system HF staff commited on
Commit
51233d0
·
1 Parent(s): 910a055

Update files from the datasets library (from 1.17.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.17.0

Files changed (3) hide show
  1. README.md +10 -3
  2. dataset_infos.json +1 -1
  3. mnist.py +9 -1
README.md CHANGED
@@ -69,12 +69,19 @@ English
69
 
70
  ### Data Instances
71
 
72
- A data point comprises an image and its label.
 
 
 
 
 
 
 
73
 
74
  ### Data Fields
75
 
76
- - image: a 2d array of integers representing the 28x28 image.
77
- - label: an integer between 0 and 9 representing the digit.
78
 
79
  ### Data Splits
80
 
 
69
 
70
  ### Data Instances
71
 
72
+ A data point comprises an image and its label:
73
+
74
+ ```
75
+ {
76
+ 'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=28x28 at 0x276021F6DD8>,
77
+ 'label': 5
78
+ }
79
+ ```
80
 
81
  ### Data Fields
82
 
83
+ - `image`: A `PIL.Image.Image` object containing the 28x28 image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
84
+ - `label`: an integer between 0 and 9 representing the digit.
85
 
86
  ### Data Splits
87
 
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"mnist": {"description": "The MNIST dataset consists of 70,000 28x28 black-and-white images in 10 classes (one for each digits), with 7,000\nimages per class. There are 60,000 training images and 10,000 test images.\n", "citation": "@article{lecun2010mnist,\n title={MNIST handwritten digit database},\n author={LeCun, Yann and Cortes, Corinna and Burges, CJ},\n journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},\n volume={2},\n year={2010}\n}\n", "homepage": "http://yann.lecun.com/exdb/mnist/", "license": "", "features": {"image": {"shape": [28, 28], "dtype": "uint8", "id": null, "_type": "Array2D"}, "label": {"num_classes": 10, "names": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "image", "output": "label"}, "builder_name": "mnist", "config_name": "mnist", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 54480048, "num_examples": 60000, "dataset_name": "mnist"}, "test": {"name": "test", "num_bytes": 9080008, "num_examples": 10000, "dataset_name": "mnist"}}, "download_checksums": {"https://storage.googleapis.com/cvdf-datasets/mnist/train-images-idx3-ubyte.gz": {"num_bytes": 9912422, "checksum": "440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609"}, "https://storage.googleapis.com/cvdf-datasets/mnist/train-labels-idx1-ubyte.gz": {"num_bytes": 28881, "checksum": "3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c"}, "https://storage.googleapis.com/cvdf-datasets/mnist/t10k-images-idx3-ubyte.gz": {"num_bytes": 1648877, "checksum": "8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6"}, "https://storage.googleapis.com/cvdf-datasets/mnist/t10k-labels-idx1-ubyte.gz": {"num_bytes": 4542, "checksum": "f7ae60f92e00ec6debd23a6088c31dbd2371eca3ffa0defaefb259924204aec6"}}, "download_size": 11594722, "post_processing_size": null, "dataset_size": 63560056, "size_in_bytes": 75154778}}
 
1
+ {"mnist": {"description": "The MNIST dataset consists of 70,000 28x28 black-and-white images in 10 classes (one for each digits), with 7,000\nimages per class. There are 60,000 training images and 10,000 test images.\n", "citation": "@article{lecun2010mnist,\n title={MNIST handwritten digit database},\n author={LeCun, Yann and Cortes, Corinna and Burges, CJ},\n journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},\n volume={2},\n year={2010}\n}\n", "homepage": "http://yann.lecun.com/exdb/mnist/", "license": "", "features": {"image": {"id": null, "_type": "Image"}, "label": {"num_classes": 10, "names": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "image", "output": "label"}, "task_templates": [{"task": "image-classification", "image_column": "image", "label_column": "label", "labels": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]}], "builder_name": "mnist", "config_name": "mnist", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 17470848, "num_examples": 60000, "dataset_name": "mnist"}, "test": {"name": "test", "num_bytes": 2916440, "num_examples": 10000, "dataset_name": "mnist"}}, "download_checksums": {"https://storage.googleapis.com/cvdf-datasets/mnist/train-images-idx3-ubyte.gz": {"num_bytes": 9912422, "checksum": "440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609"}, "https://storage.googleapis.com/cvdf-datasets/mnist/train-labels-idx1-ubyte.gz": {"num_bytes": 28881, "checksum": "3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c"}, "https://storage.googleapis.com/cvdf-datasets/mnist/t10k-images-idx3-ubyte.gz": {"num_bytes": 1648877, "checksum": "8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6"}, "https://storage.googleapis.com/cvdf-datasets/mnist/t10k-labels-idx1-ubyte.gz": {"num_bytes": 4542, "checksum": "f7ae60f92e00ec6debd23a6088c31dbd2371eca3ffa0defaefb259924204aec6"}}, "download_size": 11594722, "post_processing_size": null, "dataset_size": 20387288, "size_in_bytes": 31982010}}
mnist.py CHANGED
@@ -22,6 +22,7 @@ import struct
22
  import numpy as np
23
 
24
  import datasets
 
25
 
26
 
27
  _CITATION = """\
@@ -64,13 +65,20 @@ class MNIST(datasets.GeneratorBasedBuilder):
64
  description=_DESCRIPTION,
65
  features=datasets.Features(
66
  {
67
- "image": datasets.Array2D(shape=(28, 28), dtype="uint8"),
68
  "label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]),
69
  }
70
  ),
71
  supervised_keys=("image", "label"),
72
  homepage="http://yann.lecun.com/exdb/mnist/",
73
  citation=_CITATION,
 
 
 
 
 
 
 
74
  )
75
 
76
  def _split_generators(self, dl_manager):
 
22
  import numpy as np
23
 
24
  import datasets
25
+ from datasets.tasks import ImageClassification
26
 
27
 
28
  _CITATION = """\
 
65
  description=_DESCRIPTION,
66
  features=datasets.Features(
67
  {
68
+ "image": datasets.Image(),
69
  "label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]),
70
  }
71
  ),
72
  supervised_keys=("image", "label"),
73
  homepage="http://yann.lecun.com/exdb/mnist/",
74
  citation=_CITATION,
75
+ task_templates=[
76
+ ImageClassification(
77
+ image_column="image",
78
+ label_column="label",
79
+ labels=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"],
80
+ )
81
+ ],
82
  )
83
 
84
  def _split_generators(self, dl_manager):