research-07-aug-2024 / untitled13.py
ysn-rfd's picture
Upload 20 files
014de59 verified
raw
history blame
2.03 kB
import cv2
import numpy as np
from ultralytics import YOLO
# Load YOLOv8x model and move it to GPU if available
model = YOLO('yolov8n.pt') # Use 'yolov8n.pt' for even faster processing if accuracy is acceptable
# Open a connection to the camera
cap = cv2.VideoCapture(0)
# Check if the camera opened successfully
if not cap.isOpened():
print("Error: Could not open camera.")
exit()
# Set the camera resolution (lower resolution for faster processing)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320) # Reduced resolution for speed
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 240) # Reduced resolution for speed
while True:
# Capture frame-by-frame
ret, frame = cap.read()
if not ret:
print("Error: Failed to capture image")
break
# Convert to grayscale for night vision effect
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Apply a color map to simulate night vision
night_vision = cv2.applyColorMap(gray, cv2.COLORMAP_HOT)
# Convert the frame to the format required by YOLOv8
night_vision_rgb = cv2.cvtColor(night_vision, cv2.COLOR_BGR2RGB)
# Perform object detection with YOLOv8x
results = model(night_vision_rgb, stream=True, imgsz=320) # Further reduced image size for speed
# Draw bounding boxes and labels on the night vision image
for result in results:
boxes = result.boxes.data.cpu().numpy()
for box in boxes:
x1, y1, x2, y2, score, class_id = map(int, box)
label = f"{model.names[class_id]}: {score:.2f}"
cv2.rectangle(night_vision, (x1, y1), (x2, y2), (0, 255, 0), 1) # Thin box for speed
cv2.putText(night_vision, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) # Thin text for speed
# Display the resulting frame
cv2.imshow('Night Vision YOLOv8x', night_vision)
# Break the loop on 'q' key press
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the capture and close all windows
cap.release()
cv2.destroyAllWindows()