hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
48cf0852e6ab6d1a0771fbc1bfea6839386062de
1,287
py
Python
tests/test_cmdline.py
lin-zone/scrapyu
abcb8eed2ea02121b74017e007c57c0d3762342d
[ "MIT" ]
1
2021-01-05T09:11:42.000Z
2021-01-05T09:11:42.000Z
tests/test_cmdline.py
lin-zone/scrapyu
abcb8eed2ea02121b74017e007c57c0d3762342d
[ "MIT" ]
null
null
null
tests/test_cmdline.py
lin-zone/scrapyu
abcb8eed2ea02121b74017e007c57c0d3762342d
[ "MIT" ]
null
null
null
import sys import subprocess from tempfile import mkdtemp, TemporaryFile from path import Path from tests import TEST_DIR args = (sys.executable, '-m', 'scrapyu.cmdline') def test_genspider_list(): new_args = args + ('genspider', '-l') res = subprocess.check_output(new_args) assert res.split() == [b'Available', b'templates:', b'single', b'single_splash'] def test_single_template(): single_test_template = Path(TEST_DIR) / 'test_templates' / 'single.py' cwd = mkdtemp() new_args = args + ('genspider', 'single', 'www.scrapytest.org', '-t', 'single') with TemporaryFile() as out: subprocess.call(new_args, stdout=out, stderr=out, cwd=cwd) t = Path(cwd) / 'single.py' assert t.exists() is True assert t.read_text() == single_test_template.read_text() def test_single_splash_template(): single_splash_test_template = Path(TEST_DIR) / 'test_templates' / 'single_splash.py' cwd = mkdtemp() new_args = args + ('genspider', 'single-splash', 'www.scrapytest.org', '-t', 'single_splash') with TemporaryFile() as out: subprocess.call(new_args, stdout=out, stderr=out, cwd=cwd) t = Path(cwd) / 'single_splash.py' assert t.exists() is True assert t.read_text() == single_splash_test_template.read_text()
33.868421
97
0.688423
0
0
0
0
0
0
0
0
292
0.226884
48cf85efc52b96d39ed18f6149964691786778a9
3,257
py
Python
src/olympia/amo/cron.py
dante381/addons-server
9702860a19ecca1cb4e4998f37bc43c1b2dd3aa7
[ "BSD-3-Clause" ]
null
null
null
src/olympia/amo/cron.py
dante381/addons-server
9702860a19ecca1cb4e4998f37bc43c1b2dd3aa7
[ "BSD-3-Clause" ]
null
null
null
src/olympia/amo/cron.py
dante381/addons-server
9702860a19ecca1cb4e4998f37bc43c1b2dd3aa7
[ "BSD-3-Clause" ]
null
null
null
from datetime import datetime, timedelta from django.core.files.storage import default_storage as storage import olympia.core.logger from olympia import amo from olympia.activity.models import ActivityLog from olympia.addons.models import Addon from olympia.addons.tasks import delete_addons from olympia.amo.utils import chunked from olympia.files.models import FileUpload from olympia.scanners.models import ScannerResult from olympia.amo.models import FakeEmail from . import tasks from .sitemap import ( get_sitemap_path, get_sitemaps, get_sitemap_section_pages, render_index_xml, ) log = olympia.core.logger.getLogger('z.cron') def gc(test_result=True): """Site-wide garbage collections.""" def days_ago(days): return datetime.today() - timedelta(days=days) log.info('Collecting data to delete') logs = ( ActivityLog.objects.filter(created__lt=days_ago(90)) .exclude(action__in=amo.LOG_KEEP) .values_list('id', flat=True) ) for chunk in chunked(logs, 100): tasks.delete_logs.delay(chunk) two_weeks_ago = days_ago(15) # Hard-delete stale add-ons with no versions. No email should be sent. versionless_addons = Addon.unfiltered.filter( versions__pk=None, created__lte=two_weeks_ago ).values_list('pk', flat=True) for chunk in chunked(versionless_addons, 100): delete_addons.delay(chunk, with_deleted=True) # Delete stale FileUploads. stale_uploads = FileUpload.objects.filter(created__lte=two_weeks_ago).order_by('id') for file_upload in stale_uploads: log.info( '[FileUpload:{uuid}] Removing file: {path}'.format( uuid=file_upload.uuid, path=file_upload.path ) ) if file_upload.path: try: storage.delete(file_upload.path) except OSError: pass file_upload.delete() # Delete stale ScannerResults. ScannerResult.objects.filter(upload=None, version=None).delete() # Delete fake emails older than 90 days FakeEmail.objects.filter(created__lte=days_ago(90)).delete() def write_sitemaps(section=None, app_name=None): index_filename = get_sitemap_path(None, None) sitemaps = get_sitemaps() if (not section or section == 'index') and not app_name: with storage.open(index_filename, 'w') as index_file: log.info('Writing sitemap index') index_file.write(render_index_xml(sitemaps)) for _section, _app_name, _page in get_sitemap_section_pages(sitemaps): if (section and section != _section) or (app_name and app_name != _app_name): continue if _page % 1000 == 1: # log an info message every 1000 pages in a _section, _app_name log.info(f'Writing sitemap file for {_section}, {_app_name}, {_page}') filename = get_sitemap_path(_section, _app_name, _page) with storage.open(filename, 'w') as sitemap_file: sitemap_object = sitemaps.get((_section, amo.APPS.get(_app_name))) if not sitemap_object: continue content = sitemap_object.render(app_name=_app_name, page=_page) sitemap_file.write(content)
34.648936
88
0.684986
0
0
0
0
0
0
0
0
451
0.138471
48d0551fc7668ef91b0cbb625288bc4330046f92
642
py
Python
day8/test_day8.py
bwbeach/advent-of-code-2020
572810c3adae5815543efde17a4bca9596d05a5b
[ "CC0-1.0" ]
null
null
null
day8/test_day8.py
bwbeach/advent-of-code-2020
572810c3adae5815543efde17a4bca9596d05a5b
[ "CC0-1.0" ]
null
null
null
day8/test_day8.py
bwbeach/advent-of-code-2020
572810c3adae5815543efde17a4bca9596d05a5b
[ "CC0-1.0" ]
null
null
null
from day8.day8 import fix_code, parse_code, run SAMPLE_CODE_LOOP = """nop +0 acc +1 jmp +4 acc +3 jmp -3 acc -99 acc +1 jmp -4 acc +6 """ SAMPLE_CODE_HALT = """nop +0 acc +1 jmp +4 acc +3 jmp -3 acc -99 acc +1 nop -4 acc +6 """ def test_parse(): assert parse_code("nop +0\nacc +1\nacc -6") == [("nop", 0), ("acc", 1), ("acc", -6)] def test_run_loop(): code = parse_code(SAMPLE_CODE_LOOP) assert run(code) == ("loop", 5) def test_run_halt(): code = parse_code(SAMPLE_CODE_HALT) assert run(code) == ("halt", 8) def test_fix_code(): assert fix_code(parse_code(SAMPLE_CODE_LOOP)) == parse_code(SAMPLE_CODE_HALT)
15.285714
88
0.638629
0
0
0
0
0
0
0
0
191
0.297508
48d23528c08e020ee5f13c45ec80e61813e3bd41
6,128
py
Python
biosys/apps/main/tests/api/test_misc.py
florianm/biosys
934d06ed805b0734f3cb9a00feec6cd81a94e512
[ "Apache-2.0" ]
2
2018-04-09T04:02:30.000Z
2019-08-20T03:12:55.000Z
biosys/apps/main/tests/api/test_misc.py
florianm/biosys
934d06ed805b0734f3cb9a00feec6cd81a94e512
[ "Apache-2.0" ]
29
2016-01-20T08:14:15.000Z
2017-07-13T07:17:32.000Z
biosys/apps/main/tests/api/test_misc.py
florianm/biosys
934d06ed805b0734f3cb9a00feec6cd81a94e512
[ "Apache-2.0" ]
5
2016-01-14T23:02:36.000Z
2016-09-21T05:35:03.000Z
from django.shortcuts import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from main.models import Project from main.tests import factories from main.tests.api import helpers class TestWhoAmI(helpers.BaseUserTestCase): def setUp(self): super(TestWhoAmI, self).setUp() self.url = reverse('api:whoami') def test_get(self): client = self.anonymous_client self.assertEqual( client.get(self.url).status_code, status.HTTP_200_OK ) user = factories.UserFactory() user.set_password('password') user.save() client = APIClient() self.assertTrue(client.login(username=user.username, password='password')) resp = client.get(self.url) self.assertEqual( resp.status_code, status.HTTP_200_OK ) # test that the response contains username, first and last name and email at least and the id data = resp.json() self.assertEqual(user.username, data['username']) self.assertEqual(user.first_name, data['first_name']) self.assertEqual(user.last_name, data['last_name']) self.assertEqual(user.email, data['email']) self.assertEqual(user.id, data['id']) # test that the password is not in the returned fields self.assertFalse('password' in data) def test_not_allowed_methods(self): client = self.readonly_client self.assertEqual( client.post(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) self.assertEqual( client.put(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) self.assertEqual( client.patch(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) class TestStatistics(TestCase): def setUp(self): self.url = reverse('api:statistics') def test_get(self): anonymous = APIClient() client = anonymous self.assertIn( client.get(self.url).status_code, [status.HTTP_401_UNAUTHORIZED, status.HTTP_403_FORBIDDEN] ) user = factories.UserFactory.create() user.set_password('password') user.save() client = APIClient() self.assertTrue(client.login(username=user.username, password='password')) resp = client.get(self.url) self.assertEqual( resp.status_code, status.HTTP_200_OK ) # expected response with no data expected = { 'projects': {'total': 0}, 'datasets': { 'total': 0, 'generic': {'total': 0}, 'observation': {'total': 0}, 'speciesObservation': {'total': 0}, }, 'records': { 'total': 0, 'generic': {'total': 0}, 'observation': {'total': 0}, 'speciesObservation': {'total': 0}, }, 'sites': {'total': 0}, } self.assertEqual(expected, resp.json()) # create one project program = factories.ProgramFactory.create() project = factories.ProjectFactory.create(program=program) expected['projects']['total'] = 1 resp = client.get(self.url) self.assertEqual( resp.status_code, status.HTTP_200_OK ) self.assertEqual(expected, resp.json()) # create some sites count = 3 factories.SiteFactory.create_batch( count, project=project ) expected['sites']['total'] = count resp = client.get(self.url) self.assertEqual( resp.status_code, status.HTTP_200_OK ) self.assertEqual(expected, resp.json()) def test_not_allowed_methods(self): user = factories.UserFactory.create() user.set_password('password') user.save() client = APIClient() self.assertTrue(client.login(username=user.username, password='password')) self.assertEqual( client.post(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) self.assertEqual( client.put(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) self.assertEqual( client.patch(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) class TestSpecies(TestCase): # set the species list to be the testing one species_facade_class = helpers.LightSpeciesFacade def setUp(self): from main.api.views import SpeciesMixin SpeciesMixin.species_facade_class = self.species_facade_class self.url = reverse('api:species') def test_get(self): anonymous = APIClient() client = anonymous self.assertEqual( client.get(self.url).status_code, status.HTTP_200_OK ) user = factories.UserFactory.create() user.set_password('password') user.save() client = APIClient() self.assertTrue(client.login(username=user.username, password='password')) resp = client.get(self.url) self.assertEqual( resp.status_code, status.HTTP_200_OK ) def test_not_allowed_methods(self): user = factories.UserFactory.create() user.set_password('password') user.save() client = APIClient() self.assertTrue(client.login(username=user.username, password='password')) self.assertEqual( client.post(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) self.assertEqual( client.put(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) self.assertEqual( client.patch(self.url, {}).status_code, status.HTTP_405_METHOD_NOT_ALLOWED )
31.587629
101
0.590078
5,871
0.958061
0
0
0
0
0
0
678
0.11064
48d29ebbfa1dba9c5ef7d472e7d45e6999e1c63b
531
py
Python
src/netwrok/analytics.py
simonwittber/netwrok-server
d4767faa766e7ecb0de0c912f0c0a26b45b84189
[ "MIT" ]
16
2015-12-01T14:42:30.000Z
2021-04-26T21:16:45.000Z
src/netwrok/analytics.py
DifferentMethods/netwrok-server
d4767faa766e7ecb0de0c912f0c0a26b45b84189
[ "MIT" ]
null
null
null
src/netwrok/analytics.py
DifferentMethods/netwrok-server
d4767faa766e7ecb0de0c912f0c0a26b45b84189
[ "MIT" ]
4
2015-03-02T07:19:15.000Z
2015-10-14T07:38:02.000Z
import asyncio import aiopg from . import nwdb from . import core @core.handler def register(client, path, event): """ Register an event occuring at path. Created time is automatically added. Useful for generic analytics type stuff. """ with (yield from nwdb.connection()) as conn: cursor = yield from conn.cursor() yield from cursor.execute(""" insert into analytics(member_id, path, event) select %s, %s, %s """, [client.session.get("member_id", None), path, event])
27.947368
76
0.653484
0
0
448
0.843691
462
0.870056
0
0
239
0.450094
48d3bd9308acb8eb9e29472526d5d05261bbdb90
635
py
Python
monte_carlo/helpers/muaanalytical.py
nathhje/bachelorproject
4bca826d1e065f647e2088b1fd028b1bdf863124
[ "MIT" ]
null
null
null
monte_carlo/helpers/muaanalytical.py
nathhje/bachelorproject
4bca826d1e065f647e2088b1fd028b1bdf863124
[ "MIT" ]
null
null
null
monte_carlo/helpers/muaanalytical.py
nathhje/bachelorproject
4bca826d1e065f647e2088b1fd028b1bdf863124
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Deterimines the reflectance based on r and mua. """ import math import helpers.analyticalvalues as av def reflectance(mua, r): """ mua: the absorption coefficient used. r: the radial distance used. """ values = av.analyticalValues(r, mua) # the value of the reflectance is determined return (values.z0 * (values.ueff + values.rho1 ** -1) * math.exp( -values.ueff * values.rho1) / (values.rho1 ** 2) + (values.z0 + 2 * values.zb) * (values.ueff + values.rho2 ** -1) * math.exp( -values.ueff * values.rho2) / (values.rho2 ** 2)) / 4 / math.pi
30.238095
99
0.60315
0
0
0
0
0
0
0
0
208
0.327559
48d3e34f960926be47270d979dba99f1e974b2b3
476
py
Python
main/test_data.py
anna01111/demo_web_ui_test_suite
69bedc25126b874774e2f51a83356dc9ee1b7e74
[ "CC0-1.0" ]
null
null
null
main/test_data.py
anna01111/demo_web_ui_test_suite
69bedc25126b874774e2f51a83356dc9ee1b7e74
[ "CC0-1.0" ]
null
null
null
main/test_data.py
anna01111/demo_web_ui_test_suite
69bedc25126b874774e2f51a83356dc9ee1b7e74
[ "CC0-1.0" ]
null
null
null
from faker import Faker """ More info: https://microservices-demo.github.io/docs/user-accounts.html """ # The demo app is shipped with the following account: username = 'user' password = 'password' # Fake data that is used for new registrations: faker = Faker() autogenerated_username = faker.user_name() autogenerated_first_name = faker.first_name() autogenerated_last_name = faker.last_name() autogenerated_email = faker.email() autogenerated_password = faker.password()
26.444444
71
0.779412
0
0
0
0
0
0
0
0
195
0.409664
48d3f8d217b00f2ba74165ed887ea259202fee75
1,115
py
Python
pfr/run.py
AnnaMag/pdf-flask-react
de89eb13b2e2e0d4418c28041fe294205f528b96
[ "BSD-2-Clause" ]
2
2019-01-04T16:55:05.000Z
2019-08-28T20:16:47.000Z
pfr/run.py
AnnaMag/pdf-flask-react
de89eb13b2e2e0d4418c28041fe294205f528b96
[ "BSD-2-Clause" ]
2
2021-06-01T21:52:21.000Z
2021-12-13T19:43:43.000Z
pfr/run.py
AnnaMag/pdf-flask-react
de89eb13b2e2e0d4418c28041fe294205f528b96
[ "BSD-2-Clause" ]
null
null
null
from io import StringIO from io import BytesIO import urllib from urllib import request import utils from pdf_processing import scrape_gazette_names, get_info_outline from data_parsing import save_to_dict if __name__ == '__main__': # not saving anything locally, just the names listed on the webpage to access the files later url = 'http://www.gpwonline.co.za/Gazettes/Pages/Published-National-Regulation-Gazettes.aspx' doc_names = scrape_gazette_names(url) db_name = 'gov_docs' db_collection = 'nat_reg' collection = utils.set_collection(db_name, db_collection) for url in doc_names[0][3:5]: print(url) fp = BytesIO(urllib.request.urlopen(url).read()) info, device, pages_skipped = get_info_outline(fp) print(info) #pages_skipped should be pages for extraction- for now is to montitore problems gaz_dict = save_to_dict(device.interesting_text, device.aux_text, \ pages_skipped, info, device.page_number, url) print(gaz_dict) utils.write_db(collection, gaz_dict)
33.787879
97
0.699552
0
0
0
0
0
0
0
0
288
0.258296
48d4f15c7fa28d9ec9d8b63f2ea935ca7b5152ba
1,246
py
Python
day9/day9.py
jaredledvina/adventofcode2020
2a31fd88c0b6bddd2c06327d04e6630b8fb29909
[ "MIT" ]
1
2020-12-09T14:50:49.000Z
2020-12-09T14:50:49.000Z
day9/day9.py
jaredledvina/adventofcode2020
2a31fd88c0b6bddd2c06327d04e6630b8fb29909
[ "MIT" ]
null
null
null
day9/day9.py
jaredledvina/adventofcode2020
2a31fd88c0b6bddd2c06327d04e6630b8fb29909
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import itertools def read_input(): with open('input.txt') as f: puzzle_input = f.read().splitlines() puzzle_input = [int(num) for num in puzzle_input] return puzzle_input def part1(puzzle_input): preamble = puzzle_input[:25] remaining = puzzle_input[25:] for item in remaining: found_match = False for product in itertools.product(preamble, preamble): if product[0] + product[1] == item: found_match = True preamble.append(item) preamble.pop(0) break if not found_match: return item def part2(puzzle_input): invalid = part1(puzzle_input) for position in range(len(puzzle_input)): combination_position = 0 for combination in itertools.accumulate(puzzle_input[position:]): if combination == invalid: return min(puzzle_input[position:combination_position+position]) + max(puzzle_input[position:combination_position+position]) combination_position += 1 def main(): puzzle_input = read_input() print(part1(puzzle_input)) print(part2(puzzle_input)) if __name__ == '__main__': main()
29.666667
140
0.629213
0
0
0
0
0
0
0
0
43
0.03451
48d562ad3234975315fbded1821628c64f55b9d7
4,461
py
Python
streamlitfront/tests/common.py
i2mint/streamlitfront
6fbc03a42cdb7436dcda3da00fb9b42965bbb582
[ "Apache-2.0" ]
null
null
null
streamlitfront/tests/common.py
i2mint/streamlitfront
6fbc03a42cdb7436dcda3da00fb9b42965bbb582
[ "Apache-2.0" ]
1
2022-02-03T15:21:57.000Z
2022-02-05T00:51:33.000Z
streamlitfront/tests/common.py
i2mint/streamlitfront
6fbc03a42cdb7436dcda3da00fb9b42965bbb582
[ "Apache-2.0" ]
null
null
null
from contextlib import contextmanager from functools import partial from inspect import Parameter from random import choice, randint, uniform import string from typing import Any from i2 import Sig from numbers import Number from sys import platform from selenium.common.exceptions import NoSuchElementException from selenium.webdriver import Chrome, ChromeOptions from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.chrome.service import Service from webdriver_manager.chrome import ChromeDriverManager from strand import run_process from streamlitfront.run_app import run_app from time import sleep import dill import pickle STREAMLIT_APP_URL = 'http://localhost:8501' @contextmanager def dispatch_funcs_with_selenium(funcs, headless=False): """ Dispatches the functions in a streamlit application and build a selenium object representing the root of the DOM for the application. """ serialize_funcs = False try: pickle.dumps(funcs) except: serialize_funcs = True _funcs = dill.dumps(funcs) if serialize_funcs else funcs with run_process(func=run_app, func_kwargs={'funcs': _funcs}, is_ready=3) as proc: options = ChromeOptions() # options.add_argument('--no-sandbox') options.add_argument('--window-size=1920,1080') if headless: options.add_argument('--headless') # options.add_argument('--disable-gpu') # options.add_argument('--allow-running-insecure-content') dom = Chrome(service=Service(ChromeDriverManager().install()), options=options) dom.get(STREAMLIT_APP_URL) try: yield dom finally: dom.close() def give_a_chance_to_render_element(func): """ Gives a chance to the application to render the element by trying up to three times with 1 second of interval to find it before raising an error. """ # @wrap(func) def wrapper(*args, **kwargs): def _try_to_find_element(intent_nb): try: return func(*args, **kwargs) except NoSuchElementException: if intent_nb < 3: sleep(1) return _try_to_find_element(intent_nb + 1) raise return _try_to_find_element(1) return wrapper @give_a_chance_to_render_element def find_element_by_css_selector(css_selector, root): return root.find_element(By.CSS_SELECTOR, css_selector) def select_func(idx, root): radio_button = find_element_by_css_selector( f".block-container .stRadio div[role='radiogroup'] label:nth-child({idx + 1})", root, ) radio_button.click() sleep(0.5) def send_input(input_, idx, root): def get_input_type(): if isinstance(input_, Number): return 'number' if isinstance(input_, str): return 'text' input_type = get_input_type() input_el = find_element_by_css_selector( f".main .element-container:nth-child({idx + 2}) input[type='{input_type}']", root, ) input_el.click() select_all_first_key = Keys.COMMAND if platform == 'darwin' else Keys.CONTROL input_el.send_keys(select_all_first_key, 'a') input_el.send_keys(str(input_)) def compute_output(func, root): def get_output(previous_output=None, intent_nb=1): output_el = find_element_by_css_selector(output_css_selector, root) if output_el.find_elements(By.TAG_NAME, 'code'): output_el = find_element_by_css_selector('code', output_el) output = output_el.text return_annot = Sig(func).return_annotation if return_annot not in (Parameter.empty, Any): output = return_annot(output) if previous_output is not None and output == previous_output and intent_nb < 3: sleep(1) return get_output(previous_output, intent_nb + 1) return output def get_previous_output(): if root.find_elements(By.CSS_SELECTOR, output_css_selector): return get_output() nb_args = len(Sig(func)) output_css_selector = f'.element-container:nth-child({nb_args + 3}) .stMarkdown p' previous_output = get_previous_output() submit_button = find_element_by_css_selector( f'.element-container:nth-child({nb_args + 2}) button', root ) submit_button.click() return get_output(previous_output)
33.795455
87
0.68998
0
0
989
0.221699
1,151
0.258014
0
0
836
0.187402
48d584fffe50d5a164a634c7bdeab43a85e1c776
16,094
py
Python
Python_files/analyse.py
Deniz-shelby/goodreads_webscrap
80be6eb85f8a128eeeef2f845726557852991463
[ "Apache-2.0" ]
null
null
null
Python_files/analyse.py
Deniz-shelby/goodreads_webscrap
80be6eb85f8a128eeeef2f845726557852991463
[ "Apache-2.0" ]
1
2021-04-14T07:41:49.000Z
2021-04-14T10:02:45.000Z
Python_files/analyse.py
Deniz-shelby/goodreads_webscrap
80be6eb85f8a128eeeef2f845726557852991463
[ "Apache-2.0" ]
2
2021-04-14T05:31:24.000Z
2021-04-19T08:00:40.000Z
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.preprocessing import MinMaxScaler import warnings import scipy.stats as st import statsmodels as sm def analyse(df_input,df_all_input): df = df_input fig, ax = plt.subplots(figsize=(17,8)) plt.scatter(df['num_pages'],df['num_ratings'], label = 'books', color = 'lightpink', edgecolor = 'darkviolet') plt.xlabel('num_pages', fontsize=20,labelpad=20) plt.ylabel('num_ratings', fontsize=20,labelpad=20) plt.title('2D Scatterplot', fontsize=38,y=1.15) plt.xlim(0,1900) plt.xticks(np.arange(0,1900,100),fontsize=14, rotation=45) #plt.ylim(0,max(df['num_ratings'])) plt.yticks(np.arange(0,max(df['num_ratings']),1000000),fontsize=14) plt.grid(True,linestyle='dashed') plt.show() # 3 x=df['num_pages'] y=df['num_ratings'] # Pearson pearson = st.pearsonr(x, y) print(f'Pearson: Correlation= {pearson[0]} , p-value= {pearson[1]}') # Spear spear = st.spearmanr(x, y) print(f'Spear: Correlation= {spear[0]} , p-value= {spear[1]}') # Kendal kendal = st.kendalltau(x,y) print(f'Kendal: Correlation= {kendal [0]} , p-value= {kendal [1]}') # python python_corr = df['num_pages'].corr(df['num_ratings']) print(f'Correlation= {python_corr}') #### avg_rating fig, ax = plt.subplots(figsize=(17,8)) plt.hist(df.avg_rating, bins = np.arange(3.5,4.65,0.1), ## change for a better bin scale color='cornflowerblue', edgecolor = "white") plt.xticks(np.arange(3.5,4.65,0.1),fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("Averge Rating", fontsize=20,labelpad=20) plt.ylabel("Books", fontsize=20,labelpad=20) plt.title('Distribution of avg_rating', fontsize=28,y=1.15) plt.grid(True,linestyle='dashed') plt.show() fig, ax = plt.subplots(figsize=(17,8)) plt.hist(df.avg_rating, bins = np.arange(3.5,4.65,0.025), ## change for a better bin scale color='cornflowerblue', edgecolor = "white") plt.xticks(np.arange(3.5,4.65,0.1),fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("Averge Rating", fontsize=20,labelpad=20) plt.ylabel("Books", fontsize=20,labelpad=20) plt.title('Distribution of avg_rating', fontsize=28,y=1.15) plt.grid(True,linestyle='dashed') plt.show() fig, ax = plt.subplots(figsize=(17,8)) plt.hist(df.avg_rating, bins = np.arange(3.5,4.65,0.01), ## change for a better bin scale color='cornflowerblue', edgecolor = "white") plt.xticks(np.arange(3.5,4.65,0.1),fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("Averge Rating", fontsize=20,labelpad=20) plt.ylabel("Books", fontsize=20,labelpad=20) plt.title('Distribution of avg_rating', fontsize=28,y=1.15) plt.grid(True,linestyle='dashed') plt.show() ### 4 fig, ax = plt.subplots(figsize=(17,8)) plt.hist(df.minmax_norm_ratings, bins = np.arange(0,10,0.5), ## change for a better bin scale color='cornflowerblue', edgecolor = "white") plt.xticks(np.arange(0,10,1),fontsize=14, rotation=45) plt.xticks(fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("minmax_norm Rating", fontsize=20,labelpad=20) plt.ylabel("Books", fontsize=20,labelpad=20) plt.title('Distribution of minmax_norm_ratings', fontsize=28,y=1.15) plt.grid(True,linestyle='dashed') plt.xlim(0,10) plt.show() ### 4 fig, ax = plt.subplots(figsize=(17,8)) plt.hist(df.minmax_norm_ratings, bins = np.arange(0,10,0.1), ## change for a better bin scale color='cornflowerblue', edgecolor = "white") plt.xticks(np.arange(0,10,1),fontsize=14, rotation=45) plt.xticks(fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("minmax_norm Rating", fontsize=20,labelpad=20) plt.ylabel("Books", fontsize=20,labelpad=20) plt.title('Distribution of minmax_norm_ratings', fontsize=28,y=1.15) plt.grid(True,linestyle='dashed') plt.xlim(0,10) plt.show() ### 5 fig, ax = plt.subplots(figsize=(17,8)) plt.hist(df.mean_norm_ratings, bins = np.arange(0,10,0.5), ## change for a better bin scale color='cornflowerblue', edgecolor = "white") plt.xticks(np.arange(2,9,1),fontsize=14, rotation=45) plt.xticks(fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("mean_norm Rating", fontsize=20,labelpad=20) plt.ylabel("books", fontsize=20,labelpad=20) plt.title('Distribution of mean_norm_ratings', fontsize=28,y=1.15) plt.grid(True,linestyle='dashed') plt.xlim(2,9) plt.show() fig, ax = plt.subplots(figsize=(17,8)) plt.hist(df.mean_norm_ratings, bins = np.arange(2,9,0.1), ## change for a better bin scale color='cornflowerblue', edgecolor = "white") plt.xticks(np.arange(0,10,1),fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("mean_norm Rating", fontsize=20,labelpad=20) plt.ylabel("books", fontsize=20,labelpad=20) plt.title('Distribution of mean_norm_ratings', fontsize=28,y=1.2) plt.grid(True,linestyle='dashed') plt.xlim(2,9) plt.show() # 6 fig, ax = plt.subplots(figsize=(14,8)) bins =np.arange(0,10,1) plt.hist([df['minmax_norm_ratings'],df['mean_norm_ratings']], bins, label=['minamx_norm_ratings','mean_norm_ratings'], color=['cornflowerblue','lightpink'], edgecolor = "white") plt.xticks(np.arange(0,10,0.5),fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("norm_rating", fontsize=20,labelpad=20) plt.ylabel("books", fontsize=20,labelpad=20) plt.title('Distribution of mean_norm_ratings', fontsize=28,y=1.2) plt.grid(True,linestyle='dashed') plt.xlim(0,10) plt.show() fig, ax = plt.subplots(figsize=(17,8)) bins =np.arange(0,10,0.5) plt.hist([df['minmax_norm_ratings'],df['mean_norm_ratings']], bins, label=['minamx_norm_ratings','mean_norm_ratings'], color=['cornflowerblue','lightpink'], edgecolor = "white") plt.xticks(np.arange(0,10,0.5),fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("norm_rating", fontsize=20,labelpad=20) plt.ylabel("Books", fontsize=20,labelpad=20) plt.title('Distribution of mean_norm_ratings', fontsize=28,y=1.2) plt.grid(True,linestyle='dashed') plt.xlim(0,10) plt.show() matplotlib.rcParams['figure.figsize'] = (18, 10) matplotlib.style.use('ggplot') # Create models from data def best_fit_distribution(data, bins=200, ax=None): """Model data by finding best fit distribution to data""" # Get histogram of original data y, x = np.histogram(data, bins=bins, density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 # Distributions to check DISTRIBUTIONS = [ st.alpha,st.anglit,st.arcsine,st.beta,st.betaprime,st.bradford,st.burr,st.cauchy,st.chi,st.chi2,st.cosine, st.dgamma,st.dweibull,st.erlang,st.expon,st.exponnorm,st.exponweib,st.exponpow,st.f,st.fatiguelife,st.fisk, #st.foldcauchy,st.foldnorm,st.frechet_r,st.frechet_l,st.genlogistic,st.genpareto,st.gennorm,st.genexpon, st.genextreme,st.gausshyper,st.gamma,st.gengamma,st.genhalflogistic,st.gilbrat,st.gompertz,st.gumbel_r, st.gumbel_l,st.halfcauchy,st.halflogistic,st.halfnorm,st.halfgennorm,st.hypsecant,st.invgamma,st.invgauss, st.invweibull,st.johnsonsb,st.johnsonsu,st.ksone,st.kstwobign,st.laplace,st.levy,st.levy_l,st.levy_stable, st.logistic,st.loggamma,st.loglaplace,st.lognorm,st.lomax,st.maxwell,st.mielke,st.nakagami,st.ncx2,st.ncf, st.nct,st.norm,st.pareto,st.pearson3,st.powerlaw,st.powerlognorm,st.powernorm,st.rdist,st.reciprocal, st.rayleigh,st.rice,st.recipinvgauss,st.semicircular,st.t,st.triang,st.truncexpon,st.truncnorm,st.tukeylambda, st.uniform,st.vonmises,st.vonmises_line,st.wald,st.weibull_min,st.weibull_max,st.wrapcauchy ] # Best holders best_distribution = st.norm best_params = (0.0, 1.0) best_sse = np.inf # Estimate distribution parameters from data for distribution in DISTRIBUTIONS: # Try to fit the distribution try: # Ignore warnings from data that can't be fit with warnings.catch_warnings(): warnings.filterwarnings('ignore') # fit dist to data params = distribution.fit(data) # Separate parts of parameters arg = params[:-2] loc = params[-2] scale = params[-1] # Calculate fitted PDF and error with fit in distribution pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) # if axis pass in add to plot try: if ax: pd.Series(pdf, x).plot(ax=ax) end except Exception: pass # identify if this distribution is better if best_sse > sse > 0: best_distribution = distribution best_params = params best_sse = sse except Exception: pass return (best_distribution.name, best_params) def make_pdf(dist, params, size=10000): """Generate distributions's Probability Distribution Function """ # Separate parts of parameters arg = params[:-2] loc = params[-2] scale = params[-1] # Get sane start and end points of distribution start = dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale) end = dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale) # Build PDF and turn into pandas Series x = np.linspace(start, end, size) y = dist.pdf(x, loc=loc, scale=scale, *arg) pdf = pd.Series(y, x) return pdf # Plot for comparison takes time plt.figure(figsize=(15,10)) #ax = data.plot(kind='hist', bins=50, normed=True, alpha=0.5, color=plt.rcParams['axes.color_cycle'][1]) ax = df.minmax_norm_ratings.hist( bins=20, alpha=0.5, density=True, color='cornflowerblue', edgecolor = 'white') # Save plot limits dataYLim = ax.get_ylim() # Find best fit distribution best_fit_name, best_fit_params = best_fit_distribution(df.minmax_norm_ratings, 200, ax) best_dist = getattr(st, best_fit_name) # Update plots ax.set_ylim(dataYLim) ax.set_title(u'Minmax norm rating') ax.set_xlabel(u'Frequency') ax.set_ylabel('Frequency') # runs fast plt.figure(figsize=(14,8)) ax = pdf.plot(lw=2, label='PDF', legend=True) df.minmax_norm_ratings.plot(kind='hist', bins=50, density=True, alpha=0.5, label='Data', color='cornflowerblue', legend=True, ax=ax) param_names = (best_dist.shapes + ', loc, scale').split(', ') if best_dist.shapes else ['loc', 'scale'] param_str = ', '.join(['{}={:0.2f}'.format(k,v) for k,v in zip(param_names, best_fit_params)]) dist_str = '{}({})'.format(best_fit_name, param_str) ax.set_title(u'minmax_norm with best fit distribution \n' + dist_str) ax.set_xlabel(u'norm_ratings') ax.set_ylabel('Frequency') ########## 8 ### fig, ax = plt.subplots(figsize=(17,8)) plt.hist(df.awards_count, bins = np.arange(0,30,1), ## change for a better bin scale color='cornflowerblue', edgecolor = "white") plt.xticks(np.arange(1,30,1),fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xlabel("mean_norm awards_count", fontsize=20,labelpad=20) plt.ylabel("frequency", fontsize=20,labelpad=20) plt.title('awards_count', fontsize=28,y=1.2) plt.grid(True,linestyle='dashed') plt.xlim(1,30) plt.show() fig, ax = plt.subplots(figsize=(17,8)) aggregate = df.groupby('original_publish_year')['awards_count'].agg('max','mean') plt.hist(aggregate, bins = np.arange(0,30,1), ## change for a better bin scale color=['cornflowerblue'], edgecolor = "white") plt.xticks(fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xticks(np.arange(1,30,1),fontsize=14, rotation=45) plt.xlabel("mean_norm awards_count", fontsize=20,labelpad=20) plt.ylabel("awards", fontsize=20,labelpad=20) plt.title('Aggregation plot for awards', fontsize=28,y=1.2) plt.grid(True,linestyle='dashed') plt.xlim(1,30,1) plt.show() fig, ax = plt.subplots(figsize=(10,8)) plt.boxplot(df['awards_count']) plt.xticks(fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xticks() plt.ylabel("awards", fontsize=20,labelpad=20) plt.title('Awards distribution', fontsize=28,y=1.2) plt.grid(True,linestyle='dashed') ax.set_xticks([]) plt.show() ## 9 year_minmax=df.groupby("original_publish_year")['minmax_norm_ratings'].mean().round(decimals=2) fig, ax = plt.subplots(figsize=(17,8)) plt.plot(year_minmax,color='cornflowerblue') plt.xticks(fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xticks(np.arange(1900,2001,10),fontsize=14, rotation=45) plt.xlabel("year", fontsize=20,labelpad=20) plt.ylabel("aminmax_norm_ratings", fontsize=20,labelpad=20) plt.title('Average Ratings by Year', fontsize=28,y=1.2) plt.grid(True,linestyle='dashed') plt.xlim(1900,2000) plt.show() ##10 fig, ax = plt.subplots(figsize=(17,8)) plt.scatter(df['original_publish_year'],df['minmax_norm_ratings'], label = 'books', color = 'lightpink', edgecolor = 'darkviolet') plt.xticks(fontsize=14, rotation=45) plt.yticks(fontsize=14) plt.xticks(np.arange(1900,2001,10),fontsize=14, rotation=45) plt.xlabel("year", fontsize=20,labelpad=20) plt.ylabel("aminmax_norm_ratings", fontsize=20,labelpad=20) plt.title('Average Ratings by Year', fontsize=28,y=1.2) plt.grid(True,linestyle='dashed') plt.xlim(1900,2000) plt.show() df_all = df_all_input count_awards = len(df) #allwith awards count_all = len(df_all) # get all #Series all series_count_all = df_all['series'].value_counts() count_have_series_all = series_count_all[True] count_no_series_all = series_count_all[False] prob_series_all=count_have_series_all/count_all prob_series_perc_all=round((count_have_series_all/count_all)*100,2) print(f'Probabilty of having a series is in all : {prob_series_perc_all} %') #Series in award series_count = df['series'].value_counts() count_have_series = series_count[True] count_no_series = series_count[False] prob_series=count_have_series/count_awards prob_series_perc=round((count_have_series/count_awards)*100,2) print(f'Probabilty of having a series is : {prob_series_perc} %') #Awards prob_awards=count_all/1100 prob_awards_perc=round((count_awards/1100)*100,2) print(f'Probabilty of having a awards is : {prob_awards_perc} %') ## prob=round(prob_awards_perc*prob_series_perc/prob_series_perc_all,2) print(f'probability that a book that is part of a series has won an award is: {prob} %')
36.494331
122
0.626942
0
0
0
0
0
0
0
0
3,815
0.237045
48d7564242b45a65bf822b185e1203ecbd2093a0
773
py
Python
3 assignment/number_of_digits_unitest.py
nastae/programavimas_python
7e65ad834c5f52e146fb5fcd0408b344545dc30e
[ "Apache-2.0" ]
null
null
null
3 assignment/number_of_digits_unitest.py
nastae/programavimas_python
7e65ad834c5f52e146fb5fcd0408b344545dc30e
[ "Apache-2.0" ]
null
null
null
3 assignment/number_of_digits_unitest.py
nastae/programavimas_python
7e65ad834c5f52e146fb5fcd0408b344545dc30e
[ "Apache-2.0" ]
null
null
null
import unittest def number_of_digits(s): return sum(c.isdigit() for c in s) # Parašykite funkcijai X unittest'us class Test(unittest.TestCase): def test_only_digits(self): s = "123456789" self.assertEqual(number_of_digits(s), 9) def test_only_letters(self): s = "abcdef" self.assertEqual(number_of_digits(s), 0) def test_digits_between_letters(self): s = "asd123asd123asd" self.assertEqual(number_of_digits(s), 6) def test_letters_between_digits(self): s = "123asd123asd123" self.assertEqual(number_of_digits(s), 9) def test_neither_letter_or_digit(self): s = ",./;';'[]`" self.assertEqual(number_of_digits(s), 0) if __name__ == '__main__': unittest.main()
24.935484
48
0.65718
605
0.781654
0
0
0
0
0
0
112
0.144703
48d79b6a3679e4354a437a7315a9dd9bd23f2c50
3,971
py
Python
scraper/edx.py
thanasis457/Mooc-platform
5ff3b7b43fadc86ec5d4d54db6963449a6610bb5
[ "MIT" ]
4
2020-08-30T12:18:27.000Z
2021-05-19T06:42:13.000Z
scraper/edx.py
thanasis457/Mooc-platform
5ff3b7b43fadc86ec5d4d54db6963449a6610bb5
[ "MIT" ]
1
2021-01-28T20:21:48.000Z
2021-01-28T20:21:48.000Z
scraper/edx.py
thanasis457/Mooc-platform
5ff3b7b43fadc86ec5d4d54db6963449a6610bb5
[ "MIT" ]
1
2020-09-14T13:20:05.000Z
2020-09-14T13:20:05.000Z
import requests, json, bs4, urllib.parse, math from . import Course, Platform class Edx(Platform): name = 'edX' def _urls(self): res = requests.get(make_url()) count = json.loads(res.text)['objects']['count'] num_pages = math.ceil(count / 20) urls = [make_url(page=page) for page in range(1, num_pages + 1)] return urls def _parse(self, url): res = requests.get(url) courses = [] results = res.json()['objects']['results'] for result in results: title = result['title'] if result['full_description']: description = html_to_text(result['full_description']) else: description = result['short_description'] snippet = '' if result['short_description'] and result['short_description'] != '.': snippet = result['short_description'] url = result['marketing_url'] tags = [subject_uuids.get(uuid) for uuid in result['subject_uuids']] partners = [result.get('org')] course = Course(title, partners, self.name, description, tags, url, snippet=snippet) courses.append(course) return courses subject_uuids = {'d8244ef2-45fb-4be3-a9d7-a6749cee3b19': 'Architecture', '2cc66121-0c07-407b-96c4-99305359a36f': 'Art & Culture', '9d5b5edb-254a-4d54-b430-776f1f00eaf0': 'Biology & Life Sciences', '409d43f7-ff36-4834-9c28-252132347d87': 'Business & Management', 'c5ec1f86-4e59-4273-8e22-ceec2b8d10a2': 'Chemistry', '605bb663-a342-4cf3-b5a5-fee2f33f1642': 'Communication', 'e52e2134-a4e4-4fcb-805f-cbef40812580': 'Computer Science', 'a168a80a-4b6c-4d92-9f1d-4c235206feaf': 'Data Analysis & Statistics', '34173fb0-fe3d-4715-b4e0-02a9426a873c': 'Design', 'bab458d9-19b3-476e-864f-8abd1d1aab44': 'Economics & Finance', '8ac7a3da-a60b-4565-b361-384baaa49279': 'Education & Teacher Training', '337dfb23-571e-49d7-9c8e-385120dea6f3': 'Electronics', '07406bfc-76c4-46cc-a5bf-2deace7995a6': 'Energy & Earth Sciences', '0d7bb9ed-4492-419a-bb44-415adafd9406': 'Engineering', '8aaac548-1930-4614-aeb4-a089dae7ae26': 'Environmental Studies', '8a552a20-963e-475c-9b0d-4c5efe22d015': 'Ethics', 'caa4db79-f325-41ca-8e09-d5bb6e148240': 'Food & Nutrition', '51a13a1c-7fc8-42a6-9e96-6636d10056e2': 'Health & Safety', 'c8579e1c-99f2-4a95-988c-3542909f055e': 'Histroy', '00e5d5e0-ce45-4114-84a1-50a5be706da5': 'Humanities', '32768203-e738-4627-8b04-78b0ed2b44cb': 'Language', '4925b67d-01c4-4287-a8d1-a3e0066113b8': 'Law', '74b6ed2a-3ba0-49be-adc9-53f7256a12e1': 'Literature', 'a669e004-cbc0-4b68-8882-234c12e1cce4': 'Math', 'a5db73b2-05b4-4284-beef-c7876ec1499b': 'Medicine', 'f520dcc1-f5b7-42fe-a757-8acfb1e9e79d': 'Music', '830f46dc-624e-46f4-9df0-e2bc6b346956': 'Philosophy & Ethics', '88eb7ca7-2296-457d-8aac-e5f7503a9333': 'Physics', 'f830cfeb-bb7e-46ed-859d-e2a9f136499f': 'Science', 'eefb009b-0a02-49e9-b1b1-249982b6ce86': 'Social Sciences'} def make_url(page=1): params = {'selected_facets[]': 'transcript_languages_exact:English', 'partner': 'edx', 'content_type[]': 'courserun', 'page': page, 'page_size': 20} return 'https://www.edx.org/api/v1/catalog/search?' + urllib.parse.urlencode(params) def html_to_text(html): soup = bs4.BeautifulSoup(html, 'lxml') return soup.text
44.617978
88
0.576681
1,257
0.316545
0
0
0
0
0
0
1,953
0.491816
48d950cb515fdc01c87e2cf97d07a2e9d9b96b55
8,409
py
Python
main.py
LaudateCorpus1/TotalConnect2.0_API-Arm-Disarm
96885410defa036b37b5f6ae86b322de89c850ae
[ "MIT" ]
1
2017-03-06T03:44:40.000Z
2017-03-06T03:44:40.000Z
main.py
LaudateCorpus1/TotalConnect2.0_API-Arm-Disarm
96885410defa036b37b5f6ae86b322de89c850ae
[ "MIT" ]
null
null
null
main.py
LaudateCorpus1/TotalConnect2.0_API-Arm-Disarm
96885410defa036b37b5f6ae86b322de89c850ae
[ "MIT" ]
2
2020-01-20T12:57:55.000Z
2022-02-08T07:03:58.000Z
#!/usr/local/bin/python2.7 #FREEBSD 2 Minutes ARP Expires - /bin/echo "net.link.ether.inet.max_age 300" >> /etc/sysctl.conf #Crontab -e "* * * * * /usr/local/bin/python2.7 /root/Security.py" import subprocess import ConfigParser import string, os, sys, httplib import xml.etree.ElementTree as ET from datetime import datetime, time now = datetime.now() now_time = now.time() #---- BOL FOR CONFIGURTION INI ----# # Documentation: https://wiki.python.org/moin/ConfigParserExamples # Config = ConfigParser.ConfigParser() Config.read("Security.ini") cfgfile = open("Security.ini") def BoolConfigSectionMap(section): dict1 = {} options = Config.options(section) for option in options: try: dict1[option] = Config.getboolean(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: print("exception on %s!" % option) dict1[option] = None return dict1 def ConfigSectionMap(section): dict1 = {} options = Config.options(section) for option in options: try: dict1[option] = Config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: print("exception on %s!" % option) dict1[option] = None return dict1 state = BoolConfigSectionMap("Status")['armed'] #---- EOL FOR CONFIGURTION INI ----# device1 = '00:00:00:00:00:00' device2 = '00:00:00:00:00:00' device3 = '00:00:00:00:00:00' #---- BOL for LOG Output ---- # Log = open('SecurityAuditlog.txt', 'w') print >> Log, "---------",now_time,"---------" #---- BOL API Section ----# def TC2_SOAPSessionID(): global sessionHash server_addr = "rs.alarmnet.com" service_action = "/TC21API/TC2.asmx" username = ConfigSectionMap("Authentication")['username'] password = ConfigSectionMap("Authentication")['password'] body = """ <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><soapenv:Header/><soapenv:Body><tns:AuthenticateUserLoginEx xmlns:tns="https://services.alarmnet.com/TC2/"><tns:userName>%s</tns:userName>""" body1 = """<tns:password>%s</tns:password><tns:ApplicationID>14588</tns:ApplicationID><tns:ApplicationVersion>3.14.2</tns:ApplicationVersion><tns:LocaleCode></tns:LocaleCode></tns:AuthenticateUserLoginEx></soapenv:Body></soapenv:Envelope>""" request = httplib.HTTPSConnection(server_addr) request.putrequest("POST", service_action) request.putheader("Accept", "application/soap+xml, application/dime, multipart/related, text/*") request.putheader("Content-Type", "text/xml; charset=utf-8") request.putheader("Cache-Control", "no-cache") request.putheader("Pragma", "no-cache") request.putheader("SOAPAction","https://services.alarmnet.com/TC2/AuthenticateUserLoginEx") request.putheader("Content-Length", str(len(body % username + body1 % password))) request.endheaders() request.send(body % username + body1 % password) response = request.getresponse().read() tree = ET.fromstring(response) sessionHash = tree.find('.//{https://services.alarmnet.com/TC2/}SessionID').text return def TC2_DisarmSecuritySystem(): TC2_SOAPSessionID() server_addr = "rs.alarmnet.com" service_action = "/TC21API/TC2.asmx" body = ("""<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <SOAP-ENV:Body> <tns:DisarmSecuritySystem xmlns:tns="https://services.alarmnet.com/TC2/"> <tns:SessionID>%s</tns:SessionID> <tns:LocationID>0</tns:LocationID> <tns:DeviceID>0</tns:DeviceID> <tns:UserCode>-1</tns:UserCode> </tns:DisarmSecuritySystem> </SOAP-ENV:Body> </SOAP-ENV:Envelope>""") request = httplib.HTTPSConnection(server_addr) request.putrequest("POST", service_action) request.putheader("Accept", "application/soap+xml, application/dime, multipart/related, text/*") request.putheader("Content-Type", "text/xml; charset=utf-8") request.putheader("Cache-Control", "no-cache") request.putheader("Pragma", "no-cache") request.putheader("SOAPAction","https://services.alarmnet.com/TC2/DisarmSecuritySystem") request.putheader("Content-Length", str(len(body % sessionHash))) request.endheaders() request.send(body % sessionHash) response = request.getresponse().read() tree = ET.fromstring(response) print >> Log, "API:", tree.find('.//{https://services.alarmnet.com/TC2/}ResultData').text return def TC2_ArmSecuritySystem(armInt): TC2_SOAPSessionID() server_addr = "rs.alarmnet.com" service_action = "/TC21API/TC2.asmx" body = ("""<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <SOAP-ENV:Body> <tns:ArmSecuritySystem xmlns:tns="https://services.alarmnet.com/TC2/"> <tns:SessionID>%s</tns:SessionID> <tns:LocationID>0</tns:LocationID> <tns:DeviceID>0</tns:DeviceID>""") body1 = ("""<tns:ArmType>%s</tns:ArmType> <tns:UserCode>-1</tns:UserCode> </tns:ArmSecuritySystem> </SOAP-ENV:Body> </SOAP-ENV:Envelope>""") request = httplib.HTTPSConnection(server_addr) request.putrequest("POST", service_action) request.putheader("Accept", "application/soap+xml, application/dime, multipart/related, text/*") request.putheader("Content-Type", "text/xml; charset=utf-8") request.putheader("Cache-Control", "no-cache") request.putheader("Pragma", "no-cache") request.putheader("SOAPAction","https://services.alarmnet.com/TC2/ArmSecuritySystem") request.putheader("Content-Length", str(len(body % sessionHash + body1 % armInt))) request.endheaders() request.send(body % sessionHash + body1 % armInt) response = request.getresponse().read() tree = ET.fromstring(response) print >> Log, "API:", tree.find('.//{https://services.alarmnet.com/TC2/}ResultData').text return #---- EOL API Section ----# def countPeople(): global peopleTotal peopleTotal=0 cmd = subprocess.Popen('/usr/sbin/arp -a -i re0_vlan4', shell=True, stdout=subprocess.PIPE) for line in cmd.stdout: if device1 in line: peopleTotal += 1 print >> Log, "User1 is present",peopleTotal if device2 in line: peopleTotal += 1 print >> Log, "User2 is present",peopleTotal if device3 in line: peopleTotal += 1 print >> Log, "User3 is present",peopleTotal # cfgfile = open("Security.ini",'w') # Config.set('Status','armed', True) # Config.write(cfgfile) # cfgfile.close() return # ---- BOL Program Initiation and function mapping ----# def runcheck(): countPeople() print state, peopleTotal #Check ENV with if Statement to see if the "Armed" boolean is true or false if now_time >= time(23,59) or now_time <= time(5,00): if state == False and peopleTotal >0: cfgfile = open("Security.ini",'w') Config.set('Status','armed', True) Config.write(cfgfile) cfgfile.close() TC2_ArmSecuritySystem(1) print >> Log, "arming - It's now between 11:59AM and 5:30AM" else: if state is True and peopleTotal >0: print >> Log, "disarming - more then 0" TC2_DisarmSecuritySystem() cfgfile = open("Security.ini",'w') Config.set('Status','armed', False) Config.write(cfgfile) cfgfile.close() print "Disarming", state else: if state is False and peopleTotal <=0: print >> Log, "arming away - less then 1" TC2_ArmSecuritySystem(0) cfgfile = open("Security.ini",'w') Config.set('Status','armed', True) Config.write(cfgfile) cfgfile.close() print "Arming Away", state return runcheck() # ---- EOL Program Initiation and function mapping ----# #---- Logging ---- # print >> Log, "- Armed",state,"-",peopleTotal,"DEVICES PRESENT","-" Log.close() #---- EOL for LOG Output ---- #
39.665094
275
0.646093
0
0
0
0
0
0
0
0
3,945
0.46914
48d989d7c7b86f58f750e3be1818f6a34de5e9dd
1,538
py
Python
prm/relations/migrations/0002_activity.py
justaname94/innovathon2019
d1a4e9b1b877ba12ab23384b9ee098fcdbf363af
[ "MIT" ]
null
null
null
prm/relations/migrations/0002_activity.py
justaname94/innovathon2019
d1a4e9b1b877ba12ab23384b9ee098fcdbf363af
[ "MIT" ]
4
2021-06-08T20:20:05.000Z
2022-03-11T23:58:37.000Z
prm/relations/migrations/0002_activity.py
justaname94/personal_crm
d1a4e9b1b877ba12ab23384b9ee098fcdbf363af
[ "MIT" ]
null
null
null
# Generated by Django 2.2.5 on 2019-09-09 21:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('relations', '0001_initial'), ] operations = [ migrations.CreateModel( name='Activity', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True, help_text='Datetime on which the object was created.', verbose_name='created at ')), ('modified', models.DateTimeField(auto_now=True, help_text='Datetime on which the object was last modified.', verbose_name='modified at ')), ('name', models.CharField(max_length=50)), ('description', models.TextField()), ('is_active', models.BooleanField(default=True, help_text='Are you currently actively doing it?', verbose_name='Is active')), ('last_time', models.DateField(blank=True, null=True, verbose_name='Last time done')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created', '-modified'], 'get_latest_by': 'created', 'abstract': False, }, ), ]
43.942857
156
0.617035
1,379
0.896619
0
0
0
0
0
0
406
0.263979
48da319d7adab06ea080a4bfe703b82db0fccf2a
1,106
py
Python
elliptic_moab/Mesh/MeshQL.py
padmec-reservoir/elliptic_moab
a3b15f29a621c35a8279fd163326a0895aa67f30
[ "MIT" ]
null
null
null
elliptic_moab/Mesh/MeshQL.py
padmec-reservoir/elliptic_moab
a3b15f29a621c35a8279fd163326a0895aa67f30
[ "MIT" ]
null
null
null
elliptic_moab/Mesh/MeshQL.py
padmec-reservoir/elliptic_moab
a3b15f29a621c35a8279fd163326a0895aa67f30
[ "MIT" ]
null
null
null
from typing import Type from elliptic.Kernel.Context import ContextDelegate from .Selector import SelectorImplementation from .Manager import ManagerImplementation from .Computer import ComputerImplementation class MeshQLImplementation(ComputerImplementation, ManagerImplementation, SelectorImplementation): def base_delegate(self) -> Type[ContextDelegate]: class BaseDelegate(ContextDelegate): def get_template_file(self): return 'base.pyx.etp' def template_kwargs(self): return {'declare_entityhandles': self.context.context['declare_entityhandle'], 'declare_ranges': self.context.context['declare_range'], 'declare_indexes': self.context.context['declare_index'], 'declare_variables': self.context.context['declare_variable'], 'declare_tags': set(self.context.context['declare_tags'])} def context_enter(self): pass def context_exit(self): pass return BaseDelegate
34.5625
98
0.654611
892
0.80651
0
0
0
0
0
0
187
0.169078
48da48030860d7cf05ae6d06f45e092b1b0c01b7
1,229
py
Python
tests/test_quil.py
stjordanis/quantumflow
bf965f0ca70cd69b387f9ca8407ab38da955e925
[ "Apache-2.0" ]
99
2018-12-03T20:41:39.000Z
2022-02-21T13:56:08.000Z
tests/test_quil.py
stjordanis/quantumflow
bf965f0ca70cd69b387f9ca8407ab38da955e925
[ "Apache-2.0" ]
1
2021-06-25T15:18:31.000Z
2021-06-25T15:18:31.000Z
tests/test_quil.py
stjordanis/quantumflow
bf965f0ca70cd69b387f9ca8407ab38da955e925
[ "Apache-2.0" ]
24
2018-12-03T20:41:41.000Z
2022-01-03T01:11:45.000Z
# Copyright 2016-2018, Rigetti Computing # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. import pytest import quantumflow as qf QUIL_FILES = [ 'hello_world.quil', 'empty.quil', 'classical_logic.quil', 'control_flow.quil', 'measure.quil', 'qaoa.quil', 'bell.quil', # 'include.quil', ] RUNNABLE_QUIL_FILES = QUIL_FILES[:-1] def test_parse_quilfile(): print() for quilfile in QUIL_FILES: filename = 'tests/quil/'+quilfile print("<<<"+filename+">>>") with open(filename, 'r') as f: quil = f.read() qf.forest.quil_to_program(quil) def test_run_quilfile(): print() for quilfile in RUNNABLE_QUIL_FILES: filename = 'tests/quil/'+quilfile print("<<<"+filename+">>>") with open(filename, 'r') as f: quil = f.read() prog = qf.forest.quil_to_program(quil) prog.run() def test_unparsable(): with pytest.raises(RuntimeError): filename = 'tests/quil/unparsable.quil' with open(filename, 'r') as f: quil = f.read() qf.forest.quil_to_program(quil)
23.188679
77
0.613507
0
0
0
0
0
0
0
0
390
0.317331
48daec9dcfb1b92e90a94069bc6dece79afb65a2
1,254
py
Python
gitool/util.py
eikendev/gitool
9bfa248093d4ee3caf25fde1a59f4f0fc66994af
[ "MIT" ]
1
2022-03-17T06:26:20.000Z
2022-03-17T06:26:20.000Z
gitool/util.py
eikendev/gitool
9bfa248093d4ee3caf25fde1a59f4f0fc66994af
[ "MIT" ]
null
null
null
gitool/util.py
eikendev/gitool
9bfa248093d4ee3caf25fde1a59f4f0fc66994af
[ "MIT" ]
null
null
null
import itertools import logging from git import Repo, InvalidGitRepositoryError from .repository import Repository logger = logging.getLogger("gitool") def _list_repositories(path): subdirectories = [p for p in path.iterdir() if p.is_dir()] names = [p.name for p in subdirectories] if '.git' not in names: roots = [_list_repositories(p) for p in subdirectories] roots = list(itertools.chain.from_iterable(roots)) else: msg = "Discovered repository at '{}'." logger.debug(msg.format(path)) roots = [path] return roots def get_repositories(path): paths = _list_repositories(path) repositories = list() for p in paths: try: repo = Repo(str(p)) except InvalidGitRepositoryError: msg = "'{}' is not a git repository." logger.warning(msg.format(p)) continue relative = p.relative_to(path) repository = Repository(relative, repo) repositories.append(repository) repositories.sort() return repositories def list_properties(properties) -> str: if len(properties) > 1: return ', '.join(properties[:-1]) + ' and ' + properties[-1] else: return properties[0]
24.115385
68
0.633174
0
0
0
0
0
0
0
0
88
0.070175
48dbc22d623e96499bba5ef1f32d58521697a022
3,571
py
Python
taiga/projects/epics/serializers.py
threefoldtech/Threefold-Circles
cbc433796b25cf7af9a295af65d665a4a279e2d6
[ "Apache-2.0" ]
null
null
null
taiga/projects/epics/serializers.py
threefoldtech/Threefold-Circles
cbc433796b25cf7af9a295af65d665a4a279e2d6
[ "Apache-2.0" ]
12
2019-11-25T14:08:32.000Z
2021-06-24T10:35:51.000Z
taiga/projects/epics/serializers.py
threefoldtech/Threefold-Circles
cbc433796b25cf7af9a295af65d665a4a279e2d6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (C) 2014-2017 Andrey Antukh <[email protected]> # Copyright (C) 2014-2017 Jesús Espino <[email protected]> # Copyright (C) 2014-2017 David Barragán <[email protected]> # Copyright (C) 2014-2017 Alejandro Alonso <[email protected]> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from taiga.base.api import serializers from taiga.base.fields import Field, MethodField from taiga.base.neighbors import NeighborsSerializerMixin from taiga.mdrender.service import render as mdrender from taiga.projects.attachments.serializers import BasicAttachmentsInfoSerializerMixin from taiga.projects.mixins.serializers import OwnerExtraInfoSerializerMixin from taiga.projects.mixins.serializers import ProjectExtraInfoSerializerMixin from taiga.projects.mixins.serializers import AssignedToExtraInfoSerializerMixin from taiga.projects.mixins.serializers import StatusExtraInfoSerializerMixin from taiga.projects.notifications.mixins import WatchedResourceSerializer from taiga.projects.tagging.serializers import TaggedInProjectResourceSerializer from taiga.projects.votes.mixins.serializers import VoteResourceSerializerMixin class EpicListSerializer(VoteResourceSerializerMixin, WatchedResourceSerializer, OwnerExtraInfoSerializerMixin, AssignedToExtraInfoSerializerMixin, StatusExtraInfoSerializerMixin, ProjectExtraInfoSerializerMixin, BasicAttachmentsInfoSerializerMixin, TaggedInProjectResourceSerializer, serializers.LightSerializer): id = Field() ref = Field() project = Field(attr="project_id") created_date = Field() modified_date = Field() subject = Field() color = Field() epics_order = Field() client_requirement = Field() team_requirement = Field() version = Field() watchers = Field() is_blocked = Field() blocked_note = Field() is_closed = MethodField() user_stories_counts = MethodField() def get_is_closed(self, obj): return obj.status is not None and obj.status.is_closed def get_user_stories_counts(self, obj): assert hasattr(obj, "user_stories_counts"), "instance must have a user_stories_counts attribute" return obj.user_stories_counts class EpicSerializer(EpicListSerializer): comment = MethodField() blocked_note_html = MethodField() description = Field() description_html = MethodField() def get_comment(self, obj): return "" def get_blocked_note_html(self, obj): return mdrender(obj.project, obj.blocked_note) def get_description_html(self, obj): return mdrender(obj.project, obj.description) class EpicNeighborsSerializer(NeighborsSerializerMixin, EpicSerializer): pass class EpicRelatedUserStorySerializer(serializers.LightSerializer): epic = Field(attr="epic_id") user_story = Field(attr="user_story_id") order = Field()
40.123596
104
0.758051
1,790
0.50098
0
0
0
0
0
0
1,029
0.287993
48dbc9d4daecd2cf1d72d63509bbaa3a2bffe8c4
2,178
py
Python
src/TMDbApi/TMTranslationUnit.py
shasha79/nectm
600044a6fe2c3a73e0d9327bc85883831a26dcae
[ "Apache-2.0" ]
3
2020-02-28T21:42:44.000Z
2021-03-12T13:56:16.000Z
src/TMDbApi/TMTranslationUnit.py
Pangeamt/nectm
6b84f048698f2530b9fdbb30695f2e2217c3fbfe
[ "Apache-2.0" ]
2
2020-11-06T14:40:10.000Z
2020-12-29T19:03:11.000Z
src/TMDbApi/TMTranslationUnit.py
Pangeamt/nectm
6b84f048698f2530b9fdbb30695f2e2217c3fbfe
[ "Apache-2.0" ]
2
2020-03-26T16:05:11.000Z
