Datasets:
File size: 7,382 Bytes
4afe684 115b07a d68620a 4afe684 d68620a 4afe684 1146e77 d68620a 1146e77 4afe684 d68620a 4afe684 d68620a 1146e77 d68620a 4afe684 d68620a 4afe684 d68620a 4afe684 d68620a 4afe684 d68620a 115b07a 4afe684 1146e77 4afe684 d68620a 05f41a7 4afe684 05f41a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cleaned Dutch split of the mC4 corpus."""
import json
import gzip
import textwrap
import datasets
import random
from itertools import zip_longest
logger = datasets.logging.get_logger(__name__)
_CITATION = """
@article{JMLR:v21:20-074,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {140},
pages = {1-67},
url = {http://jmlr.org/papers/v21/20-074.html}
}
"""
_DESCRIPTION = """\
A thoroughly cleaned version of the Dutch portion of the multilingual
colossal, cleaned version of Common Crawl's web crawl corpus (mC4) by AllenAI.
Based on Common Crawl dataset: "https://commoncrawl.org".
This is the processed version of Google's mC4 dataset by AllenAI, with further cleaning
detailed in the repository README file.
"""
_HOMEPAGE = "https://github.com/allenai/allennlp/discussions/5056"
_LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0"
_DATA_URL_NL = "https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned/resolve/main/mc4_nl_cleaned/{split}/c4-nl{validation}-cleaned.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz"
_DATA_URL_EN = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/{name}/c4-{split}.{index:05d}-of-{n_shards:05d}.json.gz"
_C4_EN_VARIANT = "en"
_CONFIG_NAMES = ["micro", "tiny", "small", "medium", "large", "full"]
_CONFIG_EN_NL_SUFFIX = "_en_nl"
_CONFIGS = dict(
micro={"train": 2, "validation": 1, "estimate": "1GB"},
tiny={"train": 100, "validation": 1, "estimate": "10GB"},
small={"train": 250, "validation": 1, "estimate": "25GB"},
medium={"train": 500, "validation": 2, "estimate": "50GB"},
large={"train": 750, "validation": 3, "estimate": "75GB"},
full={"train": 1024, "validation": 4, "estimate": "103GB"},
)
class Mc4NlCleanedConfig(datasets.BuilderConfig):
"""BuilderConfig for mC4 NL Cleaned."""
def __init__(self, **kwargs):
"""BuilderConfig for mC4 NL Cleaned."
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
class Mc4(datasets.GeneratorBasedBuilder):
"""mC4, a colossal, cleaned version of Common Crawl's web crawl corpus."""
BUILDER_CONFIGS = [
Mc4NlCleanedConfig(
name=name,
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
f"""\
A {name} cleaned version of the Dutch portion of the multilingual C4 corpus.
Estimated size of compressed files: {_CONFIGS[name]['estimate']}
"""
),
)
for name in _CONFIG_NAMES
]
BUILDER_CONFIGS += [
Mc4NlCleanedConfig(
name=f"{name}{_CONFIG_EN_NL_SUFFIX}",
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
f"""\
A {name} cleaned version of the Dutch and English portion of the multilingual C4 corpus.
"""
),
)
for name in _CONFIG_NAMES
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"timestamp": datasets.Value("string"),
"url": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_urls = {}
config = _CONFIGS[self.config.name.replace(_CONFIG_EN_NL_SUFFIX, "")]
for split in ["train", "validation"]:
start_file = config.get("start", 0) if split == "train" else 0
num_files = config.get(split)
data_urls[split] = []
for index in range(start_file, start_file + num_files):
data_urls[split].append(
_DATA_URL_NL.format(
split=split,
index=index,
validation="-validation" if split == "validation" else "",
n_shards=4 if split == "validation" else 1024,
)
)
if self.config.name.endswith(_CONFIG_EN_NL_SUFFIX):
data_urls[split].append(
_DATA_URL_EN.format(
name=_C4_EN_VARIANT,
split=split,
index=index,
validation="-validation" if split == "validation" else "",
n_shards=8 if split == "validation" else 1024,
)
)
# Shuffle data in streaming mode, so restarts will not always start with the same data
if dl_manager.is_streaming:
random.shuffle(data_urls["train"])
train_downloaded_files = dl_manager.download(data_urls["train"])
validation_downloaded_files = dl_manager.download(data_urls["validation"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepaths": train_downloaded_files},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepaths": validation_downloaded_files},
),
]
@staticmethod
def grouper(iterable, n, fillvalue=None):
"""Collect data into fixed-length chunks or blocks"""
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue)
@staticmethod
def gzip_open(filepath):
if filepath:
return gzip.open(open(filepath, "rb"), "rt", encoding="utf-8")
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for files in self.grouper(filepaths, 2, None):
logger.info(f"Generating examples from {files}")
gzip_iters = [self.gzip_open(file) for file in files if file is not None]
for lines in zip(*gzip_iters):
for line in lines:
example = json.loads(line)
yield id_, example
id_ += 1
|