import cv2 import numpy as np from ultralytics import YOLO # Load YOLOv8x model and move it to GPU if available model = YOLO('yolov8n.pt') # Use 'yolov8n.pt' for even faster processing if accuracy is acceptable # Open a connection to the camera cap = cv2.VideoCapture(0) # Check if the camera opened successfully if not cap.isOpened(): print("Error: Could not open camera.") exit() # Set the camera resolution (lower resolution for faster processing) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320) # Reduced resolution for speed cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 240) # Reduced resolution for speed while True: # Capture frame-by-frame ret, frame = cap.read() if not ret: print("Error: Failed to capture image") break # Convert to grayscale for night vision effect gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Apply a color map to simulate night vision night_vision = cv2.applyColorMap(gray, cv2.COLORMAP_HOT) # Convert the frame to the format required by YOLOv8 night_vision_rgb = cv2.cvtColor(night_vision, cv2.COLOR_BGR2RGB) # Perform object detection with YOLOv8x results = model(night_vision_rgb, stream=True, imgsz=320) # Further reduced image size for speed # Draw bounding boxes and labels on the night vision image for result in results: boxes = result.boxes.data.cpu().numpy() for box in boxes: x1, y1, x2, y2, score, class_id = map(int, box) label = f"{model.names[class_id]}: {score:.2f}" cv2.rectangle(night_vision, (x1, y1), (x2, y2), (0, 255, 0), 1) # Thin box for speed cv2.putText(night_vision, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) # Thin text for speed # Display the resulting frame cv2.imshow('Night Vision YOLOv8x', night_vision) # Break the loop on 'q' key press if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the capture and close all windows cap.release() cv2.destroyAllWindows()