2020-08-06T16:35:39.000Z
# # Copyright (c) 2020 Pangeanic SL. # # This file is part of NEC TM # (see https://github.com/shasha79/nectm). # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import uuid class TMTranslationUnit: attributes = ['source_text', 'target_text', 'source_id', 'target_id', 'source_language', 'target_language', 'source_metadata', 'target_metadata', 'metadata', 'source_pos', 'target_pos', 'tuid', 'dirty_score', 'username', 'industry', 'type', 'file_name', 'domain', 'organization', 'tm_creation_date', 'tm_change_date', 'insert_date', 'update_date', 'check_date', 'check_version'] def __init__(self, sdict={}): self.reset(sdict) def reset(self, sdict): # Initialize segment fields for attr in self.attributes: val = None if not attr in sdict else sdict[attr] setattr(self, attr, val) # allocate ids self._allocate_id('source') self._allocate_id('target') def _allocate_id(self, type): text = getattr(self, type + '_text') if text: setattr(self, type + '_id', uuid.uuid5(uuid.NAMESPACE_URL, text)) def to_dict(self): return dict([(a, getattr(self, a)) for a in self.attributes]) def to_dict_short(self): return dict([(a, getattr(self, a)) for a in ['source_text', 'target_text', 'source_metadata', 'target_metadata'] if getattr(self, a)])
36.915254
138
0.674472
1,262
0.579431
0
0
0
0
0
0
1,322
0.606979
48dcecd475c9d9c66ff47a1b76abf99c791428f8
805
py
Python
tests/test_268.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
tests/test_268.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
tests/test_268.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
#!/usr/bin/env python import pytest """ Test 268. Missing Number """ @pytest.fixture(scope="session") def init_variables_268(): from src.leetcode_268_missing_number import Solution solution = Solution() def _init_variables_268(): return solution yield _init_variables_268 class TestClass268: def test_solution_0(self, init_variables_268): assert init_variables_268().missingNumber([3, 0, 1]) == 2 def test_solution_1(self, init_variables_268): assert init_variables_268().missingNumber([0, 1]) == 2 def test_solution_2(self, init_variables_268): assert init_variables_268().missingNumber([9, 6, 4, 2, 3, 5, 7, 0, 1]) == 8 def test_solution_3(self, init_variables_268): assert init_variables_268().missingNumber([0]) == 1
23.676471
83
0.696894
499
0.619876
196
0.243478
229
0.284472
0
0
62
0.077019
48de82f88d77ad42fe5f179efaac8655f74f00d7
5,682
py
Python
tests/db/test_connector.py
DaWeSearch/backend
809e575ed730fce55d0e89a2fbc2031ba116f5e0
[ "MIT" ]
1
2021-02-15T01:05:22.000Z
2021-02-15T01:05:22.000Z
tests/db/test_connector.py
DaWeSearch/backend
809e575ed730fce55d0e89a2fbc2031ba116f5e0
[ "MIT" ]
null
null
null
tests/db/test_connector.py
DaWeSearch/backend
809e575ed730fce55d0e89a2fbc2031ba116f5e0
[ "MIT" ]
null
null
null
import unittest import os import json from functions.db.connector import * from functions.db.models import * from functions.authentication import * sample_search = { "search_groups": [ { "search_terms": ["blockchain", "distributed ledger"], "match": "OR" }, { "search_terms": ["energy", "infrastructure", "smart meter"], "match": "OR" } ], "match": "AND" } db_dict = {"db_name": "hallo", "api_key": "test"} class TestConnector(unittest.TestCase): def setUp(self): name = "test_review" self.review = add_review(name) self.sample_query = new_query(self.review, sample_search) with open('test_results.json', 'r') as file: self.results = json.load(file) save_results(self.results['records'], self.review, self.sample_query) def test_add_review(self): name = "test_review" new_review = add_review(name) review = get_review_by_id(new_review._id) review.delete() self.assertEqual(review._id, new_review._id) def test_save_results(self): query = new_query(self.review, sample_search) jsonpath = os.path.abspath(os.path.join( os.path.dirname(__file__), "..", "..", "test_results.json")) with open(jsonpath, 'r') as file: results = json.load(file) save_results(results['records'], self.review, query) results_from_db = get_persisted_results(query).get('results') self.assertEqual(len(results_from_db), len(results['records'])) def test_pagination(self): page1 = get_persisted_results(self.sample_query, 1, 10).get('results') self.assertTrue(len(page1) == 10) page2 = get_persisted_results(self.sample_query, 2, 10).get('results') self.assertTrue(len(page2) == 10) self.assertNotEqual(page1, page2) def test_get_list_of_dois_for_review(self): dois = get_dois_for_review(self.review) for record in self.results.get('records'): self.assertTrue(record.get('doi') in dois) def test_update_score(self): user = User(name="test user") doi = self.results.get('records')[0].get('doi') result = get_result_by_doi(self.review, doi) self.assertEqual(len(result.scores), 0) evaluation = { "user": "testmann", "score": 2, "comment": "test_comment" } update_score(self.review, result, evaluation) self.assertEqual(result.scores[0].score, 2) evaluation = { "user": "testmann", "score": 5, "comment": "joiefjlke" } update_score(self.review, result, evaluation) self.assertEqual(result.scores[0].score, 5) self.assertEqual(len(result.scores), 1) user.delete() def test_delete_results_for_review(self): num_results = len(get_dois_for_review(self.review)) self.assertGreater(num_results, 0) delete_results_for_review(self.review) num_results = len(get_dois_for_review(self.review)) self.assertEquals(num_results, 0) def tearDown(self): delete_results_for_review(self.review) self.review.delete() class TestUserDB(unittest.TestCase): # TODO rewrite test cases def setUp(self): username = "philosapiens" name = "Philippe" surname = "Kalinowski" email = "[email protected]" password = "ABC123" # databases = DatabaseInfo() # databases.name = "SPRINGER_API" # databases.api_key = "5150230aac7a227ve33693f99b5697aa" # self.user = add_user(username, name, surname, email, password) def test_add_user(self): username = "philosapfiens" name = "Philippe" surname = "Kalinowski" email = "[email protected]" password = "ABC123222" db_name = "SPRINGER_API" api_key = "5150230aac7a227ve33693f99b5697aa" # databases312 = DatabaseInfo.from_document(sample_databases) # print(databases312) new_user = add_user(username, name, surname, email, password) # update_databases(new_user, db_dict) # user = get_user_by_id(new_user.name) def test_get_user_by_username(self): user = get_user_by_username("philosapiens") print(user.email) def test_update_user(self): user = get_user_by_username("philosapiens") print(user.email) update_user(user, user.name, "btesfd", "[email protected]", user.password) user = get_user_by_username("philosapiens") print(user.email) def test_get_all_users(self): print(str(get_users())) def test_delete_users(self): user = get_user_by_username("philosapiens") delete_user(user) class TestAuth(unittest.TestCase): def setUp(self): username = "philosapiens" name = "Philippe" surname = "Kalinowski" email = "[email protected]" password = "ABC123" def test_login(self): username = "philosapiens" password = "ABC123222" user = get_user_by_username(username) password_correct = check_if_password_is_correct(user, password) print(password_correct) token = get_jwt_for_user(user) print(type(token)) add_jwt_to_session(user, token) is_token_valid = check_for_token(token) print(is_token_valid) is_token_in_session = check_if_jwt_is_in_session(token) print(is_token_in_session) # remove_jwt_from_session(user) if __name__ == '__main__': unittest.main()
29.28866
80
0.62566
5,123
0.901619
0
0
0
0
0
0
1,173
0.206441
48deb6f756807dc27d051aa0715208fc6f52b020
1,513
py
Python
tests/test_capstone.py
GrammaTech/gtirb-capstone
f46d90e9cd733c632620e5d8c921a4b9f011020a
[ "MIT" ]
6
2020-04-10T15:19:30.000Z
2021-04-13T22:54:17.000Z
tests/test_capstone.py
GrammaTech/gtirb-capstone
f46d90e9cd733c632620e5d8c921a4b9f011020a
[ "MIT" ]
null
null
null
tests/test_capstone.py
GrammaTech/gtirb-capstone
f46d90e9cd733c632620e5d8c921a4b9f011020a
[ "MIT" ]
3
2020-07-10T22:52:32.000Z
2021-02-13T19:52:22.000Z
# Copyright (C) 2020 GrammaTech, Inc. # # This code is licensed under the MIT license. See the LICENSE file in # the project root for license terms. # # This project is sponsored by the Office of Naval Research, One Liberty # Center, 875 N. Randolph Street, Arlington, VA 22203 under contract # # N68335-17-C-0700. The content of the information does not necessarily # reflect the position or policy of the Government and no official # endorsement should be inferred. # import pytest import gtirb import gtirb_capstone @pytest.mark.commit def test_insert_bytes(): ir = gtirb.IR() m = gtirb.Module( name="test", isa=gtirb.Module.ISA.X64, byte_order=gtirb.Module.ByteOrder.Little, ) m.ir = ir s = gtirb.Section(name=".text") s.module = m bi = gtirb.ByteInterval( contents=b"\x00\x01\x02\x03\x04\x05\x06\x07", address=0x1000 ) bi.section = s b = gtirb.CodeBlock(offset=2, size=2) b.byte_interval = bi b2 = gtirb.DataBlock(offset=6, size=2) b2.byte_interval = bi bi.symbolic_expressions[6] = gtirb.SymAddrConst(0, None) ctx = gtirb_capstone.RewritingContext(ir) ctx.modify_block_insert(m, b, b"\x08\x09", 1) assert bi.address == 0x1000 assert bi.size == 10 assert bi.contents == b"\x00\x01\x02\x08\x09\x03\x04\x05\x06\x07" assert b.offset == 2 assert b.size == 4 assert b2.offset == 8 assert b2.size == 2 assert 6 not in bi.symbolic_expressions assert 8 in bi.symbolic_expressions
30.877551
72
0.68341
0
0
0
0
989
0.653668
0
0
562
0.371447
48df4ad454aad4847f1d7ce4f347d3747f7148ed
2,552
py
Python
python/paddle/fluid/tests/unittests/npu/test_update_loss_scaling_min_op_npu.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/tests/unittests/npu/test_update_loss_scaling_min_op_npu.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/tests/unittests/npu/test_update_loss_scaling_min_op_npu.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
1
2021-12-09T08:59:17.000Z
2021-12-09T08:59:17.000Z
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import sys import os sys.path.append("..") from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.contrib.mixed_precision.amp_nn as amp_nn from test_update_loss_scaling_op_npu import TestUpdateLossScalingOpBad paddle.enable_static() SEED = 2021 class TestUpdateLossScalingOpMinLossScalingBad(TestUpdateLossScalingOpBad): def setUp(self): self.set_npu() self.op_type = "update_loss_scaling" self.place = paddle.NPUPlace(0) self.init() fluid.core.globals()['FLAGS_min_loss_scaling'] = 1639 found_inf = np.array([True], dtype=np.bool_) x = np.random.random((1024, 1024)).astype(self.dtype) i = np.random.randint(0, 1024, 1) j = np.random.randint(0, 1024, 1) x[i[0]][j[0]] = np.inf self.inputs = { 'X': [('x0', x)], 'FoundInfinite': found_inf, 'PrevLossScaling': self.prev_loss_scaling, 'InGoodSteps': self.num_good_steps, 'InBadSteps': self.num_bad_steps } self.outputs = { 'Out': [('out0', np.zeros_like(x))], 'LossScaling': np.array([1639.0]).astype(self.dtype), 'OutGoodSteps': self.zero_steps, 'OutBadSteps': self.zero_steps } def init(self): self.incr_ratio = 2.0 self.decr_ratio = 0.8 self.dtype = np.float32 self.prev_loss_scaling = np.array([2048]).astype(self.dtype) self.num_good_steps = np.array([999], dtype=np.int32) self.num_bad_steps = np.array([1], dtype=np.int32) self.zero_steps = np.array([0], dtype=np.int32) self.attrs = { 'incr_every_n_steps': 1000, 'decr_every_n_nan_or_inf': 2, 'incr_ratio': self.incr_ratio, 'decr_ratio': self.decr_ratio, } if __name__ == '__main__': unittest.main()
32.303797
75
0.647727
1,570
0.615204
0
0
0
0
0
0
842
0.329937
48df99695d0c2e85858fd3010b30aa03fd644e15
1,031
py
Python
Examples/WorkingWithMimeMessages/SetEmailHeaders.py
Muzammil-khan/Aspose.Email-Python-Dotnet
04ca3a6f440339f3ddf316218f92d15d66f24e7e
[ "MIT" ]
5
2019-01-28T05:17:12.000Z
2020-04-14T14:31:34.000Z
Examples/WorkingWithMimeMessages/SetEmailHeaders.py
Muzammil-khan/Aspose.Email-Python-Dotnet
04ca3a6f440339f3ddf316218f92d15d66f24e7e
[ "MIT" ]
1
2019-01-28T16:07:26.000Z
2021-11-25T10:59:52.000Z
Examples/WorkingWithMimeMessages/SetEmailHeaders.py
Muzammil-khan/Aspose.Email-Python-Dotnet
04ca3a6f440339f3ddf316218f92d15d66f24e7e
[ "MIT" ]
6
2018-07-16T14:57:34.000Z
2020-08-30T05:59:52.000Z
import aspose.email as ae import datetime def run(): # The path to the File directory. dataDir = "Data/" #ExStart: SetEmailHeaders # Create an instance of MailMessage class eml = ae.MailMessage() # Specify ReplyTo, From, To field, Cc and Bcc Addresses eml.reply_to_list.Add("[email protected]") eml.from_address = "[email protected]" eml.to.append(ae.MailAddress("[email protected]", "Recipient 1")) eml.to.append(ae.MailAddress("[email protected]", "Recipient 2")) eml.cc.append(ae.MailAddress("[email protected]", "Recipient 3")) eml.bcc.append(ae.MailAddress("[email protected]", "Recipient 4")) # Specify Date, Message subject, XMailer, Secret Header, Save message to disc eml.subject = "test mail" eml.date = datetime.datetime(2006, 3, 6, 12, 00) eml.xmailer = "Aspose.Email" eml.headers.Add("secret-header", "mystery") eml.save(dataDir + "SetEmailHeaders_out.msg", ae.SaveOptions.default_msg) #ExEnd: SetEmailHeaders if __name__ == '__main__': run()
33.258065
81
0.681862
0
0
0
0
0
0
0
0
496
0.481086
48e060479c6f9450fb40ff919e56deed4c5f57d9
7,527
py
Python
intrinsic/classify.py
seenu-andi-rajendran/plagcomps
98e82cfb871f73bbd8f4ab1452c2b27a95beee83
[ "MIT" ]
2
2015-01-18T06:20:27.000Z
2021-03-19T21:19:16.000Z
intrinsic/classify.py
NoahCarnahan/plagcomps
98e82cfb871f73bbd8f4ab1452c2b27a95beee83
[ "MIT" ]
null
null
null
intrinsic/classify.py
NoahCarnahan/plagcomps
98e82cfb871f73bbd8f4ab1452c2b27a95beee83
[ "MIT" ]
2
2015-11-19T12:52:14.000Z
2016-11-11T17:00:50.000Z
# classify.py # Alternative methods to clustering import sys, os from random import shuffle import cPickle from collections import Counter sys.path.append('../pybrain/') # add the pybrain module to the path... TODO: actually install it. from plagcomps.shared.util import IntrinsicUtility from ..dbconstants import username from ..dbconstants import password from ..dbconstants import dbname ''' from pybrain.structure import FeedForwardNetwork, LinearLayer, SigmoidLayer, FullConnection, TanhLayer from pybrain.tools.shortcuts import buildNetwork from pybrain.datasets import SupervisedDataSet from pybrain.utilities import percentError from pybrain.tools.shortcuts import buildNetwork from pybrain.supervised.trainers import BackpropTrainer from pybrain.structure.modules import SoftmaxLayer from pybrain.tools.customxml.networkwriter import NetworkWriter from pybrain.tools.customxml.networkreader import NetworkReader from pybrain.structure.modules import BiasUnit ''' import scipy import sklearn import sklearn.metrics import matplotlib import matplotlib.pyplot as pyplot from pylab import ion, ioff, figure, draw, contourf, clf, show, hold, plot from scipy import diag, arange, meshgrid, where from numpy.random import multivariate_normal import sqlalchemy from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class NeuralNetworkConfidencesClassifier: nn_filepath = os.path.join(os.path.dirname(__file__), "neural_networks/nn.xml") dataset_filepath = os.path.join(os.path.dirname(__file__), "neural_networks/dataset.pkl") def create_nn(self, features, num_hidden_layer_nodes): net = buildNetwork(len(features), num_hidden_layer_nodes, 1) return net def create_trainer(self, network, dataset): trainer = BackpropTrainer(network, dataset, learningrate=0.01, momentum=0.01, verbose=True) return trainer def roc(self, confidences, actuals): fpr, tpr, thresholds = sklearn.metrics.roc_curve(actuals, confidences, pos_label=1) roc_auc = sklearn.metrics.auc(fpr, tpr) print 'ROC area under curve:', roc_auc # The following code is from http://scikit-learn.org/stable/auto_examples/plot_roc.html pyplot.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc) pyplot.plot([0, 1], [0, 1], 'k--') pyplot.xlim([0.0, 1.0]) pyplot.ylim([0.0, 1.0]) pyplot.xlabel('False Positive Rate') pyplot.ylabel('True Positive Rate') pyplot.title('Receiver operating characteristic') pyplot.legend(loc="lower right") #path = "figures/roc"+str(time.time())+".pdf" path = ospath.join(ospath.dirname(__file__), "neural_networks/roc"+str(time.time())+".pdf") pyplot.savefig(path) return path, roc_auc def construct_confidence_vectors_dataset(self, reduced_docs, features, session): from cluster import cluster conf_dataset = SupervisedDataSet(len(features), 1) confidence_vectors = [] num_trues = 0 for feature in features: vi = 0 for doc in reduced_docs: feature_vectors = doc.get_feature_vectors([feature], session) confidences = cluster("outlier", 2, feature_vectors, center_at_mean=True, num_to_ignore=1, impurity=.2) for i, confidence in enumerate(confidences, 0): if len(confidence_vectors) <= vi: confidence_vectors.append([[], 0]) if doc.span_is_plagiarized(doc._spans[i]): t = 1 num_trues += 1 else: t = 0 confidence_vectors[vi][0].append(confidence) confidence_vectors[vi][1] = t vi += 1 num_plagiarised = num_trues / len(features) print num_plagiarised shuffle(confidence_vectors) for vec in confidence_vectors: if vec[1] == 0: num_plagiarised -= 1 if not (vec[1] == 0 and num_plagiarised <= 0): conf_dataset.addSample(vec[0], vec[1]) f = open(self.dataset_filepath, 'wb') cPickle.dump(conf_dataset, f) print 'dumped dataset file' return conf_dataset def read_dataset(self): f = open(self.dataset_filepath, 'rb') return cPickle.load(f) def construct_and_train_nn(self, features, num_files, epochs, filepath, session): from plagcomps.evaluation.intrinsic import _get_reduced_docs IU = IntrinsicUtility() all_test_files = IU.get_n_training_files(n=num_files) reduced_docs = _get_reduced_docs("paragraph", all_test_files, session) print 'constructing datasets...' # dataset = self.construct_confidence_vectors_dataset(reduced_docs, features, session) dataset = self.read_dataset() training_dataset, testing_dataset = dataset.splitWithProportion(0.75) print 'dataset lengths:', len(dataset), len(training_dataset), len(testing_dataset) print print 'creating neural network...' net = self.create_nn(features, num_hidden_layer_nodes) print 'creating trainer...' trainer = self.create_trainer(net, training_dataset) print 'training neural network for', epochs, 'epochs...' trainer.trainEpochs(epochs) print 'writing neural network to ' + str(filepath) + '...' NetworkWriter.writeToFile(net, filepath) print 'testing neural network...' confidences = [] actuals = [] for point in testing_dataset: confidences.append(net.activate(point[0])[0]) actuals.append(point[1][0]) print 'confidences|actuals ', zip(confidences, actuals) print 'generating ROC curve...' matplotlib.use('pdf') path, auc = self.roc(confidences, actuals) print 'area under curve =', auc def nn_confidences(self, feature_vectors): ''' Read the saved nn and run it. ''' net = NetworkReader.readFrom(self.nn_filepath) confidences = [] for feature_vector in feature_vectors: confidences.append(net.activate(feature_vector)[0]) return confidences # an Engine, which the Session will use for connection resources url = "postgresql://%s:%s@%s" % (username, password, dbname) engine = sqlalchemy.create_engine(url) # create tables if they don't already exist Base.metadata.create_all(engine) # create a configured "Session" class Session = sessionmaker(bind=engine) if __name__ == '__main__': session = Session() features = ['average_sentence_length', 'average_syllables_per_word', 'avg_external_word_freq_class', 'avg_internal_word_freq_class', 'flesch_kincaid_grade', 'flesch_reading_ease', 'num_chars', 'punctuation_percentage', 'stopword_percentage', 'syntactic_complexity', 'syntactic_complexity_average'] num_hidden_layer_nodes = 20 num_files = 30 epochs = 400 filepath = os.path.join(os.path.dirname(__file__), "neural_networks/nn.xml") NN = NeuralNetworkConfidencesClassifier() NN.construct_and_train_nn(features, num_files, epochs, filepath, session)
37.635
119
0.659891
4,991
0.66308
0
0
0
0
0
0
2,007
0.26664
48e0a28c89b1ce15b99aa2daf6b83acba8204f1b
4,316
py
Python
matplotlib-3.4.3/matplotlib-3.4.3/examples/images_contours_and_fields/image_transparency_blend.py
JohnLauFoo/clc_packages_Yu
259f01d9b5c02154ce258734d519ae8995cd0991
[ "MIT" ]
1
2021-11-13T17:21:44.000Z
2021-11-13T17:21:44.000Z
matplotlib-3.4.3/matplotlib-3.4.3/examples/images_contours_and_fields/image_transparency_blend.py
JohnLauFoo/clc_packages_Yu
259f01d9b5c02154ce258734d519ae8995cd0991
[ "MIT" ]
null
null
null
matplotlib-3.4.3/matplotlib-3.4.3/examples/images_contours_and_fields/image_transparency_blend.py
JohnLauFoo/clc_packages_Yu
259f01d9b5c02154ce258734d519ae8995cd0991
[ "MIT" ]
null
null
null
""" ========================================== Blend transparency with color in 2D images ========================================== Blend transparency with color to highlight parts of data with imshow. A common use for `matplotlib.pyplot.imshow` is to plot a 2D statistical map. The function makes it easy to visualize a 2D matrix as an image and add transparency to the output. For example, one can plot a statistic (such as a t-statistic) and color the transparency of each pixel according to its p-value. This example demonstrates how you can achieve this effect. First we will generate some data, in this case, we'll create two 2D "blobs" in a 2D grid. One blob will be positive, and the other negative. """ # sphinx_gallery_thumbnail_number = 3 import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize def normal_pdf(x, mean, var): return np.exp(-(x - mean)**2 / (2*var)) # Generate the space in which the blobs will live xmin, xmax, ymin, ymax = (0, 100, 0, 100) n_bins = 100 xx = np.linspace(xmin, xmax, n_bins) yy = np.linspace(ymin, ymax, n_bins) # Generate the blobs. The range of the values is roughly -.0002 to .0002 means_high = [20, 50] means_low = [50, 60] var = [150, 200] gauss_x_high = normal_pdf(xx, means_high[0], var[0]) gauss_y_high = normal_pdf(yy, means_high[1], var[0]) gauss_x_low = normal_pdf(xx, means_low[0], var[1]) gauss_y_low = normal_pdf(yy, means_low[1], var[1]) weights = (np.outer(gauss_y_high, gauss_x_high) - np.outer(gauss_y_low, gauss_x_low)) # We'll also create a grey background into which the pixels will fade greys = np.full((*weights.shape, 3), 70, dtype=np.uint8) # First we'll plot these blobs using ``imshow`` without transparency. vmax = np.abs(weights).max() imshow_kwargs = { 'vmax': vmax, 'vmin': -vmax, 'cmap': 'RdYlBu', 'extent': (xmin, xmax, ymin, ymax), } fig, ax = plt.subplots() ax.imshow(greys) ax.imshow(weights, **imshow_kwargs) ax.set_axis_off() ############################################################################### # Blending in transparency # ======================== # # The simplest way to include transparency when plotting data with # `matplotlib.pyplot.imshow` is to pass an array matching the shape of # the data to the ``alpha`` argument. For example, we'll create a gradient # moving from left to right below. # Create an alpha channel of linearly increasing values moving to the right. alphas = np.ones(weights.shape) alphas[:, 30:] = np.linspace(1, 0, 70) # Create the figure and image # Note that the absolute values may be slightly different fig, ax = plt.subplots() ax.imshow(greys) ax.imshow(weights, alpha=alphas, **imshow_kwargs) ax.set_axis_off() ############################################################################### # Using transparency to highlight values with high amplitude # ========================================================== # # Finally, we'll recreate the same plot, but this time we'll use transparency # to highlight the extreme values in the data. This is often used to highlight # data points with smaller p-values. We'll also add in contour lines to # highlight the image values. # Create an alpha channel based on weight values # Any value whose absolute value is > .0001 will have zero transparency alphas = Normalize(0, .3, clip=True)(np.abs(weights)) alphas = np.clip(alphas, .4, 1) # alpha value clipped at the bottom at .4 # Create the figure and image # Note that the absolute values may be slightly different fig, ax = plt.subplots() ax.imshow(greys) ax.imshow(weights, alpha=alphas, **imshow_kwargs) # Add contour lines to further highlight different levels. ax.contour(weights[::-1], levels=[-.1, .1], colors='k', linestyles='-') ax.set_axis_off() plt.show() ax.contour(weights[::-1], levels=[-.0001, .0001], colors='k', linestyles='-') ax.set_axis_off() plt.show() ############################################################################# # # .. admonition:: References # # The use of the following functions, methods, classes and modules is shown # in this example: # # - `matplotlib.axes.Axes.imshow` / `matplotlib.pyplot.imshow` # - `matplotlib.axes.Axes.contour` / `matplotlib.pyplot.contour` # - `matplotlib.colors.Normalize` # - `matplotlib.axes.Axes.set_axis_off`
34.528
79
0.657322
0
0
0
0
0
0
0
0
2,771
0.64203
48e3db6b6aba7110ea8f3e0d1c747e61649abf82
634
py
Python
tests/test_admin.py
FernandoCelmer/django-global-permissions
1ece2b18476a514dec7b1e13a51191943acb460b
[ "MIT" ]
30
2015-02-04T12:26:35.000Z
2022-03-23T21:19:10.000Z
tests/test_admin.py
FernandoCelmer/django-global-permissions
1ece2b18476a514dec7b1e13a51191943acb460b
[ "MIT" ]
15
2015-11-27T17:42:02.000Z
2022-03-23T00:34:10.000Z
tests/test_admin.py
FernandoCelmer/django-global-permissions
1ece2b18476a514dec7b1e13a51191943acb460b
[ "MIT" ]
15
2015-04-14T18:09:26.000Z
2022-03-22T11:42:04.000Z
from django.test import TestCase from django.core.urlresolvers import reverse try: from django.contrib.auth import get_user_model User = get_user_model() except ImportError: from django.contrib.auth.models import User class GlobalPermissionsAdminTest(TestCase): def setUp(self): User.objects.create_superuser(username='ham', password='spam', email='[email protected]') self.client.login(username='ham', password='spam') def test_admin_simply_works(self): resp = self.client.get(reverse('admin:global_permissions_globalpermission_changelist')) self.assertEqual(200, resp.status_code)
33.368421
95
0.749211
400
0.630915
0
0
0
0
0
0
90
0.141956
48e429fb8eb61c10b1ad429f9b2db275e7f48ee3
2,307
py
Python
Models/utils.py
weslai/ecg_classification
61cb45849485129cf04ee97f458fdf731353fd4b
[ "MIT" ]
1
2020-12-03T13:34:04.000Z
2020-12-03T13:34:04.000Z
Models/utils.py
weslai/ecg_classification
61cb45849485129cf04ee97f458fdf731353fd4b
[ "MIT" ]
null
null
null
Models/utils.py
weslai/ecg_classification
61cb45849485129cf04ee97f458fdf731353fd4b
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import itertools import numpy as np from sklearn.metrics import confusion_matrix ## be used to evaluate the model def evaluate_model(history, X_test, y_test, model): scores = model.evaluate((X_test), y_test, verbose=0) print("Accuracy: %.2f%%" % (scores[1] *100)) print(history) fig1, ax_acc = plt.subplots() plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.title('Model - Accuracy') plt.legend(['Training', 'Validation'], loc='lower right') plt.show() fig2, ax_loss = plt.subplots() plt.xlabel('Epoch') plt.ylabel('Loss') plt.title('Model- Loss') plt.legend(['Training', 'Validation'], loc='upper right') plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.show() ## put the return to the plot_confusion_matrix def confustion_matrix(true_label, val_prediction): cnf_matrix = confusion_matrix(true_label.argmax(axis=1), val_prediction.argmax(axis=1)) return cnf_matrix ## confusion matrix def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ np.set_printoptions(precision=2) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') plt.figure(figsize=(10, 10)) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show()
32.041667
91
0.640225
0
0
0
0
0
0
0
0
569
0.246641
48e43797c38281b4f9c9d4f57ea6a962850d4cc0
44,206
py
Python
evapotranspiration/penman_monteith_daily.py
JRoehrig/evapotranspiration
aeec040273e15f93bb25ff850b33a90a41c65291
[ "MIT" ]
2
2021-08-07T10:38:41.000Z
2022-03-02T07:34:11.000Z
evapotranspiration/penman_monteith_daily.py
JRoehrig/evapotranspiration
aeec040273e15f93bb25ff850b33a90a41c65291
[ "MIT" ]
null
null
null
evapotranspiration/penman_monteith_daily.py
JRoehrig/evapotranspiration
aeec040273e15f93bb25ff850b33a90a41c65291
[ "MIT" ]
null
null
null
