research-07-aug-2024 / untitled16.py
ysn-rfd's picture
Upload 20 files
014de59 verified
raw
history blame
3.68 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 4 13:48:50 2024
@author: ysnrfd
"""
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Advanced Ghost Detection Script with Machine Learning Integration and Real-Time Performance Enhancements
"""
import cv2
import numpy as np
from threading import Thread
from queue import Queue
from ultralytics import YOLO
class AdvancedGhostDetector:
def __init__(self, video_source=0, contour_area_threshold=100, model_path='yolov8s.pt'):
self.video_source = video_source
self.contour_area_threshold = contour_area_threshold
self.background_subtractor = cv2.createBackgroundSubtractorMOG2()
self.cap = cv2.VideoCapture(self.video_source)
self.frame_queue = Queue(maxsize=10)
self.model = YOLO(model_path)
if not self.cap.isOpened():
raise IOError("Error: Could not open camera.")
def capture_frames(self):
while True:
ret, frame = self.cap.read()
if not ret:
print("Error: Failed to capture image")
break
if not self.frame_queue.full():
self.frame_queue.put(frame)
def process_frame(self, frame):
# Apply background subtraction
fg_mask = self.background_subtractor.apply(frame)
# Find contours of the detected objects
contours, _ = cv2.findContours(fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw contours on the frame
for contour in contours:
if cv2.contourArea(contour) > self.contour_area_threshold:
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, "Anomaly Detected", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
return frame
def detect_objects(self, frame):
# Convert frame to RGB for YOLOv8
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = self.model(rgb_frame, imgsz=320)
# Draw bounding boxes and labels on the frame
for result in results:
boxes = result.boxes.data.cpu().numpy()
for box in boxes:
x1, y1, x2, y2, score, class_id = map(int, box)
label = f"{self.model.names[class_id]}: {score:.2f}"
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
return frame
def display_frame(self, frame):
# Display the resulting frame
cv2.imshow('Advanced Ghost Detector', frame)
def run(self):
capture_thread = Thread(target=self.capture_frames, daemon=True)
capture_thread.start()
while True:
if not self.frame_queue.empty():
frame = self.frame_queue.get()
processed_frame = self.process_frame(frame)
detected_frame = self.detect_objects(processed_frame)
self.display_frame(detected_frame)
# Break the loop on 'q' key press
if cv2.waitKey(1) & 0xFF == ord('q'):
break
self.cleanup()
def cleanup(self):
# Release the capture and close all windows
self.cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
try:
detector = AdvancedGhostDetector(video_source=0, contour_area_threshold=1000, model_path='yolov8n.pt')
detector.run()
except Exception as e:
print(f"An error occurred: {e}")
cv2.destroyAllWindows()