research-07-aug-2024 / untitled21.py
ysn-rfd's picture
Upload 20 files
014de59 verified
raw
history blame
1.56 kB
import cv2
import numpy as np
def detect_anomalies(frame1, frame2):
# Convert images to grayscale
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# Compute the absolute difference between the two images
diff = cv2.absdiff(gray1, gray2)
# Threshold the difference to get binary image
_, thresh = cv2.threshold(diff, 50, 255, cv2.THRESH_BINARY)
# Find contours of the anomalies
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw contours on the original frame
for contour in contours:
if cv2.contourArea(contour) > 500: # Filter small contours
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(frame1, (x, y), (x+w, y+h), (0, 255, 0), 2)
return frame1
# Initialize video capture (0 is usually the default camera)
cap = cv2.VideoCapture(0)
# Read the first frame to initialize the previous frame
ret, prev_frame = cap.read()
while True:
# Read the current frame
ret, curr_frame = cap.read()
if not ret:
break
# Detect anomalies between previous and current frame
result_frame = detect_anomalies(prev_frame, curr_frame)
# Display the result
cv2.imshow('Anomalies Detected', result_frame)
# Update previous frame
prev_frame = curr_frame
# Exit on 'q' key press
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release video capture and close windows
cap.release()
cv2.destroyAllWindows()