import math import numpy as np import pandas as pd class PenmanMonteithDaily(object): r"""The class *PenmanMonteithDaily* calculates daily potential evapotranspiration according to the Penman-Monteith method as described in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (Allen et al., 1998). Reference evapotranspiration for a hypothetical grass reference crop (:math:`h=12` *cm*; :math:`albedo=0.23`, and :math:`LAI=2.88`) is calculated by default. Wind and humidity observations at 2 meters height as well as soil heat flux density :math:`G=0.0` *MJ/m²day* are also assumed by default. Default values can be changed in the keyword arguments (`**kwargs`) described below. The class *PenmanMonteithDaily* solves equation 3 in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_: .. math:: ET = \frac{\Delta (R_n - G) + \rho_a c_p \frac{e_s - e_a}{r_a}} {\lambda \left[ \Delta + \gamma \left( 1 + \frac{r_s}{r_a} \right) \right]} \tag{eq. 3, p. 19} :param elevation: elevation above sea level (*z*) *[m]*. Used in :meth:`clear_sky_shortwave_radiation` and :meth:`atmospheric_pressure` :type elevation: float :param latitude: latitude (:math:`\varphi`) *[decimal degrees]*. Used in :meth:`sunset_hour_angle` and :meth:`extraterrestrial_radiation` :type latitude: float :Keyword Arguments: * **albedo** (*float*) - albedo or canopy reflection coefficient (:math:`\alpha`) *[-]*. Range: :math:`0.0 \leq \alpha \leq 1.0`. Default :math:`albedo=0.23` for the hypothetical grass reference crop. Used in :meth:`net_shortwave_radiation` * **h** (*float*) - crop height (*h*) *[m]*. Default :math:`h=0.12` for the hypothetical grass reference crop. Required to calculate the zero plane displacement height (:math:`d`) *[m]* and the roughness length governing momentum (:math:`z_{om}`) *[m]*, both necessary for the aerodynamic resistance (:math:`r_a`) *[s/m]*. See :meth:`aerodynamic_resistance_factor` * **lai** (*float*) - leaf area index (:math:`LAI`) *[-]*. Default :math:`lai=2.88` for the hypothetical grass reference crop. See *BOX 5* in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ and :meth:`bulk_surface_resistance` * **rl** (*float*) - bulk stomatal resistance of well-illuminated leaf (:math:`r_l`) *[s/m]*. Default :math:`rl=100.0` for any crop. See :meth:`bulk_surface_resistance` * **zm** (*float*) - height of wind measurements (:math:`z_m`) *[m]*. Default :math:`zm=2.0`. Required to calculate aerodynamic resistance (:math:`r_a`) *[s/m]*. See :meth:`aerodynamic_resistance_factor` * **zh** (*float*) - height of humidity measurements (:math:`z_h`) *[m]*. Default :math:`zh=2.0`. Required to calculate aerodynamic resistance (:math:`r_a`) *[s/m]*. See :meth:`aerodynamic_resistance_factor` * **g** (*float*) - soil heat flux density (:math:`G`) *[MJ/m²day]*. Default :math:`g=0.0`. This corresponds to :math:`G` in eq. 3, p. 19 above. It can be also given with daily parameters in :meth:`et0` .. note:: Only :attr:`elevation` and :attr:`latitude` are mandatory parameters of :meth:`PenmanMonteithDaily()`. :attr:`albedo`, :attr:`h`, and :attr:`lai` are only necessary when calculating evapotranspiration for crops other than reference grass. :ivar doy: day of year *[-]* :ivar z: elevation in meters above sea level (*z*) *[m]* :ivar p: atmospheric pressure (*P*) *[kPa]* :ivar u2: wind speed at height :math:`z` (:math:`u_2`) *[m/s]* :ivar ld: latent heat of vaporization (:math:`\lambda`) *[MJ/kg]*. See :meth:`latent_heat_of_vaporization()` :ivar s: slope of saturation vapour pressure curve (:math:`\Delta`) *[kPa/°C]*. See :meth:`slope_of_saturation_vapour_pressure_curve()` :ivar psych: psychrometric constant (:math:`\gamma`) *[kPa/°C]*. See :meth:`psychrometric_constant()` :ivar mn: daylight hours (:math:`N`) *[hours]*. See :meth:`daylight_hours()` :ivar es: saturation vapour pressure (:math:`e_s`) *[kPa]*. See :meth:`saturation_vapour_pressure()` :ivar ea: actual vapour pressure (:math:`e_a`) *[kPa]*. See :meth:`actual_vapour_pressure()` :ivar ra: daily extraterrestrial radiation (:math:`R_a`) *[MJ/m²day]*. See :meth:`extraterrestrial_radiation()` :ivar rs: daily shortwave radiation (:math:`R_s`) *[MJ/m²day]*. See :meth:`shortwave_radiation()` :ivar rs0: clear-sky shortwave radiation (:math:`R_{so}`) *[MJ/m²day]*. See :meth:`clear_sky_shortwave_radiation()` :ivar rns: net shortwave radiation (:math:`R_{ns}`) *[MJ/m²day]*. See :meth:`net_shortwave_radiation()` :ivar rnl: net outgoing longwave radiation (:math:`R_{nl}`) *[MJ/m²day]*. See :meth:`net_longwave_radiation()` :ivar rn: net radiation (:math:`R_{n}`) *[MJ/m²day]*. :math:`R_{n} = R_{ns} - R_{nl}` :ivar etr: radiation component of reference evapotranspiration *[mm/day]* :ivar etw: wind component of reference evapotranspiration *[mm/day]* :ivar et: reference evapotranspiration *[mm/day]* Object Constants: * **e** - ratio molecular weight of water vapour/dry air (:math:`\varepsilon`) *[-]*. :math:`e = 0.622` * **r** - specific gas constant *[kJ/kg.K]*. :math:`r = 0.287` * **k** - von Karman constant (:math:`k`) *[-]*, see `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ eq. 4. :math:`k=0.41` Object crop specific factors: * **d_factor** - factor of the zero plane displacement height (:math:`d`) *[-]*. :math:`d\_factor = 2.0 / 3.0` * **zom_factor** - factor of the roughness length governing momentum transfer (:math:`z_{om}`) *[-]*. :math:`zom\_factor = 0.123` * **zoh_factor** - factor of the roughness length governing transfer of heat and vapour (:math:`z_{oh}`) *[-]*. :math:`zoh\_factor = 0.1` * **lai_active_factor** - factor of the active (sunlit) leaf area index (:math:`LAI_{active}`) *[-]* (it considers that generally only the upper half of dense clipped grass is actively contributing to the surface heat and vapour transfer). :math:`lai\_active\_factor = 0.5` Calculation with :meth:`et0`:: - pm = PenmanMonteithDaily(elevation, latitude, ...) - et0 = pm.et0(...) Calculation with :meth:`et0_frame` given a *pandas.DataFrame()* as input parameter:: - pm = PenmanMonteithDaily(elevation, latitude, ...) - df = pm.et0_frame(df, ...) """ def __init__(self, elevation, latitude, **kwargs): self.albedo = kwargs.get('albedo', 0.23) # albedo self.h = kwargs.get('h', 0.12) # crop height h [m] self.zm = kwargs.get('zm', 2.0) # height of wind measurements [m] self.zh = kwargs.get('zh', 2.0) # roughness length governing transfer of heat and vapour [m] self.lai = kwargs.get('lai', 2.88) # LAI dependence self.rl = kwargs.get('rl', 100.0) # The stomatal resistance self.g_default = kwargs.get('g', 0.0) # soil heat flux density [MJ/m²day] self.doy = None self.u2 = None self.ld = None self.s = None self.pc = None self.mn = None self.es = None self.ea = None self.ra = None self.rs = None self.rs0 = None self.rns = None self.rnl = None self.rn = None self.etr = None self.etw = None self.et = None self.e = 0.622 self.r = 0.287 self.k = 0.41 self.d_factor = 2.0 / 3.0 self.zom_factor = 0.123 self.zoh_factor = 0.1 self.lai_active_factor = 0.5 if latitude: days = np.array(range(367)) latitude = float(np.radians(latitude)) dr_366 = self.inverse_relative_distance_earth_sun(days) sd_366 = np.array([self.solar_declination(day) for day in range(367)]) ws_366 = np.array([self.sunset_hour_angle(latitude, s) for s in sd_366]) self.daylight_hours_366 = np.array([PenmanMonteithDaily.daylight_hours(w) for w in ws_366]) self.ra_366 = np.array([self.extraterrestrial_radiation( dr_366[i], ws_366[i], latitude, sd_366[i]) for i in range(len(dr_366))]) self.rs0_366 = np.array([self.clear_sky_shortwave_radiation( ra, elevation=elevation) for ra in self.ra_366]) else: self.daylight_hours_366 = None self.ra_366 = None self.rs0_366 = None self.z = elevation self.p = PenmanMonteithDaily.atmospheric_pressure(self.z) ra_factor = self.aerodynamic_resistance_factor() self.f1 = 86400 * self.e / (1.01 * self.r * ra_factor) """f1 = (specific heat at constant pressure) * (mean air density at constant pressure) / (1.01 * :attr:`r` * :meth:`aerodynamic_resistance_factor`). `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ Box 6 """ self.f2 = self.bulk_surface_resistance() / ra_factor r""":math:`f_1 = \frac{rs}{f_{ra}}` with :math:`f_{ra}` = :meth:`aerodynamic_resistance_factor`""" def reset(self): r"""Reset the following output attributes before calculating :math:`ETo`: :math:`doy`, :math:`u2`, :math:`ld`, :math:`s`, :math:`pc`, :math:`mn`, :math:`es`, :math:`ea`, :math:`ra`, :math:`rs`, :math:`rs0`, :math:`rns`, :math:`rnl`, :math:`rn`, :math:`etr`, :math:`etw`, and :math:`et` """ self.doy = None self.u2 = None self.ld = None self.s = None self.pc = None self.mn = None self.es = None self.ea = None self.ra = None self.rs = None self.rs0 = None self.rns = None self.rnl = None self.rn = None self.etr = None self.etw = None self.et = None @staticmethod def atmospheric_pressure(z): r""" Return the atmospheric pressure (:math:`P`) *[kPa]* as a function of the elevation above sea level as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 7, p. 31): .. math:: P = 101.3\left(\frac{293-0.0065z}{293}\right)^{5.26} The atmospheric pressure (:math:`P`) is the pressure exerted by the weight of the earth's atmosphere. Evaporation at high altitudes is promoted due to low atmospheric pressure as expressed in the psychrometric constant. The effect is, however, small and in the calculation procedures, the average value for a location is sufficient. A simplification of the ideal gas law, assuming :math:`20` *°C* for a standard atmosphere, can be employed to calculate :math:`P` (`FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_). :param z: elevation above sea level *[m]* :type z: float or np.array :return: (*float or np.array*) atmospheric pressure (:math:`P`) *[kPa]* """ return 101.3 * ((293.0 - 0.0065 * z) / 293.0) ** 5.26 @staticmethod def latent_heat_of_vaporization(temperature=20): r"""Return the latent heat of vaporization (:math:`\lambda`) *[MJ/kg]* as described in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (Annex 3, eq. 3-1, p. 223): .. math:: \lambda = 2.501-(2.361 * 10^{-3})T :param temperature: air temperature (:math:`T`) *[°C]*. Default :math:`temperature=20` :type temperature: float or np.array :return: (*float or np.array*) latent heat of vaporization (:math:`\lambda`) *[MJ/kg]*. Default :math:`\lambda=2.45378` """ return 2.501 - 2.361e-3 * temperature @staticmethod def psychrometric_constant(p, **kwargs): r"""Return the psychrometric constant (:math:`\gamma`) *[kPa/°C]* according to `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ eq. 8, p. 32: .. math:: \gamma = \frac{c_p P}{\varepsilon \lambda} or, using default values: .. math:: \gamma = a_{psy} \cdot P :param p: atmospheric pressure (:math:`P`) *[kPa]* :type p: float or np.array :Keyword Arguments: * **lamda** (*float*) - latent heat of vaporization (:math:`\lambda`) *[MJ/kg]*. Default :math:`lamda=2.45`. See Used in :meth:`latent_heat_of_vaporization` * **cp** (*float*) - specific heat at constant pressure (:math:`c_p`) *[MJ/kg]*. Default :math:`cp=1.013e^{-3}` * **epsilon** (*float*) - ratio molecular weight of water vapour/dry air (:math:`\epsilon`) *[-]*. Default :math:`epsilon=0.622` * **a_psy** (*float*) - coefficient depending on the type of the ventilation of the bulb *[1/°C]*. Examples: * :math:`a_{psy} = 0.000665` (default) * :math:`a_{psy} = 0.000662` for ventilated (Asmann type) psychrometers, with an air movement of some 5 *m/s* * :math:`a_{psy} = 0.000800` for natural ventilated psychrometers (about 1 *m/s*) * :math:`a_{psy} = 0.001200` for non-ventilated psychrometers installed indoors The method uses :math:`a_{psy}` if given, otherwise eq. 8 (see above) with given or default values. Default values correspond to :math:`a_{psy} = 0.000665` as argument. :return: (*float or np.array*) psychrometric constant (:math:`\gamma`) *[kPa/°C]* """ if 'a_psy' in kwargs: return kwargs.get('a_psy', 0.000665) * p else: return (kwargs.get('cp', 1.013e-3) * p) / (kwargs.get('epsilon', 0.622) * kwargs.get('lamda', 2.45)) @staticmethod def saturation_vapour_pressure(*temperature): r"""Return the saturation vapour pressure (:math:`e_s`) *[kPa]* according to `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 11, p. 36): .. math:: e^{°}(T) = 0.6108 exp \left[\frac{17.27 T}{T + 237.3}\right] :param temperature: air temperature (:math:`T`) *[°C]* :type temperature: float or np.array :return: (*float or np.array*) saturation vapour pressure (:math:`e_s`) *[kPa]* """ t = np.array([0.6108 * np.exp((17.27 * t) / (t + 237.3)) for t in temperature]) t = np.mean(t, axis=0) return t @staticmethod def slope_of_saturation_vapour_pressure_curve(*temperature): r"""Return the slope of saturation vapour pressure curve (:math:`\Delta`) *[kPa/°C]* according to `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 13, p. 37): .. math:: \Delta = 4098\left[\frac{0.6108exp\left(\frac{17.27 T}{T + 237.3}\right)}{(T + 237.3)^{2}}\right] :param temperature: air temperature (:math:`T`) *[°C]* :type temperature: float or np.array :return: (*float or np.array*) slope of saturation vapour pressure curve (:math:`\Delta`) *[kPa/°C]* """ sl = np.array([(4098.0 * PenmanMonteithDaily.saturation_vapour_pressure(t)) / ((t + 237.3) ** 2) for t in temperature]) return np.mean(sl, axis=0) @staticmethod def actual_vapour_pressure(**kwargs): """Return the actual vapour pressure (:math:`e_a`) *[kPa]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (p. 37 , 38 , and 39): :Keyword Arguments: * **rh_min** (*float*) - 0.0 to 100.0 *[%]* * **rh_max** (*float*) - 0.0 to 100.0 *[%]* * **es_min** (*float*) - saturation vapour pressure for :math:`t\_min` *[kPa]* * **es_max** (*float*) - saturation vapour pressure for :math:`t\_max` *[kPa]* * **t_min** (*float*) - minimum air temperature *[°C]* * **t_max** (*float*) - maximum air temperature *[°C]* * **t_dew** (*float*) - dew point temperature *[°C]* * **t_wet** (*float*) - wet bulb temperature *[°C]* * **t_dry** (*float*) - dry bulb temperature *[°C]* * **apsy** (*float*) - coefficient depending on the type of ventilation of the wet bulb *[-]* :return: (*float or np.array*) actual vapour pressure (:math:`e_a`) *[kPa]* """ try: rh_min = kwargs['rh_min'] / 100.0 rh_max = kwargs['rh_max'] / 100.0 if 'es_min' in kwargs and 'es_max' in kwargs: es_min = kwargs['es_min'] es_max = kwargs['es_max'] else: es_min = PenmanMonteithDaily.saturation_vapour_pressure(kwargs['t_min']) es_max = PenmanMonteithDaily.saturation_vapour_pressure(kwargs['t_max']) return (rh_max * es_min + rh_min * es_max) / 2.0 except KeyError: t_dew = kwargs.get('t_dew', None) return 0.6108 * math.exp((17.27 * t_dew) / (t_dew + 237.3)) def aerodynamic_resistance_factor(self): r"""Return the aerodynamic resistance (:math:`r_a`) *[s/m]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 4, p. 20): .. math:: r_a = \frac{ \ln \left( \frac{z_m - d}{z_{om}} \right) \ln \left( \frac{z_h - d}{z_{oh}} \right) } { k^2 u_z } where (see :meth:`PenmanMonteithDaily()`): :math:`u_z` --- the wind speed *[m/s]* at height :math:`z` (see :meth:`et0()`) :math:`k` --- von Karman's constant *[-]* :math:`zm` --- height of wind measurements *[m]* :math:`zh` --- height of air humidity measurements *[m]* The aerodynamic resistance factor :math:`f_{r_a}` is constant for a given crop: .. math:: f_{r_a} = \frac{ \ln \left( \frac{z_m - d}{z_{om}} \right) \ln \left( \frac{z_h - d}{z_{oh}} \right) } { k^2} with the zero plane displacement height (:math:`d`): .. math:: d = f_d \cdot h and roughness length governing momentum transfer (:math:`z_{om}`): .. math:: z_{om} = f_{zom} \cdot h where: :math:`f_d` --- defined in :attr:`d_factor` :math:`f_{zom}` --- defined in in :attr:`zom_factor` :return: (*float*) aerodynamic resistance factor :math:`f_{r_a}` """ # zero plane displacement height, d [m] d = self.d_factor * self.h # roughness length governing momentum transfer [m] zom = self.zom_factor * self.h # roughness length governing transfer of heat and vapour [m] zoh = self.zoh_factor * zom return math.log((self.zm - d) / zom) * math.log((self.zh - d) / zoh) / (self.k ** 2) def bulk_surface_resistance(self): r"""Return (bulk) surface resistance (:math:`r_s`) *[s/m]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 5, p. 21): .. math:: r_s = \frac{ r_l } { LAI_{active} } where: :math:`r_l` --- the bulk stomatal resistance of the well-illuminated leaf *[s/m]* :math:`LAI_{active}` --- the active (sunlit) leaf area index *[m² (leaf area) / m² (soil surface)]* A general equation for :math:`LAI_{active}` is: .. math:: LAI_{active} = 0.5 LAI with: .. math:: LAI = 24 h where :math:`h` is an optional input parameter in :class:`PenmanMonteithDaily`. :return: (*float*) (bulk) surface resistance :math:`r_s` *[s/m]* """ # # active (sunlit) leaf area index [m^2 (leaf area) / m^2 (soil surface)] lai_active = self.lai_active_factor * self.lai rs = self.rl / lai_active return rs @staticmethod def to_u2(uz, z): r""" Return the calculated wind speed at 2 meters above ground surface (:math:`u_2`) *[m/s]*: .. math:: u_2 = \frac{ 4.87 u_z}{ \ln{(67.8 z - 5.42)}} :param uz: measured wind speed at :math:`z` meters above ground surface *[m/s]* :type uz: float or np.array :param z: height of measurement above ground surface *[m]* :type z: float :return: (*float or np.array*) wind speed at 2 meters above ground surface *[m/s]* """ return uz * 4.87 / np.log(67.8 * z - 5.42) @staticmethod def extraterrestrial_radiation(dr, ws, lat, sd): r"""Return the extraterrestrial radiation (:math:`R_a`) *[MJ/m²day]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 21, p. 46): .. math:: R_a = \frac{24(60)}{\pi} G_{sc} d_r [ \omega_s \sin(\varphi) \sin(\delta) + \cos(\varphi) \cos(\delta) \sin(\omega_s)] :param dr: inverse relative distance Earth-Sun (:math:`d_r`) *[-]*. See :meth:`inverse_relative_distance_earth_sun` :type dr: float :param ws: sunset hour angle (:math:`\omega_s`) *[rad]*. See :meth:`sunset_hour_angle` :type ws: float :param lat: latitude (:math:`\varphi`) *[rad]* :type lat: float :param sd: solar declination (:math:`\delta`) *[rad]*. See :meth:`solar_declination` :type sd: float :return: *(float or np.array)* daily extraterrestrial radiation (:math:`R_a`) *[MJ/m²day]* """ # solar_constant = 0.0820 # MJ.m-2.min-1 # (24.0 * 60.0 / pi) * solar_constant = 37.586031360582005 return 37.586031360582005 * dr * (ws * np.sin(lat) * np.sin(sd) + np.cos(lat) * np.cos(sd) * np.sin(ws)) @staticmethod def inverse_relative_distance_earth_sun(day): r"""Return the inverse relative distance Earth-Sun (:math:`d_r`) *[-]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 23, p. 46): .. math:: d_r = 1 + 0.033 \cos{ \left( \frac{2 \pi}{365} J \right)} :param day: day of the year (:math:`J`) *[-]*. Range: :math:`1 \leq J \leq 366` :type day: int or np.array :return: *(float or np.array)* inverse relative distance Earth-Sun (:math:`d_r`) *[-]* """ # 2.0 * pi / 365 = 0.01721420632103996 return 1 + 0.033 * np.cos(0.01721420632103996 * day) @staticmethod def solar_declination(day): r"""Return the solar declination (:math:`\delta`) *[rad]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 24, p. 46): .. math:: \delta = 0.409 \sin{ \left( \frac{2 \pi}{365} J - 1.39\right)} :param day: day of the year (:math:`J`) *[-]*. Range: :math:`1 \leq J \leq 366` :type day: int :return: (*float or np.array*) solar declination (:math:`\delta`) *[rad]* """ # 2.0 * pi / 365 = 0.01721420632103996 return 0.409 * np.sin(0.01721420632103996 * day - 1.39) @staticmethod def sunset_hour_angle(lat, sd): r"""Return the sunset hour angle (:math:`\omega_s`) *[rad]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 25, p. 46): .. math:: \omega_s = \arccos{ \left[-tan(\varphi)tan(\delta)\right]} :param lat: latitude (:math:`\varphi`) *[rad]* :type lat: float or np.array :param sd: solar declination (:math:`\delta`) *[rad]*. See :meth:`solar_declination` :type sd: float or np.array :return: (*float or np.array*) sunset hour angle (:math:`\omega_s`) *[rad]* """ return np.arccos(-np.tan(sd) * np.tan(lat)) @staticmethod def daylight_hours(ws): r"""Return the daylight hours (:math:`N`) *[hour]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 34, p. 49): .. math:: N = \frac{24}{\pi} \omega_s :param ws: sunset hour angle (:math:`\omega_s`) *[rad]*. See :meth:`sunset_hour_angle` :type ws: float or np.numpy :return: (*float or np.numpy*) daylight hours (:math:`N`) *[hour]* """ # 24.0 / pi = 7.639437268410976 return 7.639437268410976 * ws @staticmethod def clear_sky_shortwave_radiation(ra, elevation=0.0, a_s=0.25, b_s=0.50): r"""Return the clear-sky shortwave radiation (:math:`R_{so}`) *[MJ/m²day]*. It is required for computing :meth:`net_longwave_radiation`. For near sea level or when calibrated values for :math:`a_s` and :math:`b_s` are available (`FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_, eq. 36, p. 51): .. math:: R_{so} = (a_s + b_s ) R_a When calibrated values for :math:`a_s` and :math:`b_s` are not available (`FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_, eq. 37, p. 51): .. math:: R_{so} = (0.75 + 2 * 10^{−5} z) R_a where :math:`z` is the station elevation above sea level *[m]*. :param ra: extraterrestrial radiation (:math:`R_a`) *[MJ/m²day]*. See :meth:`extraterrestrial_radiation` :type ra: float or np.numpy :param elevation: meters above sea level see (:math:`z`) [m]. See :attr:`elevation` :type elevation: float or np.numpy :param a_s: regression constant (:math:`a_s`) *[-]*. Default :math:`a_s=0.25`. It expresses the fraction of extraterrestrial radiation reaching the earth on overcast days (:math:`n = 0`) :type a_s: float or np.numpy :param b_s: regression constant (:math:`b_s`) *[-]*. Default :math:`b_s=0.50`. The expression :math:`a_s+b_s` indicates the fraction of extraterrestrial radiation reaching the earth on clear days (:math:`n = N`) :type b_s: float or np.numpy :return: (*float or np.numpy*) daily clear-sky shortwave radiation (:math:`R_{so}`) *[MJ/m²day]* """ rs0 = ((a_s + b_s) + 2e-5 * elevation) * ra return rs0 @staticmethod def shortwave_radiation(ra, n, mn, a_s=0.25, b_s=0.50): r"""Return the daily shortwave radiation (:math:`R_s`) *[MJ/m²day]* according to the Angstrom formula as described in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 35, p. 50): .. math:: R_s = \left( a_s + b_s \frac{n}{N} \right) R_a Depending on atmospheric conditions (humidity, dust) and solar declination (latitude and month), the Angstrom values :math:`a_s` and :math:`b_s` will vary. Where no actual solar radiation data are available and no calibration has been carried out for improved :math:`a_s` and :math:`b_s` parameters, the values :math:`a_s = 0.25` and :math:`b_s = 0.50` are recommended. :param ra: extraterrestrial radiation (:math:`R_a`) *[MJ/m²day]*. See :meth:`extraterrestrial_radiation` :type ra: float or np.array :param n: actual duration of sunshine or cloudless hours (:math:`n`) *[hour]* :type n: float or np.array :param mn: maximum possible duration of sunshine or daylight hours (:math:`N`) *[hour]* See :meth:`daylight_hours` :type mn: float, np.array :param a_s: regression constant (:math:`as`) *[-]*. Default :math:`a_s=0.25`. It expresses the fraction of extraterrestrial radiation reaching the earth on overcast days (:math:`n = 0`) :type a_s: float or np.numpy :param b_s: regression constant (:math:`bs`) *[-]*. Default :math:`b_s=0.50`. The expression :math:`a_s+b_s` indicates the fraction of extraterrestrial radiation reaching the earth on clear days (:math:`n = N`) :type b_s: float or np.numpy :return: (*float, np.array*) daily total shortwave radiation (:math:`R_s`) *[MJ/m²day]* reaching the earth .. note:: If shortwave radiation (i.e., solar radiation) measurements are available, :meth:`shortwave_radiation` function is no needed. Measurements of shortwave radiation may be directly used as input data in :meth:`et0`. """ rns = (a_s + b_s * n / mn) * ra return rns @staticmethod def net_shortwave_radiation(rs, albedo): r"""The net shortwave radiation (:math:`R_{ns}`) *[MJ/m²day]* resulting from the balance between incoming and reflected solar radiation as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 38, p. 51): .. math:: R_{ns} = (1 − \alpha) R_s :param rs: daily shortwave radiation (:math:`R_s`) *[MJ/m²day]*. See :meth:`shortwave_radiation` :type rs: float or np.array :param albedo: albedo or reflection coefficient (:math:`\alpha` *[-]*). Range: :math:`0.0 \leq \alpha \leq 1.0` (:math:`\alpha=0.23` for the hypothetical grass reference crop). See :class:`PenmanMonteithDaily` and :meth:`et0` :type albedo: float or np.array :return: (*float or np.array*) daily net shortwave radiation (:math:`R_{ns}`) *[MJ/m²day]* reaching the earth """ return (1.0 - albedo) * rs @staticmethod def net_longwave_radiation(t_min, t_max, rs, rs0, ea=None): r"""Return the net outgoing longwave radiation (:math:`R_{nl}`) *[MJ/m²day]* as defined in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_ (eq. 39, p. 52): .. math:: R_{nl} = \sigma\left[\frac{T_{max,K}^4 + T_{min,K}^4}{2}\right](0.34-0.14\sqrt{e_a})\left(1.35 \frac{R_s}{R_{so}}-0.35\right) :param t_min: minimum daily air temperature (:math:`T_{max}`) *[°C]* :type t_min: float or np.array :param t_max: maximum daily air temperature (:math:`T_{min}`) *[°C]* :type t_max: float or np.array :param rs: shortwave radiation (:math:`R_s`) *[MJ/m²day]*. See :meth:`shortwave_radiation` :type rs: float or np.array :param rs0: clear-sky shortwave radiation (:math:`R_{so}`) *[MJ/m²day]*. See :meth:`clear_sky_shortwave_radiation` :type rs0: float or np.array :param ea: actual vapour pressure (:math:`e_a`) *[kPa]* :type ea: float or np.array :return: (*float or np.array*) daily net outgoing longwave radiation (:math:`R_{nl}`) *[MJ/m²day]* .. note:: The :math:`R_s/R_{so}` term in the equation above must be limited so that :math:`R_s/R_{so} \leq 1.0`. """ t_min = t_min + 273.15 t_max = t_max + 273.15 if ea is not None: rln = 4.903e-9 * (t_min ** 4 + t_max ** 4) * 0.5 * (0.34 - 0.14 * np.sqrt(ea)) * (1.35 * rs / rs0 - 0.35) else: t_mean = (t_min + t_max) / 2.0 rln = 4.903e-9 * (t_min ** 4 + t_max ** 4) * 0.5 * \ (-0.02 + 0.261 * np.exp(-7.77e10 ** -4 * t_mean ** 2)) * (1.35 * rs / rs0 - 0.35) return rln def et0(self, **kwargs): r"""Returns potential evapotranspiration (:math:`ETo`) *[mm/day]* as described in `FAO 56 <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>`_. Reference (grass) potencial evapotranspiration is returned for default constructor values. If values in `**kwargs` are arrays, their lengths must be the same. :Keyword Arguments: * **date** (*str, datetime.date, datetime.datetime, pandas.TimeStamp, or np.array*) * **doy** (*int or np.array*) - day of the year (:math:`J`) *[-]*. Range: :math:`1 \leq J \leq 366`. It is not used if date is given * **u2** (*float or np.array*) - wind speed at 2 meters above ground surface *[m/s]* * **uz** (*float or np.array*) - measured wind speed at :math:`z` meters above ground surface *[m/s]* * **z** (*float or np.array*) - height of measurement above ground surface *[m]* * **t_mean** (*float or np.array*) - daily mean air temperature *[°C]* * **t_min** (*float or np.array*) - daily minimum air temperature *[°C]* * **t_max** (*float or np.array*) - daily maximum air temperature *[°C]* * **rh_mean** (*float or np.array*) - daily mean relative humidity *[%]* * **rh_min** (*float or np.array*) - daily minimum relative humidity *[%]* * **rh_max** (*float or np.array*) - daily maximum relative humidity *[%]* * **rs** (*float or np.array*) - solar or shortwave radiation *[MJ/m²day]* * **n** (*float or np.array*) - daily actual duration of sunshine or cloudless hours *[hour]* * **g** (*float or np.array*) - soil heat flux density *[MJ/m²day]*. If not given, *g* defined in :meth:`PenmanMonteithDaily` will be used * **a_s** (*float or np.array*) - see :meth:`shortwave_radiation`. Default :math:`a_s = 0.25` * **b_s** (*float or np.array*) - see :meth:`shortwave_radiation`. Default :math:`b_s = 0.50` * **negative_rnl** (*bool*) - allow negative net longwave radiation. Default :math:`negative\_rnl=True` * **negative_et0** (*bool*) - allow negative reference evapotranspiration. Default :math:`negative\_et0=True` :return: (*float or np.array*) potential evapotranspiration (:math:`ETo`) *[mm/day]* Cases: * If date and doy are given, :math:`doy` is disregarded * if :math:`uz` is given, :math:`z` must also be given * if :math:`u2` and (:math:`uz`, :math:`z`) are given, both :math:`uz` and :math:`z` are disregarded * if :math:`rs` and :math:`n` are given, :math:`n` will be disregarded * The best options for air temperature are, in this order: 1) t_min, t_max, and t_mean, 2) t_min, t_max, and 3) tmean * The best options for relative air humidity are, in this order: 1) rh_max and rh_min, 2) rh_max, and 3) rh_mean Example 1:: >>> from evapotranspiration.penman_monteith_daily import PenmanMonteithDaily >>> pm = PenmanMonteithDaily(elevation=100, latitude=50.80) >>> et0 = pm.et0(doy=187, u2=2.078, t_min=12.3, t_max=21.5, rh_min=63, rh_max=84, n=9.25) >>> print(et0) 