq-test.jsonl.gz +3 -0
  3. nq-train.jsonl.gz +3 -0
  4. wikipedia-nq.py +105 -0
nq-dev.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:797a16addaf389bda60171a060428c212420341d643247725e8df4813cf5a9e3
3
+ size 3072087
nq-test.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5be3607ff80c6d131ad88690eb8dcaf5c651af04068f0e17044e38d2828202d
3
+ size 139424
nq-train.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f920cd4afd7b029b867bf0efb465402ad43dde9725a98160771a778e0e8c816
3
+ size 27760889
wikipedia-nq.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Wikipedia NQ dataset."""
18
+
19
+ import json
20
+
21
+ import datasets
22
+
23
+ _CITATION = """
24
+ @inproceedings{karpukhin-etal-2020-dense,
25
+ title = "Dense Passage Retrieval for Open-Domain Question Answering",
26
+ author = "Karpukhin, Vladimir and Oguz, Barlas and Min, Sewon and Lewis, Patrick and Wu, Ledell and Edunov,
27
+ Sergey and Chen, Danqi and Yih, Wen-tau",
28
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
29
+ month = nov,
30
+ year = "2020",
31
+ address = "Online",
32
+ publisher = "Association for Computational Linguistics",
33
+ url = "https://www.aclweb.org/anthology/2020.emnlp-main.550",
34
+ doi = "10.18653/v1/2020.emnlp-main.550",
35
+ pages = "6769--6781",
36
+ }
37
+ """
38
+
39
+ _DESCRIPTION = "dataset load script for Wikipedia NQ"
40
+
41
+ _DATASET_URLS = {
42
+ 'train': "https://huggingface.co/datasets/xxazz/wikipedia-nq/resolve/main/nq-train.jsonl.gz",
43
+ 'dev': "https://huggingface.co/datasets/xxazz/wikipedia-nq/resolve/main/nq-dev.jsonl.gz",
44
+ 'test': "https://huggingface.co/datasets/xxazz/wikipedia-nq/resolve/main/nq-test.jsonl.gz",
45
+ }
46
+
47
+
48
+ class WikipediaNq(datasets.GeneratorBasedBuilder):
49
+ VERSION = datasets.Version("0.0.1")
50
+
51
+ BUILDER_CONFIGS = [
52
+ datasets.BuilderConfig(version=VERSION,
53
+ description="Wikipedia NQ train/dev/test datasets"),
54
+ ]
55
+
56
+ def _info(self):
57
+ features = datasets.Features({
58
+ 'query_id': datasets.Value('string'),
59
+ 'query': datasets.Value('string'),
60
+ 'answers': [datasets.Value('string')],
61
+ 'pos_doc_ids': [datasets.Value('string')],
62
+ 'neg_doc_ids': [datasets.Value('string')],
63
+ })
64
+ return datasets.DatasetInfo(
65
+ # This is the description that will appear on the datasets page.
66
+ description=_DESCRIPTION,
67
+ # This defines the different columns of the dataset and their types
68
+ features=features, # Here we define them above because they are different between the two configurations
69
+ supervised_keys=None,
70
+ # Homepage of the dataset for documentation
71
+ homepage="",
72
+ # License for the dataset if available
73
+ license="",
74
+ # Citation for the dataset
75
+ citation=_CITATION,
76
+ )
77
+
78
+ def _split_generators(self, dl_manager):
79
+ if self.config.data_files:
80
+ downloaded_files = self.config.data_files
81
+ else:
82
+ downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
83
+ splits = [
84
+ datasets.SplitGenerator(
85
+ name=split,
86
+ gen_kwargs={
87
+ "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split],
88
+ },
89
+ ) for split in downloaded_files
90
+ ]
91
+ return splits
92
+
93
+ def _generate_examples(self, files):
94
+ """Yields examples."""
95
+ for filepath in files:
96
+ with open(filepath, encoding="utf-8") as f:
97
+ for line in f:
98
+ data = json.loads(line)
99
+ if data.get('neg_doc_ids') is None:
100
+ data['neg_doc_ids'] = []
101
+ if data.get('pos_doc_ids') is None:
102
+ data['pos_doc_ids'] = []
103
+ if data.get('answers') is None:
104
+ data['answers'] = []
105
+ yield data['query_id'], data