3.872968723753793 Example 2:: >>> from evapotranspiration.penman_monteith_daily import PenmanMonteithDaily >>> pm = PenmanMonteithDaily(elevation=100, latitude=50.80) >>> et0 = pm.et0(date='2001-07-06', u2=2.078, t_min=12.3, t_max=21.5, rh_min=63, rh_max=84, n=9.25) >>> print(et0) 3.872968723753793 Example 3:: >>> from evapotranspiration.penman_monteith_daily import PenmanMonteithDaily >>> pm = PenmanMonteithDaily(elevation=100, latitude=50.80) >>> date=np.array(['2001-07-06', '2001-07-06']) >>> u2=np.array([2.078, 2.078]) >>> t_min=np.array([12.3, 12.3]) >>> t_max=np.array([21.5, 21.5]) >>> rh_min=np.array([63, 63]) >>> rh_max=np.array([84, 84]) >>> n=np.array([9.25, 9.25]) >>> et0 = pm.et0(date=date, u2=u2, t_min=t_min, t_max=t_max, rh_min=rh_min, rh_max=rh_max, n=n) >>> print(et0) [3.87296872 3.87296872] """ self.reset() try: self.u2 = kwargs.get('u2', None) if self.u2 is None: self.u2 = self.to_u2(kwargs['uz'], kwargs['z']) except KeyError: raise KeyError('Penmam-Monteith: Either u2 or both uz and z must be given') t_min = kwargs.get('t_min', None) if t_min is None: t_min = kwargs['t_mean'] t_max = kwargs.get('t_max', None) if t_max is None: t_max = kwargs['t_mean'] t_mean = kwargs.get('t_mean', None) rh_min = kwargs.get('rh_min', None) rh_max = kwargs.get('rh_max', None) if rh_max is not None: if rh_min is None: rh_min = rh_max else: rh_min = rh_max = kwargs['rh_mean'] self.doy = kwargs.get('doy', None) if self.doy is None: self.doy = pd.to_datetime(kwargs['date']).dayofyear self.rs = kwargs.get('rs', None) n = kwargs.get('n', None) g = kwargs.get('g', None) if g is None: g = self.g_default a_s = kwargs.get('a_s', 0.25) b_s = kwargs.get('b_s', 0.50) if t_mean is None: t_mean = (t_min + t_max) / 2.0 self.ld = PenmanMonteithDaily.latent_heat_of_vaporization(t_mean) # In FAO 56, where delta occurs in the numerator and denominator, the slope # of the vapour pressure curve is calculated using mean air temperature (Equation 9) self.s = PenmanMonteithDaily.slope_of_saturation_vapour_pressure_curve(t_mean) self.pc = PenmanMonteithDaily.psychrometric_constant(self.p, lamda=self.ld) self.es = PenmanMonteithDaily.saturation_vapour_pressure(t_min, t_max) self.ea = PenmanMonteithDaily.actual_vapour_pressure(rh_min=rh_min, rh_max=rh_max, t_min=t_min, t_max=t_max) try: self.ra = np.array([self.ra_366[i] for i in self.doy]) self.rs0 = np.array([self.rs0_366[i] for i in self.doy]) if self.rs is None: self.mn = np.array([self.daylight_hours_366[i] for i in self.doy]) self.rs = self.shortwave_radiation(self.ra, n, self.mn, a_s, b_s) # FAO56 eq. 39. The Rs/Rso term in equation 39 must be limited so that Rs/Rso ≤ 1.0. self.rs = np.where(self.rs > self.rs0, self.rs0, self.rs) except TypeError: self.ra = self.ra_366[self.doy] self.rs0 = self.rs0_366[self.doy] if self.rs is None: self.mn = self.daylight_hours_366[self.doy] self.rs = self.shortwave_radiation(self.ra, n, self.mn, a_s, b_s) # FAO56 eq. 39. The Rs/Rso term in equation 39 must be limited so that Rs/Rso ≤ 1.0. self.rs = self.rs0 if self.rs > self.rs0 else self.rs self.rns = self.net_shortwave_radiation(self.rs, self.albedo) self.rnl = self.net_longwave_radiation(t_min, t_max, self.rs, self.rs0, self.ea) if kwargs.get('negative_rnl', False) and self.rnl < 0.0: self.rnl = 0.0 self.rn = self.rns - self.rnl # denominator of FAO 56 eq. 3 etd = self.ld * (self.s + self.pc * (1 + self.f2 * self.u2)) # ETo energy component of FAO 56 eq. 3 self.etr = self.s * (self.rn - g) / etd # ETo wind component of FAO 56 eq. 3 self.etw = (self.ld * self.pc * self.u2 * self.f1 * (self.es - self.ea) / (t_mean + 273.0)) / etd # Reference evapotranspiration self.et = self.etr + self.etw self.et = np.where(self.et < 0.0, 0.0, self.et) try: self.et = float(self.et) except TypeError: pass if kwargs.get('negative_rnl', False) and self.et < 0.0: self.et = 0.0 return self.et def et0_frame(self, df, **kwargs): """Return the input DataFrame extended by :meth:`et0` and further calculation parameters. :param df: pandas DataFrame with columns corresponding to the inputs described in :meth:`et0` :type df: pandas.DataFrame :Keyword Arguments: * **show_all** (*bool*) - show all results if :math:`True`, otherwise set `parameter=True` to show individual parameters. For example :math:`doy=True`, :math:`ld=True`, etc. See :meth:`PenmanMonteithDaily` :return: (*pandas.DataFrame*) DataFrame """ doy_str = kwargs.get('doy', 'doy') date_str = kwargs.get('date', 'date') u2_str = kwargs.get('u2', 'u2') uz_str = kwargs.get('uz', 'uz') z_str = kwargs.get('z', 'z') t_mean_str = kwargs.get('t_mean', 't_mean') t_min_str = kwargs.get('t_min', 't_min') t_max_str = kwargs.get('t_max', 't_max') rh_mean_str = kwargs.get('rh_mean', 'rh_mean') rh_min_str = kwargs.get('rh_min', 'rh_min') rh_max_str = kwargs.get('rh_max', 'rh_max') rs_str = kwargs.get('rs', 'rs') n_str = kwargs.get('n', 'n') g_str = kwargs.get('g', 'g') columns = df.columns doy = df[doy_str].values if doy_str in columns else None date = df[date_str].values if date_str in columns else None u2 = df[u2_str].values if u2_str in columns else None uz = df[uz_str].values if uz_str in columns else None z = df[z_str].values if z_str in columns else None t_mean = df[t_mean_str].values if t_mean_str in columns else None t_min = df[t_min_str].values if t_min_str in columns else None t_max = df[t_max_str].values if t_max_str in columns else None rh_mean = df[rh_mean_str].values if rh_mean_str in columns else None rh_min = df[rh_min_str].values if rh_min_str in columns else None rh_max = df[rh_max_str].values if rh_max_str in columns else None rs = df[rs_str].values if rs_str in columns else None n = df[n_str].values if n_str in columns else None g = df[g_str].values if g_str in columns else None self.et0(doy=doy, date=date, u2=u2, uz=uz, z=z, t_mean=t_mean, t_min=t_min, t_max=t_max, rh_mean=rh_mean, rh_min=rh_min, rh_max=rh_max, rs=rs, n=n, g=g) show_all = kwargs.get('show_all', True) if show_all: if doy is None: df['DoY'] = self.doy df['Lambda'] = self.ld df['Psy'] = self.pc df['Delta'] = self.s df['es'] = self.es df['ea'] = self.ea df['Rs'] = self.rs df['Rns'] = self.rns df['Rnl'] = self.rnl df['ET0r'] = self.etr df['ET0w'] = self.etw df['ET0'] = self.et else: if kwargs.get('Lambda', False): df['Lambda'] = self.ld if kwargs.get('Psy', False): df['Psy'] = self.pc if kwargs.get('Delta', False): df['Delta'] = self.s if kwargs.get('es', False): df['es'] = self.es if kwargs.get('ea', False): df['ea'] = self.ea if kwargs.get('Rs', False): df['Rs'] = self.rs if kwargs.get('Rns', False): df['Rns'] = self.rns if kwargs.get('Rnl', False): df['Rnl'] = self.rnl if kwargs.get('ET0r', False): df['ET0r'] = self.etr if kwargs.get('ET0w', False): df['ET0w'] = self.etw if kwargs.get('ET0', True): df['ET0'] = self.et return df
46.14405
120
0.58474
44,208
0.998735
0
0
18,924
0.427526
0
0
31,635
0.714689
48e612645ef11a151beea876541ffc2a70be93e5
5,123
py
Python
src/cnc-app-name/views.py
scotchoaf/cnc-skeleton
2116bf3d61fc1ed834daeaa146f5730713300010
[ "MIT" ]
null
null
null
src/cnc-app-name/views.py
scotchoaf/cnc-skeleton
2116bf3d61fc1ed834daeaa146f5730713300010
[ "MIT" ]
null
null
null
src/cnc-app-name/views.py
scotchoaf/cnc-skeleton
2116bf3d61fc1ed834daeaa146f5730713300010
[ "MIT" ]
1
2019-04-08T14:54:12.000Z
2019-04-08T14:54:12.000Z
# Copyright (c) 2018, Palo Alto Networks # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # Author: $YOURNAME and $EMAIL """ Palo Alto Networks cnc-skeleton This software is provided without support, warranty, or guarantee. Use at your own risk. """ from django import forms from django.contrib import messages from django.shortcuts import HttpResponseRedirect # Every app will need to import at least the CNCBaseFormView from pan_cnc.views import CNCBaseFormView, ProvisionSnippetView # All class attributes can be defined here or in the .pan-cnc.yaml # In this case, we have defined class level attributes there. This makes it possible to # create apps while writing no code at all. Just create a view in the .pan-cnc.yaml based on a # CNCBaseFormView and configure the attributes as needed. # If you want additional logic, then you subclass the CNCBaseFormView and add your logic there. # The two main methods to override are 'generate_dynamic_form' and 'form_valid'. # # generate_dynamic_form gets called before the web form is created and displayed to the user # # form_valid is called after they submit the form # class ExampleAppView(CNCBaseFormView): def form_valid(self, form): # we now have the form from the user, let's get some values to perform some logic # every variable entered by the user is saved in the user session. We can access it using this # convenience method: var_name = self.get_value_from_workflow('var_name', 'DEFAULT_IF_NOT_FOUND') var_name_again = self.get_value_from_workflow('var_name_again', 'DEFAULT_IF_NOT_FOUND') # silly exercise to just upper case the value entered by the user var_name_upper = str(var_name).upper() var_name_again_reverse = str(var_name_again)[::-1] # now, save the values back to the workflow self.save_value_to_workflow('var_name', var_name_upper) self.save_value_to_workflow('var_name_again', var_name_again_reverse) # and call our super to continue processing return super().form_valid(form) # Again override the ProvisionSnippetView as we are only building a workflow here. # CNCBaseFormView will only display the form and perform a redirect after 'form_valid' # however, ProvisionSnippetView will actually redirect to another CNC class based in the skillet type # I.e. this is where the logic of how to interact with APIs, PAN-OS devies, render templates, etc is all done # You usually want a child of this class to the 'last' in a chain if you need extended logic class ExampleAppPasswordView(ProvisionSnippetView): def get_snippet(self): return self.snippet # this method allows us to customize what is shown to the user beyond what is present in the loaded skillet # 'variables' section def generate_dynamic_form(self): # let's first get the generated from from our base class dynamic_form = super().generate_dynamic_form() dynamic_form.fields['password_2'] = forms.CharField(widget=forms.PasswordInput(render_value=True), initial='') return dynamic_form # the user has now completed the form and we have the results def form_valid(self, form): # Everything the user has entered will be available here in the 'workflow' # Note that any 'variable' entries defined in the .meta-cnc snippet will # be automatically added to the session workflow workflow = self.get_workflow() # get the values from the user submitted here var_name = workflow.get('var_name') var_name_again = workflow.get('var_name_again') example_password = workflow.get('example_password') # to access variables that were not defined in the snippet # you can grab them directly from the POST on the request object password_2 = self.request.POST['password_2'] print(f'checking if {example_password} matches {password_2}') if example_password != password_2: # Send an error message back to the user messages.add_message(self.request, messages.ERROR, 'Passwords do not match!') return HttpResponseRedirect('workflow00') print('Got some vars here!') print(f'Found value for var_name: {var_name}') print(f'Found another value for var_name_again {var_name_again}') return super().form_valid(form)
44.163793
111
0.728479
2,844
0.555143
0
0
0
0
0
0
3,428
0.669139
48e75715f9ebbd7bc9cad087839a0b649f005b70
1,312
py
Python
tcc_server/emulatorRPi.py
MegaNo0body/tcc
469824a8afc1cf846793212d42f6c8c43ee4b0bf
[ "MIT" ]
1
2016-09-29T22:39:31.000Z
2016-09-29T22:39:31.000Z
tcc_server/emulatorRPi.py
MegaNo0body/tcc
469824a8afc1cf846793212d42f6c8c43ee4b0bf
[ "MIT" ]
null
null
null
tcc_server/emulatorRPi.py
MegaNo0body/tcc
469824a8afc1cf846793212d42f6c8c43ee4b0bf
[ "MIT" ]
null
null
null
import sys from time import sleep from random import randint from urllib.request import urlopen from urllib.parse import urlencode if len(sys.argv) != 2: print('Por favor, usar: ' + sys.argv[0] + ' {idSensor}') print('Exemplo: ' + sys.argv[0] + ' 8') else: sensorId = sys.argv[1] URL_SERVICO = 'http://127.0.0.1:8081/tcc/sensor/' + sensorId + '/inserir' VARIACAO_MAXIMA = 5 valores = { 'Chuva': 80.0, 'UmidadeAr': 85.0, 'UmidadeSolo': 80.0, 'TemperaturaAr': 30.0, 'TemperaturaSolo': 25.0 } variacao = {} for k in valores: valores[k] = valores[k] + randint(-3, +3) / 10 variacao[k] = 0.0 accel = {} while True: for k in variacao: accel[k] = randint(-1.0, +1.0) / 10 r = randint(10, 30) for i in range(r): data = {} for k in variacao: variacao[k] = variacao[k] + accel[k] variacao[k] = max(variacao[k], -VARIACAO_MAXIMA) variacao[k] = min(variacao[k], +VARIACAO_MAXIMA) data[k] = '%.2f' % (valores[k] + round(variacao[k], 2)) data = urlencode(data) print(data) urlopen(URL_SERVICO, data.encode('ascii')) sleep(0.50)
31.238095
77
0.51753
0
0
0
0
0
0
0
0
168
0.128049
48e7717d4dc4d7ba6b003ee81bea9813e26ea8e2
1,487
py
Python
sayn/logging/file_logger.py
robin-173/sayn
d1cf36b92fad6a1798b57ad80abb22e8386e0e86
[ "Apache-2.0" ]
105
2020-04-23T17:04:34.000Z
2022-03-18T15:47:52.000Z
sayn/logging/file_logger.py
robin-173/sayn
d1cf36b92fad6a1798b57ad80abb22e8386e0e86
[ "Apache-2.0" ]
53
2020-06-12T14:41:12.000Z
2022-01-24T13:04:58.000Z
sayn/logging/file_logger.py
robin-173/sayn
d1cf36b92fad6a1798b57ad80abb22e8386e0e86
[ "Apache-2.0" ]
9
2020-04-23T16:56:23.000Z
2021-08-16T10:54:48.000Z
from pathlib import Path import logging from .logger import Logger from .log_formatter import LogFormatter class FileLogger(Logger): fmt = LogFormatter(use_colour=False, output_ts=False) logger = None def __init__(self, folder, format=None): if format is None: format = ("%(asctime)s|%(levelname)s|%(message)s",) formatter = logging.Formatter(format) log_file = Path(folder, "sayn.log") if not log_file.parent.exists(): log_file.parent.mkdir(parents=True) handler = logging.FileHandler(log_file) handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) logger = logging.getLogger(__name__) logger.addHandler(handler) logger.setLevel(logging.DEBUG) self.logger = logger def print(self, s=None): if s is not None: if s["level"] == "info": func = self.logger.info elif s["level"] == "error": func = self.logger.error elif s["level"] == "warning": func = self.logger.warning else: func = self.logger.debug s = s["message"] if isinstance(s, str): s = [s] elif not isinstance(s, list): raise ValueError("error in logging print") func(f"{s[0]}") for e in s[1:]: for l in e.split("\n"): func(f"{l}")
28.056604
63
0.543376
1,376
0.925353
0
0
0
0
0
0
144
0.096839
48e84fceaf520fea1c5ef759977376465d7f8dcf
1,514
py
Python
tests/test_docs.py
gitter-badger/pygsuite
536766c36f653edbc7585141f1c3327f508e19da
[ "MIT" ]
null
null
null
tests/test_docs.py
gitter-badger/pygsuite
536766c36f653edbc7585141f1c3327f508e19da
[ "MIT" ]
null
null
null
tests/test_docs.py
gitter-badger/pygsuite
536766c36f653edbc7585141f1c3327f508e19da
[ "MIT" ]
null
null
null
from pygsuite import DefaultFonts, TextStyle, Color from pygsuite.docs.doc_elements.paragraph import Paragraph BRIGHT_GREEN_HEX = "#72FF33" def test_text(test_document): document = test_document docbody = document.body docbody.delete() docbody.add_text( "TEST_CUSTOM\n", style=TextStyle(font_size=18, font_weight=200, color=Color(hex=BRIGHT_GREEN_HEX)), ) docbody.add_text("TEST_DEFAULT\n", style=DefaultFonts.NORMAL_TEXT) docbody.add_text("TEST_INDEX\n", style=DefaultFonts.NORMAL_TEXT, position=1) document.flush() text = [item for item in document.body if isinstance(item, Paragraph)] assert text[0].text.strip() == "TEST_INDEX" assert text[2].text.strip() == "TEST_DEFAULT" # TODO: return style objects assert text[1].elements[0].style.font_size == 18 def test_paragraph(test_document): document = test_document docbody = document.body docbody.delete() docbody.add_text( "TEST_CUSTOM\n", style=TextStyle(font_size=18, font_weight=200, color=Color(hex=BRIGHT_GREEN_HEX)), ) docbody.flush() docbody.content[1].text = "TEST_CUSTOM_SETTER" docbody.add_text("INSERT\n", position=0) docbody.flush() docbody.paragraphs[1].elements[0].style = TextStyle( font_size=24, font_weight=500, color=Color(hex=BRIGHT_GREEN_HEX) ) docbody.flush() assert docbody.content[2].text.strip() == "TEST_CUSTOM_SETTER" assert docbody.paragraphs[1].elements[0].style.font_size == 24
33.644444
90
0.707398
0
0
0
0
0
0
0
0
173
0.114267
48e92b16767155e8dc5662502fba6db4a07dc542
71,657
py
Python
neutra/vae.py
dieterichlawson/google-research
7ca9a612aa4239533c6ed8ef98543f9780d19f2b
[ "Apache-2.0" ]
4
2020-02-04T16:23:45.000Z
2021-08-30T11:56:01.000Z
neutra/vae.py
lceustc/google-research
bf793f31022db2636f42e132198ffe8bd9631b58
[ "Apache-2.0" ]
10
2020-09-26T00:19:12.000Z
2022-03-12T00:04:29.000Z
neutra/vae.py
lceustc/google-research
bf793f31022db2636f42e132198ffe8bd9631b58
[ "Apache-2.0" ]
1
2020-02-29T05:06:38.000Z
2020-02-29T05:06:38.000Z
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 # pylint: disable=invalid-name,g-bad-import-order,missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import os from absl import app from absl import flags from concurrent import futures import gin import numpy as np from six.moves import range from six.moves import zip import tensorflow as tf import tensorflow_probability as tfp from typing import Any, Dict, List, Optional, Tuple from neutra import utils tfd = tfp.distributions tfb = tfp.bijectors FLAGS = flags.FLAGS TRAIN_BATCH = 250 TEST_BATCH = 1000 AIS_BATCH = 50 def ReduceL2(tensor, dims): return tf.sqrt(tf.reduce_sum(tf.square(tensor), dims)) @utils.MakeTFTemplate def Conv2DWN(inputs, num_filters, kernel_size=[3, 3], stride=[1, 1], pad="SAME", activation=None, weights_initializer=utils.L2HMCInitializer(), biases_initializer=tf.zeros_initializer(), scope=None): if activation is None: activation = lambda x: x num_inputs = int(inputs.shape[3]) with tf.variable_scope(scope, "conv_2d_wn"): w = tf.get_variable( "w", [kernel_size[0], kernel_size[1], num_inputs, num_filters], initializer=weights_initializer) if biases_initializer is not None: b = tf.get_variable("b", [num_filters], initializer=biases_initializer) g = tf.get_variable( "g", initializer=tf.log(ReduceL2(w.initialized_value(), [0, 1, 2]))) g = tf.exp(g) w = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(w, [0, 1, 2]) out = tf.nn.conv2d(inputs, w, [1, stride[0], stride[1], 1], pad) if biases_initializer is not None: out += tf.reshape(b, [1, 1, 1, num_filters]) return activation(out) def GetLinearARMask(num_inputs, num_outputs, zero_diagonal=False): assert num_inputs % num_outputs == 0 or num_outputs % num_inputs == 0, "%d vs %d" % (num_inputs, num_outputs) mask = np.ones([num_inputs, num_outputs], dtype=np.float32) if num_outputs >= num_inputs: k = num_outputs // num_inputs for i in range(num_inputs): mask[i + 1:, i * k:(i + 1) * k] = 0 if zero_diagonal: mask[i:i + 1, i * k:(i + 1) * k] = 0 else: k = num_inputs // num_outputs for i in range(num_outputs): mask[(i + 1) * k:, i:i + 1] = 0 if zero_diagonal: mask[i * k:(i + 1) * k:, i:i + 1] = 0 return mask def GetConvARMask(h, w, num_inputs, num_filters, zero_diagonal=False): l = (h - 1) // 2 m = (w - 1) // 2 mask = np.ones([h, w, num_inputs, num_filters], dtype=np.float32) mask[:l, :, :, :] = 0 mask[l, :m, :, :] = 0 mask[l, m, :, :] = GetLinearARMask(num_inputs, num_filters, zero_diagonal) return mask @utils.MakeTFTemplate def Conv2DAR(inputs, num_filters, kernel_size=[3, 3], zero_diagonal=False, weights_initializer=None, biases_initializer=tf.zeros_initializer(), scope=None): num_inputs = int(inputs.get_shape()[3]) mask = GetConvARMask(kernel_size[0], kernel_size[1], num_inputs, num_filters, zero_diagonal) w = tf.get_variable("w", [kernel_size[0], kernel_size[1], num_inputs, num_filters], initializer=weights_initializer) b = tf.get_variable("b", [num_filters], initializer=biases_initializer) g = tf.get_variable( "g", initializer=tf.log(ReduceL2(w.initialized_value() * mask, [0, 1, 2]))) g = tf.exp(g) w = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(w * mask, [0, 1, 2]) out = tf.nn.conv2d(inputs, w, [1, 1, 1, 1], "SAME") return out + tf.reshape(b, [1, 1, 1, num_filters]) @utils.MakeTFTemplate def ConvAR(x, h=None, real_event_shape=[], hidden_layers=[], **kwargs): #input_shape = ( # np.int32(x.shape.as_list()) # if x.shape.is_fully_defined() else tf.shape(x)) #x = tf.reshape(x, [-1] + real_event_shape) for i, units in enumerate(hidden_layers): x = Conv2DAR("conv2d_ar_%d"%i, num_filters=units, zero_diagonal=False, **kwargs)(inputs=x) if i == 0 and h is not None: if h.shape[-1] != x.shape[-1]: x += Conv2DWN("conv2d_h", num_filters=int(x.shape[-1]), kernel_size=[1, 1], stride=[1, 1])(h) else: x += h x = tf.nn.elu(x) shift = Conv2DAR( "conv2d_shift", num_filters=real_event_shape[-1], zero_diagonal=True, **kwargs)( inputs=x) log_scale = Conv2DAR( "conv2d_scale", num_filters=real_event_shape[-1], zero_diagonal=True, **kwargs)( inputs=x) #shift = tf.reshape(shift, input_shape) #log_scale = tf.reshape(log_scale, input_shape) return shift, log_scale @utils.MakeTFTemplate def DenseWN(inputs, num_outputs, activation=None, weights_initializer=utils.L2HMCInitializer(), biases_initializer=tf.zeros_initializer(), scope=None): if activation is None: activation = lambda x: x num_inputs = int(inputs.get_shape()[1]) with tf.variable_scope(scope, "dense_wn"): w = tf.get_variable( "w", [num_inputs, num_outputs], initializer=weights_initializer) if biases_initializer is not None: b = tf.get_variable("b", [num_outputs], initializer=biases_initializer) g = tf.get_variable( "g", initializer=tf.log(ReduceL2(w.initialized_value(), [0]))) g = tf.exp(g) w = g * tf.nn.l2_normalize(w, [0]) out = tf.matmul(inputs, w) if biases_initializer is not None: out += tf.expand_dims(b, 0) return activation(out) @utils.MakeTFTemplate def ResConv2D(inputs, num_filters, kernel_size, stride, activation=tf.nn.elu, output_init_factor=1.0): x = Conv2DWN( "conv2d_in", num_filters=num_filters, kernel_size=kernel_size, stride=stride, activation=activation)( inputs=inputs) non_linear = Conv2DWN( "conv2d_nl", num_filters=num_filters, kernel_size=kernel_size, stride=[1, 1], weights_initializer=utils.L2HMCInitializer(factor=output_init_factor))( inputs=x) skip = Conv2DWN( "conv2d_skip", num_filters=num_filters, kernel_size=kernel_size, stride=stride, weights_initializer=utils.L2HMCInitializer(factor=output_init_factor))( inputs=inputs) return non_linear + skip @utils.MakeTFTemplate def ResDense(inputs, num_dims, activation=None): x = DenseWN("dense_in", num_outputs=num_dims, activation=activation)(inputs) non_linear = DenseWN("dense_nl", num_outputs=num_dims)(x) skip = DenseWN("dense_skip", num_outputs=num_dims)(x) return non_linear + skip @gin.configurable("conv_hier_encoder") @utils.MakeTFTemplate def ConvHierEncoder(images, depth = 2, num_blocks = 2, z_dims = 32, h_dims=160): x = Conv2DWN("conv2d_in", num_filters=h_dims, stride=[2, 2], kernel_size=[5, 5])(inputs=images - 0.5) means = [] raw_scales = [] contexts = [] for i in range(depth): for j in range(num_blocks): downsample = i > 0 and j == 0 if downsample: stride = [2, 2] else: stride = [1, 1] h = tf.nn.elu(x) h = Conv2DWN("conv2d_in_%d_%d"%(i, j), num_filters=2*z_dims + 2 * h_dims, stride=stride, kernel_size=[3, 3])(inputs=h) mean, raw_scale, context, h = tf.split(h, [z_dims, z_dims, h_dims, h_dims], -1) means.append(mean) raw_scales.append(raw_scale) contexts.append(context) h = tf.nn.elu(h) h = Conv2DWN("conv2d_h_%d_%d"%(i, j), num_filters=h_dims, stride=[1, 1], kernel_size=[3, 3])(inputs=h) if downsample: x = tf.image.resize_nearest_neighbor(x, [int(x.shape[1]) // 2, int(x.shape[2]) // 2]) x += 0.1 * h return means, raw_scales, contexts @gin.configurable("conv_hier_prior_post") @utils.MakeTFTemplate def ConvHierPriorPost(images=None, encoder=None, z=None, batch=None, depth = 2, num_blocks = 2, z_dims = 32, h_dims = 160, image_width = 32): is_q = encoder is not None if is_q: means, raw_scales, up_contexts = encoder(images) if batch is None: if images is not None: batch = tf.shape(images)[0] else: batch = tf.shape(z[0])[0] h = tf.get_variable("h_top", [h_dims], initializer=tf.zeros_initializer()) h = tf.reshape(h, [1, 1, 1, -1]) top_width = image_width // 2 ** num_blocks h = tf.tile(h, [batch, top_width, top_width, 1]) x = h ret_z = [] ret_log_pz = [] for i in reversed(list(range(depth))): for j in reversed(list(range(num_blocks))): downsample = i > 0 and j == 0 h = tf.nn.elu(x) h_p = Conv2DWN( "conv2d_p_%d_%d" % (i, j), num_filters=2 * h_dims + 2 * z_dims, stride=[1, 1], kernel_size=[3, 3])( inputs=h) p_mean, p_raw_scale, down_context, h_det = tf.split( h_p, [z_dims, z_dims, h_dims, h_dims], -1) p_z = tfd.Independent( tfd.Normal(loc=p_mean, scale=tf.nn.softplus(p_raw_scale)), reinterpreted_batch_ndims=3) if is_q: h_q = Conv2DWN( "conv2d_q_%d_%d" % (i, j), num_filters=2 * z_dims, stride=[1, 1], kernel_size=[3, 3])( inputs=h) q_mean, q_raw_scale = tf.split(h_q, [z_dims, z_dims], -1) context = down_context + up_contexts.pop() q_mean += means.pop() q_raw_scale += raw_scales.pop() num_flat_dims = np.prod(q_mean.shape.as_list()[1:]) _maf_template = ConvAR( "iaf_%d_%d" % (i, j), real_event_shape=q_mean.shape.as_list()[1:], hidden_layers=[h_dims, h_dims], h=context, weights_initializer=utils.L2HMCInitializer(factor=0.01)) def maf_template(x, t=_maf_template): # TODO: I don't understand why the shape gets lost. #x.set_shape([None, num_flat_dims]) x.set_shape([None] + q_mean.shape.as_list()[1:]) return t(x) bijectors = [] #bijectors.append(tfb.Reshape(tf.shape(q_mean)[1:], [num_flat_dims])) bijectors.append( tfb.Invert( tfb.MaskedAutoregressiveFlow(shift_and_log_scale_fn=maf_template))) #bijectors.append(tfb.Reshape([num_flat_dims], tf.shape(q_mean)[1:])) # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. bijectors.append(tfb.AffineScalar(shift=q_mean, scale=tf.nn.softplus(q_raw_scale))) bijector = tfb.Chain(bijectors) mvn = tfd.Independent( tfd.Normal(loc=tf.zeros_like(q_mean), scale=tf.ones_like(q_raw_scale)), reinterpreted_batch_ndims=3) q_z = tfd.TransformedDistribution(mvn, bijector) if is_q: dist = q_z else: dist = p_z if z is None: z_val = dist.sample() else: z_val = z[0] z = z[1:] ret_z.append(z_val) ret_log_pz.append(dist.log_prob(z_val)) h = tf.concat([z_val, h_det], -1) if downsample: new_shape = [2 * int(x.shape[1]), 2 * int(x.shape[2])] x = tf.image.resize_nearest_neighbor(x, new_shape) h = tf.image.resize_nearest_neighbor(h, new_shape) h = Conv2DWN("deconv2d_%d_%d" % (i, j), num_filters=h_dims, stride=[1, 1], kernel_size=[3, 3])(inputs=h) x = x + 0.1 * h x = tf.image.resize_nearest_neighbor(x, [2 * int(x.shape[1]), 2 * int(x.shape[2])]) x = Conv2DWN("conv2d_out", num_filters=3, stride=[1, 1], kernel_size=[5, 5])(inputs=x) return ret_z, ret_log_pz, x @gin.configurable("conv_encoder") @utils.MakeTFTemplate def ConvEncoder(images, num_outputs, hidden_dims = 450, filter_scale = 1, fully_convolutional = False): x = images x = ResConv2D("res_1", num_filters=filter_scale * 16, kernel_size=[3, 3], stride=[2, 2])(x) x = tf.nn.elu(x) x = ResConv2D("res_2", num_filters=filter_scale * 16, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_3", num_filters=filter_scale * 16, kernel_size=[3, 3], stride=[2, 2])(x) x = tf.nn.elu(x) x = ResConv2D("res_4", num_filters=filter_scale * 32, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_5", num_filters=filter_scale * 32, kernel_size=[3, 3], stride=[2, 2])(x) x = tf.nn.elu(x) if fully_convolutional: return ResConv2D("res_out", num_filters=num_outputs, kernel_size=[3, 3], stride=[1, 1])(x) else: x = tf.reshape(x, [-1, filter_scale * 32 * 4 * 4]) x = ResDense("dense_h", num_dims=hidden_dims, activation=tf.nn.elu)(x) return DenseWN( "dense_out", num_outputs=num_outputs, weights_initializer=utils.L2HMCInitializer())( x) @gin.configurable("conv_decoder") @utils.MakeTFTemplate def ConvDecoder(encoding, output_shape, filter_scale = 1, hidden_dims = 450, fully_convolutional = False): if isinstance(encoding, (list, tuple)): encoding = encoding[0] if fully_convolutional: tf.logging.info("Encoding shape: %s", encoding.shape) x = ResConv2D("res_in", num_filters=filter_scale * 32, kernel_size=[3, 3], stride=[1, 1])(encoding) else: x = ResDense("dense_in", num_dims=hidden_dims, activation=tf.nn.elu)(encoding) x = ResDense("dense_h", num_dims=filter_scale * 32 * 4 * 4, activation=tf.nn.elu)(x) x = tf.reshape(x, [-1, 4, 4, filter_scale * 32]) x = tf.image.resize_nearest_neighbor(x, [8, 8]) x = ResConv2D("res_5", num_filters=32 * filter_scale, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_4", num_filters=32 * filter_scale, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) if output_shape[1] == 28: # 8x8 -> 7x7 x = x[:, 1:, 1:, :] x = tf.image.resize_nearest_neighbor(x, [output_shape[0] // 2, output_shape[1] // 2]) x = ResConv2D("res_3", num_filters=16 * filter_scale, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_2", num_filters=16 * filter_scale, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0], output_shape[1]]) x = ResConv2D( "res_1", num_filters=output_shape[-1], kernel_size=[3, 3], stride=[1, 1], output_init_factor=0.01)( x) return tf.reshape(x, [-1] + output_shape) @gin.configurable("conv_encoder2") @utils.MakeTFTemplate def ConvEncoder2(images, num_outputs, filter_scale = 1): x = images x = Conv2DWN("conv_1", num_filters=filter_scale * 16, kernel_size=[5, 5], stride=[2, 2], activation=tf.nn.elu)(x) x = Conv2DWN("conv_2", num_filters=filter_scale * 16, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = Conv2DWN("conv_3", num_filters=filter_scale * 16, kernel_size=[5, 5], stride=[2, 2], activation=tf.nn.elu)(x) x = Conv2DWN("conv_4", num_filters=filter_scale * 32, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = Conv2DWN("conv_5", num_filters=filter_scale * 32, kernel_size=[5, 5], stride=[2, 2], activation=tf.nn.elu)(x) return ResConv2D("conv_out", num_filters=num_outputs, kernel_size=[3, 3], stride=[1, 1])(x) @gin.configurable("conv_decoder2") @utils.MakeTFTemplate def ConvDecoder2(encoding, output_shape, filter_scale = 1): if isinstance(encoding, (list, tuple)): encoding = encoding[0] x = Conv2DWN("conv_in", num_filters=filter_scale * 32, kernel_size=[3, 3], stride=[1, 1])(encoding) x = tf.image.resize_nearest_neighbor(x, [8, 8]) x = Conv2DWN("conv_5", num_filters=32 * filter_scale, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = Conv2DWN("conv_4", num_filters=32 * filter_scale, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) if output_shape[1] == 28: # 8x8 -> 7x7 x = x[:, 1:, 1:, :] x = tf.image.resize_nearest_neighbor(x, [output_shape[0] // 2, output_shape[1] // 2]) x = Conv2DWN("conv_3", num_filters=16 * filter_scale, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = Conv2DWN("conv_2", num_filters=16 * filter_scale, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0], output_shape[1]]) x = Conv2DWN( "conv_1", num_filters=output_shape[-1], kernel_size=[5, 5], stride=[1, 1], weights_initializer=utils.L2HMCInitializer(0.01))( x) return tf.reshape(x, [-1] + output_shape) @gin.configurable("conv_encoder3") @utils.MakeTFTemplate def ConvEncoder3(images, num_outputs, hidden_dims = 450, filter_scale = 1): # This comes from VLAE paper. x = images x = ResConv2D("res_1", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_2", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = Conv2DWN("conv_3", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[2, 2])(x) x = tf.nn.elu(x) x = ResConv2D("res_4", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_5", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = Conv2DWN("conv_6", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[2, 2])(x) x = tf.nn.elu(x) x = ResConv2D("res_7", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_8", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_9", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) return Conv2DWN("conv_10", num_filters=num_outputs, kernel_size=[1, 1], stride=[1, 1])(x) @gin.configurable("conv_decoder3") @utils.MakeTFTemplate def ConvDecoder3(encoding, output_shape, filter_scale = 1): if isinstance(encoding, (list, tuple)): encoding = encoding[0] x = encoding x = Conv2DWN("conv_1", num_filters=filter_scale * 96, kernel_size=[1, 1], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_2", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_3", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_4", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0] // 2, output_shape[1] // 2]) x = Conv2DWN("conv_5", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_6", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_7", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0], output_shape[1]]) x = Conv2DWN("conv_8", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_9", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_10", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = Conv2DWN( "conv_out", num_filters=output_shape[-1], kernel_size=[5, 5], stride=[1, 1], weights_initializer=utils.L2HMCInitializer(0.01))( x) return tf.reshape(x, [-1] + output_shape) @gin.configurable("conv_encoder4") @utils.MakeTFTemplate def ConvEncoder4(images, num_outputs, filter_scale = 1, fully_convolutional = False): x = images x = Conv2DWN("conv_1", num_filters=filter_scale * 64, kernel_size=[5, 5], stride=[2, 2])(x) x = tf.nn.elu(x) x = Conv2DWN("conv_2", num_filters=filter_scale * 64, kernel_size=[5, 5], stride=[2, 2])(x) x = tf.nn.elu(x) if fully_convolutional: return Conv2DWN("conv_out", num_filters=num_outputs, kernel_size=[1, 1], stride=[1, 1])(x) else: return DenseWN("dense_out", num_outputs=num_outputs)(tf.layers.flatten(x)) @gin.configurable("conv_decoder4") @utils.MakeTFTemplate def ConvDecoder4(encoding, output_shape, filter_scale = 1, fully_convolutional = False): if isinstance(encoding, (list, tuple)): encoding = encoding[0] x = encoding if not fully_convolutional: x = tf.reshape(DenseWN("dense_in", num_outputs=8*8*16)(x), [-1, 8, 8, 16]) x = tf.image.resize_nearest_neighbor(x, [output_shape[0] // 2, output_shape[1] // 2]) x = Conv2DWN("conv_1", num_filters=filter_scale * 64, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0], output_shape[1]]) x = Conv2DWN("conv_2", num_filters=filter_scale * 64, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = Conv2DWN( "conv_out", num_filters=output_shape[-1], kernel_size=[1, 1], stride=[1, 1], weights_initializer=utils.L2HMCInitializer(0.01))( x) return tf.reshape(x, [-1] + output_shape) @gin.configurable("dense_encoder") @utils.MakeTFTemplate def DenseEncoder(images, num_outputs, hidden_layer_sizes = [1024, 1024], activation=tf.nn.elu): x = tf.layers.flatten(images) # Center the data, assuming it goes from [0, 1] initially. # x = 2.0 * x - 1.0 for size in hidden_layer_sizes: x = tf.layers.dense( x, size, activation=activation, kernel_initializer=utils.L2HMCInitializer()) return tf.layers.dense(x, num_outputs, kernel_initializer=utils.L2HMCInitializer()) @gin.configurable("dense_decoder") @utils.MakeTFTemplate def DenseDecoder(encoding, output_shape, hidden_layer_sizes = [1024, 1024], activation=tf.nn.elu): if isinstance(encoding, (list, tuple)): encoding = encoding[0] x = tf.layers.flatten(encoding) for size in hidden_layer_sizes: x = tf.layers.dense( x, size, activation=activation, kernel_initializer=utils.L2HMCInitializer()) num_outputs = np.prod(output_shape) return tf.reshape( tf.layers.dense( x, num_outputs, kernel_initializer=utils.L2HMCInitializer(factor=0.01)), [-1] + output_shape) def IndependentBernouli3D(logits): return tfd.Independent( tfd.Bernoulli(logits=logits), reinterpreted_batch_ndims=3) def IndependentDiscreteLogistic3D(locations, scales): dist = tfd.TransformedDistribution( distribution=tfd.Logistic(loc=locations, scale=scales), bijector=tfb.AffineScalar(scale=255.0)) dist = tfd.QuantizedDistribution(distribution=dist, low=0., high=255.0) dist = tfd.Independent(dist, reinterpreted_batch_ndims=3) class ScaleHack(object): def __init__(self, dist): self._dist = dist def sample(self, *args, **kwargs): return self._dist.sample(*args, **kwargs) / 255.0 def log_prob(self, x, *args, **kwargs): return self._dist.log_prob(tf.clip_by_value(x * 255.0, 0.0, 255.0), *args, **kwargs) return ScaleHack(dist) def IndependentDiscreteLogistic3D2(locations, scales): class IndependentDiscreteLogistic(object): def __init__(self, loc, scale): self._loc = loc self._scale = scale def sample(self, *args, **kwargs): dist = tfd.Logistic(loc=self._loc, scale=self._scale) return tf.clip_by_value(dist.sample(*args, **kwargs), 0.0, 1.0) def log_prob(self, x, *args, **kwargs): sample = x mean = self._loc scales = self._scale binsize=1.0 / 256.0 sample = (tf.floor(sample / binsize) * binsize - mean) / scales return tf.reduce_sum( tf.log( tf.sigmoid(sample + binsize / scales) - tf.sigmoid(sample) + 1e-7), [-1, -2, -3]) return IndependentDiscreteLogistic(locations, scales) @gin.configurable("dense_recognition") @utils.MakeTFTemplate def DenseRecognition(images, encoder, z=None, sigma_activation="exp" ): """Models Q(z | encoder(x))""" encoding = encoder(images) num_dims = int(encoding.shape[-1]) // 2 encoding_parts = tf.unstack( tf.reshape(encoding, [-1, num_dims, 2]), num=2, axis=-1) mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijector = tfb.Affine(shift=mu, scale_diag=sigma) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] tf.logging.info("bijector z shape: %s", z[0].shape) return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("dense_recognition_affine") @utils.MakeTFTemplate def DenseRecognitionAffine(images, encoder, z=None, z_dims=None): """Models Q(z | encoder(x))""" encoding = encoder(images) mu = encoding[:, :z_dims] tril_raw = tfd.fill_triangular(encoding[:, z_dims:]) sigma = tf.nn.softplus(tf.matrix_diag_part(tril_raw)) tril = tf.linalg.set_diag(tril_raw, sigma) bijector = tfb.Affine(shift=mu, scale_tril=tril) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("dense_recognition_affine_lr") @utils.MakeTFTemplate def DenseRecognitionAffineLR(images, encoder, z=None, z_dims=None, rank=1): """Models Q(z | encoder(x))""" encoding = encoder(images) mu = encoding[:, :z_dims] sigma = encoding[:, z_dims:2*z_dims] perturb = encoding[:, 2*z_dims:] perturb = tf.reshape(perturb, [-1, z_dims, rank]) sigma = tf.nn.softplus(sigma) bijector = tfb.Affine(shift=mu, scale_diag=sigma, scale_perturb_factor=perturb) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("dense_recognition_rnvp") @utils.MakeTFTemplate def DenseRecognitionRNVP( images, encoder, z=None, num_bijectors=3, condition_bijector=False, layer_sizes=[128, 128], sigma_activation="exp"): """Models Q(z | encoder(x)), z = f(w, encoder)""" encoding = encoder(images) if condition_bijector: num_parts = 3 else: num_parts = 2 num_dims = int(encoding.shape[-1]) // num_parts encoding_parts = tf.unstack( tf.reshape(encoding, [-1, num_dims, num_parts]), num=num_parts, axis=-1) if condition_bijector: h = encoding_parts[2] else: h = None swap = tfb.Permute(permutation=np.arange(num_dims - 1, -1, -1)) bijectors = [] for i in range(num_bijectors): _rnvp_template = utils.DenseShiftLogScale( "rnvp_%d" % i, h=h, hidden_layers=layer_sizes, activation=tf.nn.softplus, kernel_initializer=utils.L2HMCInitializer(factor=0.01)) def rnvp_template(x, output_units, t=_rnvp_template): # TODO: I don't understand why the shape gets lost. x.set_shape([None, num_dims - output_units]) return t(x, output_units) bijectors.append( tfb.Invert( tfb.RealNVP( num_masked=num_dims // 2, shift_and_log_scale_fn=rnvp_template))) bijectors.append(swap) # Drop the last swap. bijectors = bijectors[:-1] # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijectors.append(tfb.Affine(shift=mu, scale_diag=sigma)) bijector = tfb.Chain(bijectors) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("dense_recognition_iaf") @utils.MakeTFTemplate def DenseRecognitionIAF( images, encoder, z=None, num_iaf_layers=2, iaf_layer_sizes=[128, 128], condition_iaf=False, sigma_activation="exp"): """Models Q(z | encoder(x)), z = f(w, encoder)""" encoding = encoder(images) if condition_iaf: num_parts = 3 else: num_parts = 2 num_dims = int(encoding.shape[-1]) // num_parts encoding_parts = tf.unstack( tf.reshape(encoding, [-1, num_dims, num_parts]), num=num_parts, axis=-1) if condition_iaf: h = encoding_parts[2] else: h = None swap = tfb.Permute(permutation=np.arange(num_dims - 1, -1, -1)) bijectors = [] for i in range(num_iaf_layers): #_maf_template = tfb.masked_autoregressive_default_template( # hidden_layers=iaf_layer_sizes, # activation=tf.nn.softplus, # kernel_initializer=utils.L2HMCInitializer(factor=0.01)) _maf_template = utils.DenseAR( "maf_%d" % i, hidden_layers=iaf_layer_sizes, h=h, activation=tf.nn.softplus, kernel_initializer=utils.L2HMCInitializer(factor=0.01)) def maf_template(x, t=_maf_template): # TODO: I don't understand why the shape gets lost. x.set_shape([None, num_dims]) return t(x) bijectors.append( tfb.Invert( tfb.MaskedAutoregressiveFlow(shift_and_log_scale_fn=maf_template))) bijectors.append(swap) # Drop the last swap. bijectors = bijectors[:-1] # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijectors.append(tfb.Affine(shift=mu, scale_diag=sigma)) bijector = tfb.Chain(bijectors) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type class FlipImageBijector(tfb.Bijector): def __init__(self, validate_args=False, name=None): """Creates the `Permute` bijector. Args: permutation: An `int`-like vector-shaped `Tensor` representing the permutation to apply to the rightmost dimension of the transformed `Tensor`. validate_args: Python `bool` indicating whether arguments should be checked for correctness. name: Python `str`, name given to ops managed by this object. Raises: TypeError: if `not permutation.dtype.is_integer`. ValueError: if `permutation` does not contain exactly one of each of `{0, 1, ..., d}`. """ super(FlipImageBijector, self).__init__( forward_min_event_ndims=3, is_constant_jacobian=True, validate_args=validate_args, name=name or "flip_image") def _forward(self, x): return tf.image.flip_left_right(tf.image.flip_up_down(x)) def _inverse(self, y): return tf.image.flip_up_down(tf.image.flip_left_right(y)) def _inverse_log_det_jacobian(self, y): # is_constant_jacobian = True for this bijector, hence the # `log_det_jacobian` need only be specified for a single input, as this will # be tiled to match `event_ndims`. return tf.constant(0., dtype=y.dtype.base_dtype) def _forward_log_det_jacobian(self, x): return tf.constant(0., dtype=x.dtype.base_dtype) @gin.configurable("conv_iaf") @utils.MakeTFTemplate def ConvIAF( images, encoder, z=None, num_iaf_layers=2, iaf_layer_sizes=[128, 128], condition_iaf=False, sigma_activation="softplus"): """Models Q(z | encoder(x)), z = f(w, encoder)""" encoding = encoder(images) if encoding.shape.ndims != 4: raise ValueError("ConvIAF requires a convolutional encoder. %s", encoding.shape) if condition_iaf: num_parts = 3 else: num_parts = 2 num_dims = int(encoding.shape[-1]) // num_parts encoding_parts = tf.unstack( tf.reshape(encoding, [-1] + encoding.shape.as_list()[1:-1] + [num_dims, num_parts]), num=num_parts, axis=-1) if condition_iaf: h = encoding_parts[2] else: h = None bijectors = [] for i in range(num_iaf_layers): _maf_template = ConvAR( "iaf_%d" % i, real_event_shape=encoding_parts[0].shape.as_list()[1:], hidden_layers=iaf_layer_sizes, h=h, weights_initializer=utils.L2HMCInitializer(factor=0.01)) def maf_template(x, t=_maf_template): # TODO: I don't understand why the shape gets lost. x.set_shape([None] + encoding_parts[0].shape.as_list()[1:]) return t(x) bijectors.append( tfb.Invert( tfb.MaskedAutoregressiveFlow(shift_and_log_scale_fn=maf_template))) bijectors.append(FlipImageBijector()) # Drop the last swap. bijectors = bijectors[:-1] # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijectors.append(tfb.AffineScalar(shift=mu, scale=sigma)) bijector = tfb.Chain(bijectors) mvn = tfd.Independent( tfd.Normal(loc=tf.zeros_like(mu), scale=tf.ones_like(sigma)), reinterpreted_batch_ndims=3) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("conv_shift_scale") @utils.MakeTFTemplate def ConvShiftScale( images, encoder, z=None, sigma_activation="softplus"): """Models Q(z | encoder(x)), z = f(w, encoder)""" encoding = encoder(images) if encoding.shape.ndims != 4: raise ValueError("ConvIAF requires a convolutional encoder. %s", encoding.shape) num_parts = 2 num_dims = int(encoding.shape[-1]) // num_parts encoding_parts = tf.unstack( tf.reshape(encoding, [-1] + encoding.shape.as_list()[1:-1] + [num_dims, num_parts]), num=num_parts, axis=-1) # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijector = tfb.AffineScalar(shift=mu, scale=sigma) mvn = tfd.Independent( tfd.Normal(loc=tf.zeros_like(mu), scale=tf.ones_like(sigma)), reinterpreted_batch_ndims=3) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @utils.MakeTFTemplate def SimplePrior(z=None, batch=None, num_dims=None): """Models P(z)""" mvn = tfd.MultivariateNormalDiag( loc=tf.zeros(num_dims), scale_diag=tf.ones(num_dims)) if z is None: z = [mvn.sample(batch)] return z, [mvn.log_prob(z[0])] # pytype: disable=bad-return-type @utils.MakeTFTemplate def Simple3DPrior(z=None, batch=None, shape=None): """Models P(z)""" mvn = tfd.Independent(tfd.Normal(loc=tf.zeros(shape), scale=tf.ones(shape)), reinterpreted_batch_ndims=3) if z is None: z = [mvn.sample(batch)] return z, [mvn.log_prob(z[0])] # pytype: disable=bad-return-type @utils.MakeTFTemplate def DenseMNISTNoise(x=None, z=None, decoder=None, return_means=True): """Models P(x | decoder(z))""" decoding = decoder(z) bernoulli = IndependentBernouli3D(decoding) if x is None: if return_means: x = bernoulli.mean() else: x = tf.to_float(bernoulli.sample()) return x, bernoulli.log_prob(x) @gin.configurable("cifar10_noise") @utils.MakeTFTemplate def DenseCIFAR10TNoise(x=None, z=None, decoder=None, return_means=True, uniform_scale=False, logistic_impl="mine"): """Models P(x | decoder(z))""" decoding = decoder(z) if uniform_scale: scale = tf.get_variable("scale", initializer=1.0) scales = tf.reshape(scale, [1, 1, 1]) else: scales = tf.get_variable( "scales", [32, 32, 3], initializer=tf.ones_initializer()) if logistic_impl == "mine": disc_logistic = IndependentDiscreteLogistic3D(decoding, tf.nn.softplus(scales)) elif logistic_impl == "kingma": disc_logistic = IndependentDiscreteLogistic3D2(decoding, tf.nn.softplus(scales)) if x is None: x = tf.to_float(disc_logistic.sample()) return x, disc_logistic.log_prob(x) @gin.configurable("learning_rate") def LearningRate(train_size, global_step, schedule = "hoffman", warmup_steps=0): if schedule == "hoffman": base = tf.train.piecewise_constant( global_step, [train_size * 500 // TRAIN_BATCH], [1e-3, 1e-4]) elif schedule == "new": base = tf.train.piecewise_constant( global_step, [train_size * 500 // TRAIN_BATCH, train_size * 800 // TRAIN_BATCH], [1e-3, 1e-4, 1e-5]) elif schedule == "new_gentle": base = tf.train.piecewise_constant( global_step, [train_size * 500 // TRAIN_BATCH, train_size * 800 // TRAIN_BATCH], [0.5e-3, 1e-4, 1e-5]) elif schedule == "fast": base = tf.train.piecewise_constant( global_step, [train_size * 800 // TRAIN_BATCH], [1e-2, 1e-5]) else: raise ValueError("Invalid schedule: " + schedule) if warmup_steps == 0: return base else: return tf.minimum(base * tf.to_float(global_step) / warmup_steps, base) VAEOutputs = collections.namedtuple( "VAEOutputs", "log_p_x_z, elbo, sample_means, recon_means, klqp, total_klqp, post_z, prior_z") AISOutputs = collections.namedtuple( "AISOutputs", "log_p, p_accept, z_fin, recon" ) def MakeVAE(images, recognition, prior, noise, beta, num_samples, min_kl): z, log_q_z = recognition(images) _, log_p_z = prior(z) _, log_p_x_z = noise(images, z) post_z = z log_q_z = [tf.reduce_mean(layer_log_q_z) for layer_log_q_z in log_q_z] log_p_z = [tf.reduce_mean(layer_log_p_z) for layer_log_p_z in log_p_z] log_p_x_z = tf.reduce_mean(log_p_x_z) klqp = [layer_log_q_z - layer_log_p_z for layer_log_q_z, layer_log_p_z in zip(log_q_z, log_p_z)] klqp = [tf.maximum(min_kl, layer_klqp) for layer_klqp in klqp] total_klqp = tf.add_n(klqp) elbo = log_p_x_z - beta * total_klqp recon_means, _ = noise(None, z) z, _ = prior(batch=num_samples) sample_means, _ = noise(None, z) return VAEOutputs( log_p_x_z=log_p_x_z, elbo=elbo, sample_means=sample_means, recon_means=recon_means, klqp=klqp, total_klqp=total_klqp, post_z=post_z, prior_z=z) DLGMOutputs = collections.namedtuple( "DLGMOutputs", "elbo, sample_means, mcmc_log_p, recon_means, p_accept, post_z, post_z_chain, q_z, xentpq" ) @gin.configurable("dlgm") class DLGM(object): def __init__(self, z_dims=64, beta=1.0, beta_steps=0, step_size=0.2, num_leapfrog_steps=5, num_hmc_steps=2, use_neutra=True, condition_bijector=False, bijector_type="iaf", encoder_type="dense", q_loss_type="klqp", min_kl=0.0, symm_factor=0.5, save_chain_state=False, chain_warmup_epochs=5, use_q_z_for_gen=False, no_gen_train_steps=0, dataset=None, use_bijector_for_ais=False, prior_type="simple", adapt_step_size=False, step_size_gain=1e-3, use_q_z_for_ais=False, affine_rank=1, step_size_warmup=0): self.train_size = dataset.train_size self._use_q_z_for_ais = use_q_z_for_ais if dataset.name == "mnist": output_shape = [28, 28, 1] elif dataset.name == "cifar10": output_shape = [32, 32, 3] self._z_dims = z_dims self._use_bijector_for_ais = use_bijector_for_ais if beta_steps > 0: frac = tf.to_float( tf.train.get_or_create_global_step()) / tf.to_float(beta_steps) frac = tf.minimum(frac, 1.0) self._beta = frac * beta else: self._beta = tf.constant(beta) self._min_kl = tf.to_float(min_kl) self._use_neutra = use_neutra self._num_leapfrog_steps = num_leapfrog_steps self._num_hmc_steps = num_hmc_steps self._q_loss_type = q_loss_type self._symm_factor = symm_factor self._save_chain_state = save_chain_state self._chain_warmup_epochs = chain_warmup_epochs self._use_q_z_for_gen = use_q_z_for_gen self._no_gen_train_steps = no_gen_train_steps self._step_size_gain = step_size_gain self._adapt_step_size = adapt_step_size self._step_size_warmup = step_size_warmup self._init_step_size = step_size if self._adapt_step_size: self._step_size = tf.get_variable("step_size", initializer=step_size) else: self._step_size = tf.constant(step_size) if self._save_chain_state: self._chain_state = tf.get_variable( "train_chain_state", [self.train_size, z_dims], trainable=False) if bijector_type == "affine": # TriL + shift num_outputs = (z_dims * (z_dims + 1)) // 2 + z_dims elif bijector_type == "affine_lr": num_outputs = z_dims * 2 + z_dims * affine_rank elif condition_bijector and bijector_type not in ["conv_shift_scale", "shift_scale"]: num_outputs = 3 * z_dims else: num_outputs = 2 * z_dims if encoder_type == "hier_conv": #assert dataset.name == "cifar10" #self._encoder = ConvHierEncoder("encoder") #self._prior_posterior = ConvHierPriorPost("prior_post") #self._decoder = lambda z: self._prior_posterior(z=z)[2] #self._prior = lambda z=None, batch=None: self._prior_posterior(z=z, batch=batch)[:2] #self._recog = lambda images, z=None: self._prior_posterior(images=images, z=z, encoder=self._encoder)[:2] pass else: if encoder_type == "dense": self._encoder = DenseEncoder( "encoder", num_outputs=num_outputs, activation=tf.nn.softplus) self._decoder = DenseDecoder( "decoder", output_shape=output_shape, activation=tf.nn.softplus) elif encoder_type == "conv": self._encoder = ConvEncoder("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder("decoder", output_shape=output_shape) conv_z_shape = [4, 4, self._z_dims] elif encoder_type == "conv2": self._encoder = ConvEncoder2("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder2("decoder", output_shape=output_shape) conv_z_shape = [4, 4, self._z_dims] elif encoder_type == "conv3": self._encoder = ConvEncoder3("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder3("decoder", output_shape=output_shape) conv_z_shape = [8, 8, self._z_dims] elif encoder_type == "conv4": self._encoder = ConvEncoder4("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder4("decoder", output_shape=output_shape) conv_z_shape = [8, 8, self._z_dims] if prior_type == "simple": self._prior = SimplePrior("prior", num_dims=self._z_dims) elif prior_type == "simple_3d": self._prior = Simple3DPrior("prior", shape=conv_z_shape) if bijector_type == "iaf": recog = DenseRecognitionIAF( "recog", encoder=self._encoder, condition_iaf=condition_bijector) elif bijector_type == "rnvp": recog = DenseRecognitionRNVP( "recog", encoder=self._encoder, condition_bijector=condition_bijector) elif bijector_type == "shift_scale": recog = DenseRecognition( "recog", encoder=self._encoder) elif bijector_type == "conv_shift_scale": recog = ConvShiftScale("recog", encoder=self._encoder) elif bijector_type == "affine": recog = DenseRecognitionAffine("recog", encoder=self._encoder, z_dims=z_dims) elif bijector_type == "affine_lr": recog = DenseRecognitionAffineLR("recog", encoder=self._encoder, z_dims=z_dims, rank=affine_rank) elif bijector_type == "conv_iaf": recog = ConvIAF("recog", encoder=self._encoder, condition_iaf=condition_bijector) self._recog = recog if dataset.name == "mnist": self._noise = DenseMNISTNoise("noise", decoder=self._decoder) else: self._noise = DenseCIFAR10TNoise("noise", decoder=self._decoder) def AdjustedStepSize(self): if self._step_size_warmup > 0: global_step = tf.train.get_or_create_global_step() max_step = self._init_step_size * tf.to_float( global_step) / self._step_size_warmup return tf.where(global_step > self._step_size_warmup, self._step_size, tf.minimum(max_step, self._step_size)) else: return self._step_size def RecogVars(self): return self._encoder.variables + self._recog.variables def GenVars(self): return ( self._prior.variables + self._decoder.variables + self._noise.variables) def MakeDLGM(self, images, other_z_init=None, use_other_z_init=None, num_samples=64): z, log_q_z, bijector = self._recog(images) _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) post_z = z q_z = z if use_other_z_init is not None: z_init = [tf.cond(use_other_z_init, lambda: tf.identity(other_layer_z), lambda: tf.identity(layer_z)) for other_layer_z, layer_z in zip(z, other_z_init)] z_init = z log_q_z = [tf.reduce_mean(layer_log_q_z) for layer_log_q_z in log_q_z] log_p_z = [tf.reduce_mean(layer_log_p_z) for layer_log_p_z in log_p_z] log_p_x_z = tf.reduce_mean(log_p_x_z) klqp = [layer_log_q_z - layer_log_p_z for layer_log_q_z, layer_log_p_z in zip(log_q_z, log_p_z)] klqp = [tf.maximum(self._min_kl, layer_klqp) for layer_klqp in klqp] total_klqp = tf.add_n(klqp) elbo = log_p_x_z - self._beta * total_klqp def TargetLogProbFn(*z): for post_z_e, z_e in zip(post_z, z): tf.logging.info("Shape here: %s %s", post_z_e.shape, z_e.shape) z_e.set_shape(post_z_e.shape) _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) return tf.add_n(log_p_z) + log_p_x_z kernel = tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=TargetLogProbFn, step_size=self.AdjustedStepSize(), num_leapfrog_steps=self._num_leapfrog_steps) if self._use_neutra: kernel = tfp.mcmc.TransformedTransitionKernel( inner_kernel=kernel, bijector=bijector) states, kernel_results = tfp.mcmc.sample_chain( num_results=self._num_hmc_steps, current_state=z, kernel=kernel) z = [tf.stop_gradient(s[-1, Ellipsis]) for s in states] post_z = z _, log_q_z, _ = self._recog(images, z=z) xentpq = -tf.add_n([tf.reduce_mean(layer_log_q_z) for layer_log_q_z in log_q_z]) if self._use_q_z_for_gen: z = q_z recon_means, _ = self._noise(None, z) _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) mcmc_log_p = tf.reduce_mean(tf.add_n(log_p_z) + log_p_x_z) if self._use_neutra: log_accept_ratio = kernel_results.inner_results.log_accept_ratio else: log_accept_ratio = kernel_results.log_accept_ratio p_accept = tf.reduce_mean(tf.exp(tf.minimum(log_accept_ratio, 0.))) z, _ = self._prior(batch=num_samples) sample_means, _ = self._noise(None, z) return DLGMOutputs( elbo=elbo, sample_means=sample_means, mcmc_log_p=mcmc_log_p, recon_means=recon_means, p_accept=p_accept, post_z=post_z, post_z_chain=states, q_z=z_init, xentpq=xentpq) def GetPosterior(self, images): outputs = self.MakeDLGM(images) return outputs.post_z def TrainOp(self, data_idx, images): global_step = tf.train.get_or_create_global_step() learning_rate = LearningRate(self.train_size, global_step) if self._save_chain_state: other_z_init = tf.gather(self._chain_state, data_idx) use_other_z_init = ( global_step > self._chain_warmup_epochs * self.train_size // TRAIN_BATCH) else: other_z_init = None use_other_z_init = None outputs = self.MakeDLGM( images, other_z_init=other_z_init, use_other_z_init=use_other_z_init) opt = tf.train.AdamOptimizer(learning_rate=learning_rate) #gen_opt = tf.train.AdamOptimizer(learning_rate=learning_rate) utils.LogAndSummarizeMetrics({ "learning_rate": learning_rate, "elbo": outputs.elbo, "mcmc_log_p": outputs.mcmc_log_p, "mcmc_p_accept": outputs.p_accept, "step_size": self.AdjustedStepSize(), }, False) tf.summary.image( "sample_means", utils.StitchImages(outputs.sample_means)) if self._save_chain_state: with tf.control_dependencies([outputs.post_z]): chain_state_update_op = tf.scatter_update(self._chain_state, data_idx, outputs.post_z) else: chain_state_update_op = tf.no_op() if self._adapt_step_size: new_step_size = self._step_size + self._step_size_gain * (outputs.p_accept - 0.651) new_step_size = tf.clip_by_value(new_step_size, 1e-3, 0.5) step_size_op = self._step_size.assign( tf.where(global_step > self._step_size_warmup, new_step_size, self._step_size)) else: step_size_op = tf.no_op() with tf.name_scope("recog_train"): if self._q_loss_type == "klqp": loss = -outputs.elbo elif self._q_loss_type == "symm": loss = ( self._symm_factor * -outputs.elbo + (1.0 - self._symm_factor) * outputs.xentpq) elif self._q_loss_type == "klpq": loss = outputs.xentpq if self._save_chain_state: # Not super efficient... loss = tf.cond(use_other_z_init, lambda: tf.identity(loss), lambda: tf.identity(-outputs.elbo)) recog_train_op = tf.contrib.training.create_train_op( loss, opt, summarize_gradients=True, variables_to_train=self.RecogVars(), transform_grads_fn=utils.ProcessGradients) with tf.name_scope("gen_train"): gen_loss = tf.cond(global_step < self._no_gen_train_steps, lambda: -outputs.elbo, lambda: -outputs.mcmc_log_p) gen_train_op = tf.contrib.training.create_train_op( gen_loss, opt, None, summarize_gradients=True, variables_to_train=self.GenVars(), transform_grads_fn=utils.ProcessGradients) return tf.group(recog_train_op, gen_train_op, chain_state_update_op, step_size_op) def EvalOp(self, data_idx, images): outputs = self.MakeDLGM(images) tf.summary.image("data", utils.StitchImages(images[:64])) tf.summary.image( "recon_means", utils.StitchImages(outputs.recon_means[:64])) return utils.LogAndSummarizeMetrics({ "elbo": outputs.elbo, "xentpq": outputs.xentpq, "mcmc_log_p": outputs.mcmc_log_p, "mcmc_p_accept": outputs.p_accept, }) def AIS(self, images, num_chains): def ProposalLogProbFn(*z): if self._use_q_z_for_ais: _, log_p_z, _ = self._recog(images, z=z) else: _, log_p_z = self._prior(z) return tf.add_n(log_p_z) def TargetLogProbFn(*z): _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) return tf.add_n(log_p_z) + log_p_x_z images = tf.tile(images, [num_chains, 1, 1, 1]) if self._use_q_z_for_ais: z_init, _, _ = self._recog(images) else: z_init, _ = self._prior(batch=tf.shape(images)[0]) if self._use_bijector_for_ais: _, _, bijector = self._recog(images) else: bijector = None ais_outputs = utils.AIS(ProposalLogProbFn, TargetLogProbFn, z_init, bijector=bijector) recons, _ = self._noise(None, ais_outputs.z_fin) tf.summary.image("data", utils.StitchImages(images[:64])) tf.summary.image("recon_means", utils.StitchImages(recons[:64])) tf.summary.scalar("p_accept", tf.reduce_mean(ais_outputs.p_accept)) return AISOutputs( log_p=tf.reduce_logsumexp( tf.reshape(ais_outputs.log_p, [num_chains, -1]) - tf.log( tf.to_float(num_chains)), 0), p_accept=ais_outputs.p_accept, recon=recons, z_fin=ais_outputs.z_fin) @gin.configurable("vae") class VAE(object): def __init__(self, z_dims=64, condition_bijector=False, bijector_type="iaf", encoder_type="dense", beta=1.0, beta_steps=0, min_kl=0, use_q_z_for_ais=False, dataset=None, prior_type="simple", affine_rank=1): self.train_size = dataset.train_size if dataset.name == "mnist": output_shape = [28, 28, 1] elif dataset.name == "cifar10": output_shape = [32, 32, 3] self._z_dims = z_dims self._beta = beta self._use_q_z_for_ais = use_q_z_for_ais if beta_steps > 0: frac = tf.to_float( tf.train.get_or_create_global_step()) / tf.to_float(beta_steps) frac = tf.minimum(frac, 1.0) self._beta = frac * beta else: self._beta = tf.constant(beta) self._min_kl = tf.to_float(min_kl) if bijector_type == "affine": # TriL + shift num_outputs = (z_dims * (z_dims + 1)) // 2 + z_dims elif bijector_type == "affine_lr": num_outputs = z_dims * 2 + z_dims * affine_rank elif condition_bijector and bijector_type not in ["conv_shift_scale", "shift_scale"]: num_outputs = 3 * z_dims else: num_outputs = 2 * z_dims if encoder_type == "hier_conv": assert dataset.name == "cifar10" self._encoder = ConvHierEncoder("encoder") self._prior_posterior = ConvHierPriorPost("prior_post") self._decoder = lambda z: self._prior_posterior(z=z)[2] self._prior = lambda z=None, batch=None: self._prior_posterior(z=z, batch=batch)[:2] self._recog = lambda images, z=None: self._prior_posterior(images=images, z=z, encoder=self._encoder)[:2] else: if encoder_type == "dense": self._encoder = DenseEncoder( "encoder", num_outputs=num_outputs, activation=tf.nn.softplus) self._decoder = DenseDecoder( "decoder", output_shape=output_shape, activation=tf.nn.softplus) elif encoder_type == "conv": self._encoder = ConvEncoder("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder("decoder", output_shape=output_shape) conv_z_shape = [4, 4, self._z_dims] elif encoder_type == "conv2": self._encoder = ConvEncoder2("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder2("decoder", output_shape=output_shape) conv_z_shape = [4, 4, self._z_dims] elif encoder_type == "conv3": self._encoder = ConvEncoder3("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder3("decoder", output_shape=output_shape) conv_z_shape = [8, 8, self._z_dims] elif encoder_type == "conv4": self._encoder = ConvEncoder4("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder4("decoder", output_shape=output_shape) conv_z_shape = [8, 8, self._z_dims] if prior_type == "simple": self._prior = SimplePrior("prior", num_dims=self._z_dims) elif prior_type == "simple_3d": self._prior = Simple3DPrior("prior", shape=conv_z_shape) if bijector_type == "iaf": recog = DenseRecognitionIAF( "recog", encoder=self._encoder, condition_iaf=condition_bijector) elif bijector_type == "rnvp": recog = DenseRecognitionRNVP( "recog", encoder=self._encoder, condition_bijector=condition_bijector) elif bijector_type == "shift_scale": recog = DenseRecognition("recog", encoder=self._encoder) elif bijector_type == "conv_shift_scale": recog = ConvShiftScale("recog", encoder=self._encoder) elif bijector_type == "affine": recog = DenseRecognitionAffine("recog", encoder=self._encoder, z_dims=z_dims) elif bijector_type == "conv_iaf": recog = ConvIAF("recog", encoder=self._encoder, condition_iaf=condition_bijector) elif bijector_type == "affine_lr": recog = DenseRecognitionAffineLR("recog", encoder=self._encoder, z_dims=z_dims, rank=affine_rank) # Drop the bijector return. self._recog = lambda *args, **kwargs: recog(*args, **kwargs)[:2] if dataset.name == "mnist": self._noise = DenseMNISTNoise("noise", decoder=self._decoder) else: self._noise = DenseCIFAR10TNoise("noise", decoder=self._decoder) def MakeVAE(self, images, beta_override=None, num_samples=64): if beta_override is not None: beta = beta_override else: beta = self._beta return MakeVAE(images, self._recog, self._prior, self._noise, beta, num_samples, self._min_kl) def TrainOp(self, data_idx, images): outputs = self.MakeVAE(images) global_step = tf.train.get_or_create_global_step() learning_rate = LearningRate(self.train_size, global_step) opt = tf.train.AdamOptimizer(learning_rate=learning_rate) metrics = { "learning_rate": learning_rate, "log_p_x_z": outputs.log_p_x_z, "elbo": outputs.elbo, "klqp": outputs.total_klqp, "beta": self._beta, } for i, layer_klqp in enumerate(outputs.klqp): metrics["klqp_%d"%i] = layer_klqp utils.LogAndSummarizeMetrics(metrics, False) tf.summary.image( "sample_means", utils.StitchImages(outputs.sample_means)) return tf.contrib.training.create_train_op( -outputs.elbo, opt, summarize_gradients=True, transform_grads_fn=utils.ProcessGradients) def GetPosterior(self, images): outputs = self.MakeVAE(images) return outputs.post_z def EvalOp(self, data_idx, images): outputs = self.MakeVAE(images, 1.0) tf.summary.image("data", utils.StitchImages(images[:64])) tf.summary.image( "recon_means", utils.StitchImages(outputs.recon_means[:64])) metrics = { "elbo": outputs.elbo, "klqp": outputs.total_klqp, } for i, layer_klqp in enumerate(outputs.klqp): metrics["klqp_%d"%i] = layer_klqp return utils.LogAndSummarizeMetrics(metrics) def AIS(self, images, num_chains): outputs = self.MakeVAE(images) def ProposalLogProbFn(*z): if self._use_q_z_for_ais: _, log_p_z = self._recog(images, z=z) else: _, log_p_z = self._prior(z) return tf.add_n(log_p_z) def TargetLogProbFn(*z): _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) return tf.add_n(log_p_z) + log_p_x_z images = tf.tile(images, [num_chains, 1, 1, 1]) if self._use_q_z_for_ais: z_init, _ = self._recog(images) else: z_init, _ = self._prior(batch=tf.shape(images)[0]) ais_outputs = utils.AIS(ProposalLogProbFn, TargetLogProbFn, z_init) recons, _ = self._noise(None, ais_outputs.z_fin) tf.summary.image("data", utils.StitchImages(images[:64])) tf.summary.image("recon_means", utils.StitchImages(recons[:64])) tf.summary.scalar("p_accept", tf.reduce_mean(ais_outputs.p_accept)) return AISOutputs( log_p=tf.reduce_logsumexp( tf.reshape(ais_outputs.log_p, [num_chains, -1]) - tf.log( tf.to_float(num_chains)), 0), p_accept=ais_outputs.p_accept, recon=recons, z_fin=ais_outputs.z_fin) @gin.configurable("train") def Train(model, dataset, train_dir, master, epochs=600, polyak_averaging=0.0, warmstart_ckpt=""): data_idx, images = dataset.TrainBatch(TRAIN_BATCH, epochs) train_op = model.TrainOp(data_idx, images) if polyak_averaging > 0.0: tf.logging.info("Using polyak averaging") ema = tf.train.ExponentialMovingAverage(decay=polyak_averaging) with tf.control_dependencies([train_op]): train_op = ema.apply() utils.LogAndSaveHParams() tf.Session.reset(master) if warmstart_ckpt: tf.init_from_checkpoint(warmstart_ckpt, {"/": "/"}) hooks = [ tf.train.StopAtStepHook(last_step=dataset.train_size * epochs // TRAIN_BATCH), tf.train.LoggingTensorHook(utils.GetLoggingOutputs(), every_n_secs=60) ] tf.contrib.training.train( train_op, logdir=train_dir, master=master, hooks=hooks, save_checkpoint_secs=120, save_summaries_steps=60) def Eval(model, dataset, train_dir, eval_dir, master, use_polyak_averaging=False, max_number_of_evaluations=None): data_idx, images = dataset.TestBatch(TEST_BATCH) eval_op = model.EvalOp(data_idx, images) utils.LogAndSaveHParams() tf.train.get_or_create_global_step() if use_polyak_averaging: tf.logging.info("Using polyak averaging") ema = tf.train.ExponentialMovingAverage(decay=0.99) saver = tf.train.Saver(ema.variables_to_restore()) else: saver = tf.train.Saver() scaffold = tf.train.Scaffold(saver=saver) tf.Session.reset(master) hooks = [ # Just for logging. tf.contrib.training.StopAfterNEvalsHook(dataset.test_size // TEST_BATCH), tf.contrib.training.SummaryAtEndHook(eval_dir), tf.train.LoggingTensorHook(utils.GetLoggingOutputs(), at_end=True) ] tf.contrib.training.evaluate_repeatedly( train_dir, eval_ops=eval_op, hooks=hooks, # LOL... eval_interval_secs=120, max_number_of_evaluations=max_number_of_evaluations, master=master, scaffold=scaffold) def AISEvalShard(shard, master, num_workers, num_chains, dataset, use_polyak_averaging, writer, train_dir, model_fn, batch): tf.logging.info("Thread started") model = model_fn() tf.logging.info("Built model") shard_idx = tf.placeholder(tf.int64, []) tf.logging.info("built data") data_iterator = dataset.AISIterator(batch, shard_idx, num_workers) images, _ = data_iterator.get_next() tf.logging.info("Built mA") ais_outputs = model.AIS(images, num_chains) log_p = ais_outputs.log_p p_accept = ais_outputs.p_accept tf.logging.info("Built mB") if shard == 1: utils.LogAndSaveHParams() summary_op = tf.summary.merge_all() global_step = tf.train.get_or_create_global_step() if use_polyak_averaging: tf.logging.info("Using polyak averaging") ema = tf.train.ExponentialMovingAverage(decay=0.99) saver = tf.train.Saver(ema.variables_to_restore()) else: saver = tf.train.Saver() tf.logging.info("Built mC") global_step_val = [] tf.logging.info("Starting shard %d, %s", shard, master) #with tf.MonitoredSession( # tf.train.ChiefSessionCreator( # master=master, # checkpoint_dir=train_dir)) as sess: while True: try: tf.Session.reset(master) with tf.Session(master) as sess: all_log_p = np.zeros([0]) saver.restore(sess, tf.train.latest_checkpoint(train_dir)) sess.run(data_iterator.initializer, {shard_idx: shard}) try: step_num = 0 while True: fetch = { "log_p": log_p, "global_step": global_step, "p_accept": p_accept } if shard == 0: fetch["summary"] = summary_op tf.logging.info("Shard %d step %d started.", shard, step_num) fetch = sess.run(fetch) tf.logging.info("Shard %d step %d done.", shard, step_num) tf.logging.info("Shard %d log_p %.2f, p_accept: %.2f", shard, np.mean(fetch["log_p"]), np.mean(fetch["p_accept"])) all_log_p = np.hstack([all_log_p, fetch["log_p"]]) if shard == 0 and step_num == 0: global_step_val.append(fetch["global_step"]) writer.add_summary(fetch["summary"], global_step_val[0]) step_num += 1 except tf.errors.OutOfRangeError: tf.logging.info("Shard %d done.", shard) pass return all_log_p except tf.errors.AbortedError: pass def AISEval(model_fn, dataset, train_dir, eval_dir, worker_master_pattern, num_workers, num_chains, use_polyak_averaging=False): tf.reset_default_graph() log_p_ph = tf.placeholder(tf.float32, [None]) log_p_summary = tf.summary.scalar("log_p", tf.reduce_mean(log_p_ph)) writer = tf.summary.FileWriter(eval_dir) with futures.ThreadPoolExecutor(max_workers=num_workers) as executor: results = [] for shard in range(num_workers): tf.logging.info("Submitting shard %d", shard) master = worker_master_pattern.format(shard) results.append( executor.submit(AISEvalShard, shard, master, num_workers, num_chains, dataset, use_polyak_averaging, writer, train_dir, model_fn, AIS_BATCH)) all_log_p = np.zeros([0]) for result in results: log_p = result.result() all_log_p = np.hstack([all_log_p, log_p]) log_p = np.mean(all_log_p) tf.logging.info("Log P: %.2f", log_p) with tf.Session() as sess: writer.add_summary( sess.run(log_p_summary, {log_p_ph: all_log_p}), 0) writer.flush() return log_p MODEL_TO_CLASS = {"vae": VAE, "dlgm": DLGM} def main(argv): del argv # Unused. utils.BindHParams(FLAGS.hparams) if FLAGS.data_type == "mnist": dataset = utils.MNISTDataset(FLAGS.mnist_data_dir, FLAGS.test_is_valid) elif FLAGS.data_type == "fashion_mnist": dataset = utils.MNISTDataset(FLAGS.fashion_mnist_data_dir, FLAGS.test_is_valid) elif FLAGS.data_type == "cifar10": dataset = utils.CIFAR10Dataset(FLAGS.cifar10_data_dir, FLAGS.test_is_valid) elif FLAGS.data_type == "fake": dataset = utils.FakeMNISTDataset() if FLAGS.mode == "train": model = MODEL_TO_CLASS[FLAGS.model](dataset=dataset) Train(model, dataset, FLAGS.train_dir, FLAGS.master, polyak_averaging=FLAGS.polyak_averaging) elif FLAGS.mode == "eval": model = MODEL_TO_CLASS[FLAGS.model](dataset=dataset) Eval(model, dataset, FLAGS.train_dir, FLAGS.eval_dir, FLAGS.master, use_polyak_averaging=FLAGS.polyak_averaging > 0.0) elif FLAGS.mode == "ais_eval": replica_log_p = [] if FLAGS.ais_replicas: replicas = FLAGS.ais_replicas else: replicas = list(range(FLAGS.ais_num_replicas)) for i in replicas: train_dir = FLAGS.train_dir.format(i) eval_dir = FLAGS.eval_dir.format(i) model_fn = lambda: MODEL_TO_CLASS[FLAGS.model](dataset=dataset) log_p = AISEval(model_fn, dataset, train_dir, eval_dir, FLAGS.ais_worker_pattern, FLAGS.ais_num_workers, FLAGS.ais_num_chains, use_polyak_averaging=FLAGS.polyak_averaging > 0.0) replica_log_p.append(log_p) log_p = np.mean(replica_log_p) std_log_p = np.std(replica_log_p) tf.logging.info("Log P: %.2f +- %.2f", log_p, std_log_p / np.sqrt(len(replicas))) tf.logging.info("All log_p: %s", replica_log_p) elif FLAGS.mode == "ais_eval2": if FLAGS.ais_replicas: replicas = FLAGS.ais_replicas else: replicas = list(range(FLAGS.ais_num_replicas)) for i in replicas: tf.reset_default_graph() train_dir = FLAGS.train_dir.format(i) eval_dir = FLAGS.eval_dir.format(i) model_fn = lambda: MODEL_TO_CLASS[FLAGS.model](dataset=dataset) sentinel_filename = os.path.join(eval_dir, "ais_shard_%d_done" % FLAGS.ais_shard) if tf.gfile.Exists(sentinel_filename): continue batch = FLAGS.ais_batch_size assert (dataset.test_size // FLAGS.ais_num_workers) % batch == 0 writer = tf.summary.FileWriter(eval_dir) log_p = AISEvalShard(FLAGS.ais_shard, "", FLAGS.ais_num_workers, FLAGS.ais_num_chains, dataset, FLAGS.polyak_averaging > 0.0, writer, train_dir, model_fn, batch) tf.gfile.MakeDirs(eval_dir) with tf.gfile.Open(os.path.join(eval_dir, "ais_shard_%d" % FLAGS.ais_shard), "w") as f: np.savetxt(f, log_p) with tf.gfile.Open(sentinel_filename, "w") as f: f.write("done") if __name__ == "__main__": flags.DEFINE_string("mnist_data_dir", "", "") flags.DEFINE_string("fashion_mnist_data_dir", "", "") flags.DEFINE_string("cifar10_data_dir", "", "") flags.DEFINE_string("data_type", "mnist", "") flags.DEFINE_enum("mode", "train", ["train", "eval", "ais_eval", "ais_eval2"], "") flags.DEFINE_enum("model", "vae", list(MODEL_TO_CLASS.keys()), "") flags.DEFINE_string("train_dir", "/tmp/vae/train", "") flags.DEFINE_string("eval_dir", "/tmp/vae/eval", "") flags.DEFINE_string("master", "", "") flags.DEFINE_string("ais_worker_pattern", "", "") flags.DEFINE_integer("ais_shard", 0, "") flags.DEFINE_integer("ais_num_workers", 1, "") flags.DEFINE_integer("ais_num_chains", 1, "") flags.DEFINE_integer("ais_num_replicas", 1, "") flags.DEFINE_list("ais_replicas", "", "Manual listing of replicas") flags.DEFINE_integer("ais_batch_size", 25, "") flags.DEFINE_float("polyak_averaging", 0.0, "") flags.DEFINE_boolean("test_is_valid", False, "") flags.DEFINE(utils.YAMLDictParser(), "hparams", "", "") app.run(main)
35.057241
124
0.651744
23,491
0.327826
0
0
56,082
0.782645
0
0
8,428
0.117616
48e948236c66512a216844a7ad0e87904606f55a
2,034
py
Python
flask_oauth2_login/base.py
BasicBeluga/flask-oauth2-login
5a12ec70bcea72b2de079c072213be54f29b70b7
[ "MIT" ]
42
2015-01-13T08:51:04.000Z
2022-01-14T04:15:31.000Z
flask_oauth2_login/base.py
BasicBeluga/flask-oauth2-login
5a12ec70bcea72b2de079c072213be54f29b70b7
[ "MIT" ]
5
2015-04-29T19:31:11.000Z
2020-03-28T19:37:43.000Z
flask_oauth2_login/base.py
BasicBeluga/flask-oauth2-login
5a12ec70bcea72b2de079c072213be54f29b70b7
[ "MIT" ]
28
2015-06-16T20:30:40.000Z
2021-04-08T15:33:10.000Z
from flask import request, session, url_for from requests_oauthlib import OAuth2Session class OAuth2Login(object): def __init__(self, app=None): if app: self.init_app(app) self.app = app def get_config(self, app, name, default_value=None): return app.config.get(self.config_prefix + name, default_value) def init_app(self, app): self.client_id = self.get_config(app, "CLIENT_ID") self.client_secret = self.get_config(app, "CLIENT_SECRET") self.scope = self.get_config(app, "SCOPE", self.default_scope).split(",") self.redirect_scheme = self.get_config(app, "REDIRECT_SCHEME", "https") app.add_url_rule( self.get_config(app, "REDIRECT_PATH", self.default_redirect_path), self.redirect_endpoint, self.login, ) @property def redirect_uri(self): return url_for( self.redirect_endpoint, _external=True, _scheme=self.redirect_scheme, ) def session(self): return OAuth2Session( self.client_id, redirect_uri=self.redirect_uri, scope=self.scope, ) def authorization_url(self, **kwargs): sess = self.session() auth_url, state = sess.authorization_url(self.auth_url, **kwargs) session[self.state_session_key] = state return auth_url def login(self): sess = self.session() # Get token try: sess.fetch_token( self.token_url, code=request.args["code"], client_secret=self.client_secret, ) # TODO: Check state except Warning: # Ignore warnings pass except Exception as e: return self.login_failure_func(e) # Get profile try: profile = self.get_profile(sess) except Exception as e: return self.login_failure_func(e) return self.login_success_func(sess.token, profile) def login_success(self, f): self.login_success_func = f return f def login_failure(self, f): self.login_failure_func = f return f def get_profile(self, sess): raise NotImplementedError
24.214286
77
0.675025
1,942
0.954769
0
0
149
0.073255
0
0
141
0.069322
48ea7b107947ea8206fa8a2bda41ca826b065a52
7,530
py
Python
segmentation/utils/transforms.py
voldemortX/DST-CBC
e392313c129f6814c1a1c0f20c0abbd5505c3d7d
[ "BSD-3-Clause" ]
103
2020-04-21T01:25:16.000Z
2022-03-24T07:45:45.000Z
segmentation/utils/transforms.py
voldemortX/DST-CBC
e392313c129f6814c1a1c0f20c0abbd5505c3d7d
[ "BSD-3-Clause" ]
13
2021-03-24T06:52:21.000Z
2022-01-18T08:17:50.000Z
segmentation/utils/transforms.py
voldemortX/DST-CBC
e392313c129f6814c1a1c0f20c0abbd5505c3d7d
[ "BSD-3-Clause" ]
12
2020-04-29T02:33:11.000Z
2021-12-28T07:59:20.000Z
# Mostly copied and modified from torch/vision/references/segmentation to support unlabeled data # Copied functions from fmassa/vision-1 to support multi-dimensional masks loaded from numpy ndarray import numpy as np from PIL import Image import random import torch import utils.functional as F # For 2/3 dimensional tensors only def get_tensor_image_size(img): if img.dim() == 2: h, w = img.size() else: h = img.size()[1] w = img.size()[2] return h, w class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target, *args): for t in self.transforms: image, target = t(image, target) return (image, target, *args) class Resize(object): def __init__(self, size_image, size_label): self.size_image = size_image self.size_label = size_label def __call__(self, image, target): image = image if type(image) == str else F.resize(image, self.size_image, interpolation=Image.LINEAR) target = target if type(target) == str else F.resize(target, self.size_label, interpolation=Image.NEAREST) return image, target # Pad image with zeros, yet pad target with 255 (ignore label) on bottom & right if # given a bigger desired size (or else nothing is done at all) class ZeroPad(object): def __init__(self, size): self.h, self.w = size @staticmethod def zero_pad(image, target, h, w): oh, ow = get_tensor_image_size(image) pad_h = h - oh if oh < h else 0 pad_w = w - ow if ow < w else 0 image = F.pad(image, (0, 0, pad_w, pad_h), fill=0) target = target if type(target) == str else F.pad(target, (0, 0, pad_w, pad_h), fill=255) return image, target def __call__(self, image, target): return self.zero_pad(image, target, self.h, self.w) class RandomResize(object): def __init__(self, min_size, max_size=None): self.min_size = min_size if max_size is None: max_size = min_size self.max_size = max_size def __call__(self, image, target): min_h, min_w = self.min_size max_h, max_w = self.max_size h = random.randint(min_h, max_h) w = random.randint(min_w, max_w) image = F.resize(image, (h, w), interpolation=Image.LINEAR) target = target if type(target) == str else F.resize(target, (h, w), interpolation=Image.NEAREST) return image, target class RandomScale(object): def __init__(self, min_scale, max_scale=None): self.min_scale = min_scale if max_scale is None: max_scale = min_scale self.max_scale = max_scale def __call__(self, image, target): scale = random.uniform(self.min_scale, self.max_scale) h, w = get_tensor_image_size(image) h = int(scale * h) w = int(scale * w) image = F.resize(image, (h, w), interpolation=Image.LINEAR) target = target if type(target) == str else F.resize(target, (h, w), interpolation=Image.NEAREST) return image, target class RandomCrop(object): def __init__(self, size): self.size = size @staticmethod def get_params(img, output_size): h, w = get_tensor_image_size(img) th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th) j = random.randint(0, w - tw) return i, j, th, tw def __call__(self, image, target): # Pad if needed ih, iw = get_tensor_image_size(image) if ih < self.size[0] or iw < self.size[1]: image, target = ZeroPad.zero_pad(image, target, max(self.size[0], ih), max(self.size[1], iw)) i, j, h, w = self.get_params(image, self.size) image = F.crop(image, i, j, h, w) target = target if type(target) == str else F.crop(target, i, j, h, w) return image, target class RandomHorizontalFlip(object): def __init__(self, flip_prob): self.flip_prob = flip_prob def __call__(self, image, target): t = random.random() if t < self.flip_prob: image = F.hflip(image) target = target if (type(target) == str or t >= self.flip_prob) else F.hflip(target) return image, target class ToTensor(object): def __init__(self, keep_scale=False, reverse_channels=False): # keep_scale = True => Images or whatever are not divided by 255 # reverse_channels = True => RGB images are changed to BGR(the default behavior of openCV & Caffe, # let's wish them all go to heaven, # for they wasted me days!) self.keep_scale = keep_scale self.reverse_channels = reverse_channels def __call__(self, image, target): image = image if type(image) == str else self._pil_to_tensor(image) target = target if type(target) == str else self.label_to_tensor(target) return image, target @staticmethod def label_to_tensor(pic): # 3 dimensional arrays or normal segmentation masks if isinstance(pic, np.ndarray): return torch.as_tensor(pic.transpose((2, 0, 1)), dtype=torch.float32) else: return torch.as_tensor(np.asarray(pic).copy(), dtype=torch.int64) def _pil_to_tensor(self, pic): # Convert a PIL Image to tensor(a direct copy) if pic.mode == 'I': img = torch.from_numpy(np.array(pic, np.int32, copy=False)) elif pic.mode == 'I;16': img = torch.from_numpy(np.array(pic, np.int16, copy=False)) elif pic.mode == 'F': img = torch.from_numpy(np.array(pic, np.float32, copy=False)) elif pic.mode == '1': img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False)) else: img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes())) # PIL image mode: L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK if pic.mode == 'YCbCr': nchannel = 3 elif pic.mode == 'I;16': nchannel = 1 else: nchannel = len(pic.mode) img = img.view(pic.size[1], pic.size[0], nchannel) if self.reverse_channels: # Beware this only works with 3 channels(can't use -1 with tensors) img = img[:, :, [2, 1, 0]] # put it from HWC to CHW format # yikes, this transpose takes 80% of the loading time/CPU img = img.transpose(0, 1).transpose(0, 2).contiguous() if isinstance(img, torch.ByteTensor): if self.keep_scale: return img.float() else: return img.float().div(255) else: return img class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target): image = F.normalize(image, mean=self.mean, std=self.std) return image, target # Init with a python list as the map(mainly for cityscapes's id -> train_id) class LabelMap(object): def __init__(self, label_id_map): self.label_id_map = torch.tensor(label_id_map) def __call__(self, image, target): target = target if type(target) == str else self.label_id_map[target] return image, target
34.541284
114
0.6
6,784
0.90093
0
0
964
0.128021
0
0
1,140
0.151394
48ea83dadb4e88f0d593497119582f4e6d402985
9,036
py
Python
server.py
drunkHatch/CMPUT404-assignment-webserver
37336241ae790509804569834e2063893d37db44
[ "Apache-2.0" ]
null
null
null
server.py
drunkHatch/CMPUT404-assignment-webserver
37336241ae790509804569834e2063893d37db44
[ "Apache-2.0" ]
null
null
null
server.py
drunkHatch/CMPUT404-assignment-webserver
37336241ae790509804569834e2063893d37db44
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import socketserver import re import socket import datetime import os import mimetypes as MT import sys # Copyright 2013 Abram Hindle, Eddie Antonio Santos # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # Furthermore it is derived from the Python documentation examples thus # some of the code is Copyright © 2001-2013 Python Software # Foundation; All Rights Reserved # # http://docs.python.org/2/library/socketserver.html # # run: python freetests.py # try: curl -v -X GET http://127.0.0.1:8080/ # status codes could be handled STATUS_CODE_RESPONSE = { 0: " 0 Surprise!", 200: " 200 OK", 301: " 301 Moved Permanently", 404: " 404 Not Found", 405: " 405 Method Not Allowed" } # methods could be handled HTTP_REQUEST_METHODS = { "GET": 1, } # some hard coded text END_OF_LINE_RESPONSE = "\r\n" PROTOCOL_RESPONSE = "HTTP/1.1" DIRECTORY_TO_SERVE = "www" # open file error here GOODFILE = 1 ISADIRECTORY = 2 NOFILE = 3 # response generate class class MyServerResponse: def __init__(self, status=0, expire_time="-1", content_type="default", \ accept_ranges="none"): self.response_header = { "status_response": PROTOCOL_RESPONSE + STATUS_CODE_RESPONSE[status], "date_response": "Date: " + datetime.datetime.now().\ strftime('%A, %d %b %Y %X %Z'), "expires": "Expires: " + expire_time, "content_type": "Content-Type: " + content_type, "accept_ranges": "Accept-Ranges: " + accept_ranges, "redirect_address": "Location: http://", "allow_header": "ALlow: GET" } # send header via various status_code def send_header(self, conn, status_code): tmp = self.response_header["status_response"] + END_OF_LINE_RESPONSE conn.sendall(tmp.encode("utf-8")) if status_code == 200: tmp = self.response_header["expires"] + END_OF_LINE_RESPONSE conn.sendall(tmp.encode("utf-8")) tmp = self.response_header["content_type"] + END_OF_LINE_RESPONSE conn.sendall(tmp.encode("utf-8")) elif status_code == 301: tmp = self.response_header["redirect_address"] + \ END_OF_LINE_RESPONSE conn.sendall(tmp.encode("utf-8")) elif status_code == 405: tmp = self.response_header["allow_header"] + END_OF_LINE_RESPONSE conn.sendall(tmp.encode("utf-8")) def set_status_response(self, status_code): self.response_header["status_response"] = \ PROTOCOL_RESPONSE + STATUS_CODE_RESPONSE[status_code] # request for storing received request attributes class MyServerRequest: def __init__(self): self.method = None self.url = None def method_is_valid(self): if self.method in HTTP_REQUEST_METHODS: return True else: return False # add more implementation here def url_is_valid(self): return True class MyWebServer(socketserver.BaseRequestHandler): def handle(self): rest_protocol_flag = False standard_rest_cmd = "GET / HTTP/1.1" # init the socket self.request.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) full_data = b"" with self.request as conn: # declaration here new_request = MyServerRequest() status_code = 0 open_file = True file = None content_type = "void of magic" file_name = "none" type_of_file = "default" open_result = -100 new_response = MyServerResponse() # recv all data while True: data = conn.recv(1024) if not data: break full_data += data if b"\r\n" in data: break if b"utf" in full_data: print(full_data) pass str_full_data = full_data.decode("utf-8") splited_commands = re.split('[\r|\n]+', str_full_data) whole_request = splited_commands[0].split(' ') # if we can find request from recved data if len(whole_request) > 0: new_request.method = whole_request[0] # try to pick methods new_request.url = whole_request[1] # try to pick url # if method we get could not be handled if not new_request.method_is_valid(): status_code = 405 open_file = False content_type = "none" new_response.set_status_response(status_code) # if no errors occured and then try to open requested url if open_file: open_result, file, file_name = openRequestedFile(new_request.url) # try opening requested file, and return corresponding status_code status_code = checkErrorsOfOpenedFile\ (status_code, open_result, file, file_name) # SECURITY: check permission of opened file status_code = checkPermissionOfRequestedFile\ (status_code, open_result, file, file_name) new_response.set_status_response(status_code) if status_code == 200 and file_name != None: type_of_file = MT.guess_type(file_name, False)[0] elif status_code == 301: new_response.response_header["redirect_address"] += \ self.server.server_address[0] + ":" + \ str(self.server.server_address[1]) + \ new_request.url + "/" new_response.set_status_response(status_code) if open_result == GOODFILE and type_of_file != None: new_response.response_header["content_type"] = "Content-Type: " new_response.response_header["content_type"] += type_of_file new_response.send_header(conn, status_code) self.request.sendall(b"\r\n") # then open file/directory and send it if file: self.request.sendfile(file) #self.request.sendall(b"\r\n") conn.close() # argument: requested url # return value: open file result, opened file object, local path def openRequestedFile(client_request_url): cru = client_request_url if cru[-1] == r'/': cru += "index.html" complete_path = DIRECTORY_TO_SERVE + cru try: result = open(complete_path, 'rb') content_type = cru.split(".") return GOODFILE, result, cru except IsADirectoryError as e: return ISADIRECTORY, None, None except FileNotFoundError as n: return NOFILE, None, None # check type and error of opened file def checkErrorsOfOpenedFile(status_code,open_result, file, file_name): if open_result == GOODFILE: status_code = 200 type_of_file = MT.guess_type(file_name, False)[0] elif open_result == ISADIRECTORY: status_code = 301 elif open_result == NOFILE: status_code = 404 return status_code # SECURITY: check the permission of opened file def checkPermissionOfRequestedFile(status_code,open_result, file, file_name): if file_name == None: return status_code abs_path_of_serving_dir = os.getcwd() abs_path_of_serving_dir += "/www/" length_of_serving_dir = len(abs_path_of_serving_dir) abs_path_of_request = os.path.abspath(file.name) length_of_requested_object = len(abs_path_of_request) if length_of_serving_dir > length_of_requested_object: status_code = 404 elif abs_path_of_serving_dir != abs_path_of_request[:length_of_serving_dir]: status_code = 404 return status_code if __name__ == "__main__": HOST, PORT = "localhost", 8080 socketserver.TCPServer.allow_reuse_address = True # Create the server, binding to localhost on port 8080 server = socketserver.TCPServer((HOST, PORT), MyWebServer) # https://stackoverflow.com/questions/15260558/python-tcpserver-address-already-in-use-but-i-close-the-server-and-i-use-allow # Activate the server; this will keep running until you # interrupt the program with Ctrl-C try: server.serve_forever() except KeyboardInterrupt: # exit if ctrl+C sys.exit(0)
34.888031
129
0.623174
5,355
0.592564
0
0
0
0
0
0
2,669
0.295341
48ebc333c8d0ba26cd1d7f0f9c59510601ab4ec4
1,788
py
Python
cloudkitty/rating/hash/controllers/root.py
wanghuiict/cloudkitty
11ff713042eb0354f497f7051130630c46860735
[ "Apache-2.0" ]
97
2015-10-18T02:53:17.000Z
2022-03-07T05:15:39.000Z
cloudkitty/rating/hash/controllers/root.py
shanafang9/cloudkitty
911c90569ccb09ecf0d7aa11a5a707c8ebda09cf
[ "Apache-2.0" ]
1
2017-11-29T15:39:27.000Z
2017-11-29T15:39:27.000Z
cloudkitty/rating/hash/controllers/root.py
shanafang9/cloudkitty
911c90569ccb09ecf0d7aa11a5a707c8ebda09cf
[ "Apache-2.0" ]
54
2015-10-27T10:55:02.000Z
2022-02-18T08:23:19.000Z
# -*- coding: utf-8 -*- # Copyright 2015 Objectif Libre # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from wsme import types as wtypes import wsmeext.pecan as wsme_pecan from cloudkitty import rating from cloudkitty.rating.hash.controllers import field as field_api from cloudkitty.rating.hash.controllers import group as group_api from cloudkitty.rating.hash.controllers import mapping as mapping_api from cloudkitty.rating.hash.controllers import service as service_api from cloudkitty.rating.hash.controllers import threshold as threshold_api from cloudkitty.rating.hash.datamodels import mapping as mapping_models class HashMapConfigController(rating.RatingRestControllerBase): """Controller exposing all management sub controllers.""" _custom_actions = { 'types': ['GET'] } services = service_api.HashMapServicesController() fields = field_api.HashMapFieldsController() groups = group_api.HashMapGroupsController() mappings = mapping_api.HashMapMappingsController() thresholds = threshold_api.HashMapThresholdsController() @wsme_pecan.wsexpose([wtypes.text]) def get_types(self): """Return the list of every mapping type available. """ return mapping_models.MAP_TYPE.values
38.042553
78
0.758949
636
0.355705
0
0
179
0.100112
0
0
750
0.419463
48ec30ea94720d1931e1f3786be697d0ca01359f
8,431
py
Python
.test/test/task2/Aufgabe1/python-lib/cuddlefish/docs/webdocs.py
sowinski/testsubtree
d09b72e6b366e8e29e038445a1fa6987b2456625
[ "MIT" ]
null
null
null
.test/test/task2/Aufgabe1/python-lib/cuddlefish/docs/webdocs.py
sowinski/testsubtree
d09b72e6b366e8e29e038445a1fa6987b2456625
[ "MIT" ]
null
null
null
.test/test/task2/Aufgabe1/python-lib/cuddlefish/docs/webdocs.py
sowinski/testsubtree
d09b72e6b366e8e29e038445a1fa6987b2456625
[ "MIT" ]
null
null
null
import os, re, errno import markdown import cgi from cuddlefish import packaging from cuddlefish.docs import apirenderer from cuddlefish._version import get_versions INDEX_PAGE = '/doc/static-files/base.html' BASE_URL_INSERTION_POINT = '<base ' VERSION_INSERTION_POINT = '<div id="version">' THIRD_PARTY_PACKAGE_SUMMARIES = '<ul id="third-party-package-summaries">' HIGH_LEVEL_PACKAGE_SUMMARIES = '<ul id="high-level-package-summaries">' LOW_LEVEL_PACKAGE_SUMMARIES = '<ul id="low-level-package-summaries">' CONTENT_ID = '<div id="main-content">' TITLE_ID = '<title>' DEFAULT_TITLE = 'Add-on SDK Documentation' def get_documentation(package_name, modules_json, doc_path): documented_modules = [] for root, dirs, files in os.walk(doc_path): subdir_path = root.split(os.sep)[len(doc_path.split(os.sep)):] for filename in files: if filename.endswith(".md"): modname = filename[:-len(".md")] modpath = subdir_path + [modname] documented_modules.append(modpath) return documented_modules def tag_wrap(text, tag, attributes={}): result = '\n<' + tag for name in attributes.keys(): result += ' ' + name + '=' + '"' + attributes[name] + '"' result +='>' + text + '</'+ tag + '>\n' return result def is_third_party(package_json): return (not is_high_level(package_json)) and \ (not(is_low_level(package_json))) def is_high_level(package_json): return 'jetpack-high-level' in package_json.get('keywords', []) def is_low_level(package_json): return 'jetpack-low-level' in package_json.get('keywords', []) def insert_after(target, insertion_point_id, text_to_insert): insertion_point = target.find(insertion_point_id) + len(insertion_point_id) return target[:insertion_point] + text_to_insert + target[insertion_point:] class WebDocs(object): def __init__(self, root, base_url = None): self.root = root self.pkg_cfg = packaging.build_pkg_cfg(root) self.packages_json = packaging.build_pkg_index(self.pkg_cfg) self.base_page = self._create_base_page(root, base_url) def create_guide_page(self, path): path, ext = os.path.splitext(path) md_path = path + '.md' md_content = unicode(open(md_path, 'r').read(), 'utf8') guide_content = markdown.markdown(md_content) return self._create_page(guide_content) def create_module_page(self, path): path, ext = os.path.splitext(path) md_path = path + '.md' module_content = apirenderer.md_to_div(md_path) return self._create_page(module_content) def create_package_page(self, package_name): package_content = self._create_package_detail(package_name) return self._create_page(package_content) def _create_page(self, page_content): page = self._insert_title(self.base_page, page_content) page = insert_after(page, CONTENT_ID, page_content) return page.encode('utf8') def _create_module_list(self, package_json): package_name = package_json['name'] libs = package_json['files'][1]['lib'][1] doc_path = package_json.get('doc', None) if not doc_path: return '' modules = get_documentation(package_name, libs, doc_path) modules.sort() module_items = '' relative_doc_path = doc_path[len(self.root) + 1:] relative_doc_path_pieces = relative_doc_path.split(os.sep) del relative_doc_path_pieces[-1] relative_doc_URL = "/".join(relative_doc_path_pieces) for module in modules: module_link = tag_wrap('/'.join(module), 'a', \ {'href': relative_doc_URL + '/' + '/'.join(module) + '.html'}) module_items += module_link return module_items def _create_package_summaries(self, packages_json, include): packages = '' for package_name in packages_json.keys(): package_json = packages_json[package_name] if not include(package_json): continue package_path = self.pkg_cfg["packages"][package_name]["root_dir"] package_directory = package_path[len(self.root) + 1:] package_directory = "/".join(package_directory.split(os.sep)) package_link = tag_wrap(package_name, 'a', {'href': \ package_directory + "/" \ + 'index.html'}) text = tag_wrap(package_link, 'h4') text += self._create_module_list(package_json) packages += tag_wrap(text, 'li', {'class':'package-summary', \ 'style':'display: block;'}) return packages def _create_base_page(self, root, base_url): base_page = unicode(open(root + INDEX_PAGE, 'r').read(), 'utf8') if base_url: base_tag = 'href="' + base_url + '"' base_page = insert_after(base_page, BASE_URL_INSERTION_POINT, base_tag) sdk_version = get_versions()["version"] base_page = insert_after(base_page, VERSION_INSERTION_POINT, "Version " + sdk_version) third_party_summaries = \ self._create_package_summaries(self.packages_json, is_third_party) base_page = insert_after(base_page, \ THIRD_PARTY_PACKAGE_SUMMARIES, third_party_summaries) high_level_summaries = \ self._create_package_summaries(self.packages_json, is_high_level) base_page = insert_after(base_page, \ HIGH_LEVEL_PACKAGE_SUMMARIES, high_level_summaries) low_level_summaries = \ self._create_package_summaries(self.packages_json, is_low_level) base_page = insert_after(base_page, \ LOW_LEVEL_PACKAGE_SUMMARIES, low_level_summaries) return base_page def _create_package_detail_row(self, field_value, \ field_descriptor, field_name): meta = tag_wrap(tag_wrap(field_descriptor, 'span', \ {'class':'meta-header'}), 'td') value = tag_wrap(tag_wrap(field_value, 'span', \ {'class':field_name}), 'td') return tag_wrap(meta + value, 'tr') def _create_package_detail_table(self, package_json): table_contents = '' if package_json.get('author', None): table_contents += self._create_package_detail_row(\ cgi.escape(package_json['author']), 'Author', 'author') if package_json.get('version', None): table_contents += self._create_package_detail_row(\ package_json['version'], 'Version', 'version') if package_json.get('license', None): table_contents += self._create_package_detail_row(\ package_json['license'], 'License', 'license') if package_json.get('dependencies', None): table_contents += self._create_package_detail_row(\ ', '.join(package_json['dependencies']), \ 'Dependencies', 'dependencies') table_contents += self._create_package_detail_row(\ self._create_module_list(package_json), 'Modules', 'modules') return tag_wrap(tag_wrap(table_contents, 'tbody'), 'table', \ {'class':'meta-table'}) def _create_package_detail(self, package_name): package_json = self.packages_json.get(package_name, None) if not package_json: raise IOError(errno.ENOENT, 'Package not found') # pieces of the package detail: 1) title, 2) table, 3) description package_title = tag_wrap(package_name, 'h1') table = self._create_package_detail_table(package_json) description = '' if package_json.get('readme', None): description += tag_wrap(tag_wrap(\ markdown.markdown(\ package_json['readme']), 'p'), 'div', {'class':'docs'}) return tag_wrap(package_title + table + description, 'div', \ {'class':'package-detail'}) def _insert_title(self, target, content): match = re.search('<h1>.*</h1>', content) if match: title = match.group(0)[len('<h1>'):-len('</h1>')] + ' - ' + \ DEFAULT_TITLE else: title = DEFAULT_TITLE target = insert_after(target, TITLE_ID, title) return target
44.373684
94
0.632428
6,570
0.779267
0
0
0
0
0
0
1,014
0.12027
48eca2b30f95acacb8513624eb0235e73603734b
183
py
Python
src/c3nav/site/templatetags/route_render.py
johnjohndoe/c3nav
a17f863a3512e305595c16b0300796b6bae81241
[ "Apache-2.0" ]
132
2016-11-12T01:45:23.000Z
2022-03-08T15:17:10.000Z
src/c3nav/site/templatetags/route_render.py
johnjohndoe/c3nav
a17f863a3512e305595c16b0300796b6bae81241
[ "Apache-2.0" ]
66
2016-09-29T09:46:19.000Z
2022-03-11T23:26:18.000Z
src/c3nav/site/templatetags/route_render.py
johnjohndoe/c3nav
a17f863a3512e305595c16b0300796b6bae81241
[ "Apache-2.0" ]
42
2016-09-29T08:34:57.000Z
2022-03-08T15:17:15.000Z
from django import template register = template.Library() @register.filter def negate(value): return -value @register.filter def subtract(value, arg): return value - arg
13.071429
29
0.726776
0
0
0
0
118
0.644809
0
0
0
0
48edc6b7f87e0875d85de78f96a9bd1a71a88a84
9,827
py
Python
coax/experience_replay/_prioritized.py
sleepy-owl/coax
37c3e667b81537768beb25bb59d0f05124624128
[ "MIT" ]
null
null
null
coax/experience_replay/_prioritized.py
sleepy-owl/coax
37c3e667b81537768beb25bb59d0f05124624128
[ "MIT" ]
null
null
null
coax/experience_replay/_prioritized.py
sleepy-owl/coax
37c3e667b81537768beb25bb59d0f05124624128
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------------------------ # # MIT License # # # # Copyright (c) 2020, Microsoft Corporation # # # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software # # and associated documentation files (the "Software"), to deal in the Software without # # restriction, including without limitation the rights to use, copy, modify, merge, publish, # # distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in all copies or # # substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # ------------------------------------------------------------------------------------------------ # import jax import numpy as onp import chex from ..reward_tracing import TransitionBatch from ..utils import SumTree from ._base import BaseReplayBuffer __all__ = ( 'PrioritizedReplayBuffer', ) class PrioritizedReplayBuffer(BaseReplayBuffer): r""" A simple ring buffer for experience replay, with prioritized sampling. This class uses *proportional* sampling, which means that the transitions are sampled with relative probability :math:`p_i` defined as: .. math:: p_i\ =\ \frac {\left(|\mathcal{A}_i| + \epsilon\right)^\alpha} {\sum_{j=1}^N \left(|\mathcal{A}_j| + \epsilon\right)^\alpha} Here :math:`\mathcal{A}_i` are advantages provided at insertion time and :math:`N` is the capacity of the buffer, which may be quite large. The :math:`\mathcal{A}_i` are typically just TD errors collected from a value-function updater, e.g. :func:`QLearning.td_error <coax.td_learning.QLearning.td_error>`. Since the prioritized samples are biased, the :attr:`sample` method also produces non-trivial importance weights (stored in the :class:`TransitionBatch.W <coax.reward_tracing.TransitionBatch>` attribute). The logic for constructing these weights for a sample of batch size :math:`n` is: .. math:: w_i\ =\ \frac{\left(Np_i\right)^{-\beta}}{\max_{j=1}^n \left(Np_j\right)^{-\beta}} See section 3.4 of https://arxiv.org/abs/1511.05952 for more details. Parameters ---------- capacity : positive int The capacity of the experience replay buffer. alpha : positive float, optional The sampling temperature :math:`\alpha>0`. beta : positive float, optional The importance-weight exponent :math:`\beta>0`. epsilon : positive float, optional The small regulator :math:`\epsilon>0`. random_seed : int, optional To get reproducible results. """ def __init__(self, capacity, alpha=1.0, beta=1.0, epsilon=1e-4, random_seed=None): if not (isinstance(capacity, int) and capacity > 0): raise TypeError(f"capacity must be a positive int, got: {capacity}") if not (isinstance(alpha, (float, int)) and alpha > 0): raise TypeError(f"alpha must be a positive float, got: {alpha}") if not (isinstance(beta, (float, int)) and beta > 0): raise TypeError(f"beta must be a positive float, got: {beta}") if not (isinstance(epsilon, (float, int)) and epsilon > 0): raise TypeError(f"epsilon must be a positive float, got: {epsilon}") self._capacity = int(capacity) self._alpha = float(alpha) self._beta = float(beta) self._epsilon = float(epsilon) self._random_seed = random_seed self._rnd = onp.random.RandomState(random_seed) self.clear() # sets: self._deque, self._index @property def capacity(self): return self._capacity @property def alpha(self): return self._alpha @alpha.setter def alpha(self, new_alpha): if not (isinstance(new_alpha, (float, int)) and new_alpha > 0): raise TypeError(f"alpha must be a positive float, got: {new_alpha}") if onp.isclose(new_alpha, self._alpha, rtol=0.01): return # noop if new value is too close to old value (not worth the computation cost) new_values = onp.where( self._sumtree.values <= 0, 0., # only change exponents for positive values onp.exp(onp.log(onp.maximum(self._sumtree.values, 1e-15)) * (new_alpha / self._alpha))) self._sumtree.set_values(..., new_values) self._alpha = float(new_alpha) @property def beta(self): return self._beta @beta.setter def beta(self, new_beta): if not (isinstance(new_beta, (float, int)) and new_beta > 0): raise TypeError(f"beta must be a positive float, got: {new_beta}") self._beta = float(new_beta) @property def epsilon(self): return self._epsilon @epsilon.setter def epsilon(self, new_epsilon): if not (isinstance(new_epsilon, (float, int)) and new_epsilon > 0): raise TypeError(f"epsilon must be a positive float, got: {new_epsilon}") self._epsilon = float(new_epsilon) def add(self, transition_batch, Adv): r""" Add a transition to the experience replay buffer. Parameters ---------- transition_batch : TransitionBatch A :class:`TransitionBatch <coax.reward_tracing.TransitionBatch>` object. Adv : ndarray A batch of advantages, used to construct the priorities :math:`p_i`. """ if not isinstance(transition_batch, TransitionBatch): raise TypeError( f"transition_batch must be a TransitionBatch, got: {type(transition_batch)}") transition_batch.idx = self._index + onp.arange(transition_batch.batch_size) idx = transition_batch.idx % self.capacity # wrap around chex.assert_equal_shape([idx, Adv]) self._storage[idx] = list(transition_batch.to_singles()) self._sumtree.set_values(idx, onp.power(onp.abs(Adv) + self.epsilon, self.alpha)) self._index += transition_batch.batch_size def sample(self, batch_size=32): r""" Get a batch of transitions to be used for bootstrapped updates. Parameters ---------- batch_size : positive int, optional The desired batch size of the sample. Returns ------- transitions : TransitionBatch A :class:`TransitionBatch <coax.reward_tracing.TransitionBatch>` object. """ idx = self._sumtree.sample(n=batch_size) P = self._sumtree.values[idx] / self._sumtree.root_value # prioritized, biased propensities W = onp.power(P * len(self), -self.beta) # inverse propensity weights (β≈1) W /= W.max() # for stability, ensure only down-weighting (see sec. 3.4 of arxiv:1511.05952) transition_batch = _concatenate_leaves(self._storage[idx]) chex.assert_equal_shape([transition_batch.W, W]) transition_batch.W *= W return transition_batch def update(self, idx, Adv): r""" Update the priority weights of transitions previously added to the buffer. Parameters ---------- idx : 1d array of ints The identifiers of the transitions to be updated. Adv : ndarray The corresponding updated advantages. """ idx = onp.asarray(idx, dtype='int32') Adv = onp.asarray(Adv, dtype='float32') chex.assert_equal_shape([idx, Adv]) chex.assert_rank([idx, Adv], 1) idx_lookup = idx % self.capacity # wrap around new_values = onp.where( _get_transition_batch_idx(self._storage[idx_lookup]) == idx, # only update if ids match onp.power(onp.abs(Adv) + self.epsilon, self.alpha), self._sumtree.values[idx_lookup]) self._sumtree.set_values(idx_lookup, new_values) def clear(self): r""" Clear the experience replay buffer. """ self._storage = onp.full(shape=(self.capacity,), fill_value=None, dtype='object') self._sumtree = SumTree(capacity=self.capacity) self._index = 0 def __len__(self): return min(self.capacity, self._index) def __bool__(self): return bool(len(self)) def __iter__(self): return iter(self._storage[:len(self)]) def _concatenate_leaves(pytrees): return jax.tree_multimap(lambda *leaves: onp.concatenate(leaves, axis=0), *pytrees) @onp.vectorize def _get_transition_batch_idx(transition): return transition.idx
38.996032
100
0.596418
7,396
0.752391
0
0
1,467
0.149237
0
0
5,585
0.568159
48edd7f48e568a644eaeb1b10b708e137aa7c9cf
433
py
Python
src/OTLMOW/OEFModel/Classes/Wilddet.py
davidvlaminck/OTLClassPython
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
2
2022-02-01T08:58:11.000Z
2022-02-08T13:35:17.000Z
src/OTLMOW/OEFModel/Classes/Wilddet.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
src/OTLMOW/OEFModel/Classes/Wilddet.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
# coding=utf-8 from OTLMOW.OEFModel.EMObject import EMObject # Generated with OEFClassCreator. To modify: extend, do not edit class Wilddet(EMObject): """Een wilddetectiesysteem zal de weggebruikers waarschuwen bij de aanwezigheid van eventueel overstekend wild""" typeURI = 'https://lgc.data.wegenenverkeer.be/ns/installatie#Wilddet' label = 'Wilddetectiesysteem' def __init__(self): super().__init__()
28.866667
117
0.745958
303
0.699769
0
0
0
0
0
0
271
0.625866
48eeffaa35d544f23807d7f9663c5e18d1819a1f
16,332
py
Python
test/python/testworkflow.py
kokizzu/txtai
1a3848bac006e9963ad2eef466405f8da644fecb
[ "Apache-2.0" ]
null
null
null
test/python/testworkflow.py
kokizzu/txtai
1a3848bac006e9963ad2eef466405f8da644fecb
[ "Apache-2.0" ]
47
2021-10-02T22:48:03.000Z
2021-12-29T02:36:20.000Z
test/python/testworkflow.py
kokizzu/txtai
1a3848bac006e9963ad2eef466405f8da644fecb
[ "Apache-2.0" ]
null
null
null
""" Workflow module tests """ import contextlib import glob import io import os import tempfile import sys import unittest import numpy as np import torch from txtai.api import API from txtai.embeddings import Documents, Embeddings from txtai.pipeline import Nop, Segmentation, Summary, Translation, Textractor from txtai.workflow import Workflow, Task, ConsoleTask, ExportTask, FileTask, ImageTask, RetrieveTask, StorageTask, WorkflowTask # pylint: disable = C0411 from utils import Utils # pylint: disable=R0904 class TestWorkflow(unittest.TestCase): """ Workflow tests. """ @classmethod def setUpClass(cls): """ Initialize test data. """ # Default YAML workflow configuration cls.config = """ # Embeddings index writable: true embeddings: scoring: bm25 path: google/bert_uncased_L-2_H-128_A-2 content: true # Text segmentation segmentation: sentences: true # Workflow definitions workflow: index: tasks: - action: segmentation - action: index search: tasks: - search transform: tasks: - transform """ def testBaseWorkflow(self): """ Tests a basic workflow """ translate = Translation() # Workflow that translate text to Spanish workflow = Workflow([Task(lambda x: translate(x, "es"))]) results = list(workflow(["The sky is blue", "Forest through the trees"])) self.assertEqual(len(results), 2) def testChainWorkflow(self): """ Tests a chain of workflows """ workflow1 = Workflow([Task(lambda x: [y * 2 for y in x])]) workflow2 = Workflow([Task(lambda x: [y - 1 for y in x])], batch=4) results = list(workflow2(workflow1([1, 2, 4, 8, 16, 32]))) self.assertEqual(results, [1, 3, 7, 15, 31, 63]) def testComplexWorkflow(self): """ Tests a complex workflow """ textractor = Textractor(paragraphs=True, minlength=150, join=True) summary = Summary("t5-small") embeddings = Embeddings({"path": "sentence-transformers/nli-mpnet-base-v2"}) documents = Documents() def index(x): documents.add(x) return x # Extract text and summarize articles articles = Workflow([FileTask(textractor), Task(lambda x: summary(x, maxlength=15))]) # Complex workflow that extracts text, runs summarization then loads into an embeddings index tasks = [WorkflowTask(articles, r".\.pdf$"), Task(index, unpack=False)] data = ["file://" + Utils.PATH + "/article.pdf", "Workflows can process audio files, documents and snippets"] # Convert file paths to data tuples data = [(x, element, None) for x, element in enumerate(data)] # Execute workflow, discard results as they are streamed workflow = Workflow(tasks) data = list(workflow(data)) # Build the embeddings index embeddings.index(documents) # Cleanup temporary storage documents.close() # Run search and validate result index, _ = embeddings.search("search text", 1)[0] self.assertEqual(index, 0) self.assertEqual(data[0][1], "txtai builds an AI-powered index over sections") def testConcurrentWorkflow(self): """ Tests running concurrent task actions """ nop = Nop() workflow = Workflow([Task([nop, nop], concurrency="thread")]) results = list(workflow([2, 4])) self.assertEqual(results, [(2, 2), (4, 4)]) workflow = Workflow([Task([nop, nop], concurrency="process")]) results = list(workflow([2, 4])) self.assertEqual(results, [(2, 2), (4, 4)]) workflow = Workflow([Task([nop, nop], concurrency="unknown")]) results = list(workflow([2, 4])) self.assertEqual(results, [(2, 2), (4, 4)]) def testConsoleWorkflow(self): """ Tests a console task """ # Excel export workflow = Workflow([ConsoleTask()]) output = io.StringIO() with contextlib.redirect_stdout(output): list(workflow([{"id": 1, "text": "Sentence 1"}, {"id": 2, "text": "Sentence 2"}])) self.assertIn("Sentence 2", output.getvalue()) def testExportWorkflow(self): """ Tests an export task """ # Excel export path = os.path.join(tempfile.gettempdir(), "export.xlsx") workflow = Workflow([ExportTask(output=path)]) list(workflow([{"id": 1, "text": "Sentence 1"}, {"id": 2, "text": "Sentence 2"}])) self.assertGreater(os.path.getsize(path), 0) # Export CSV path = os.path.join(tempfile.gettempdir(), "export.csv") workflow = Workflow([ExportTask(output=path)]) list(workflow([{"id": 1, "text": "Sentence 1"}, {"id": 2, "text": "Sentence 2"}])) self.assertGreater(os.path.getsize(path), 0) # Export CSV with timestamp path = os.path.join(tempfile.gettempdir(), "export-timestamp.csv") workflow = Workflow([ExportTask(output=path, timestamp=True)]) list(workflow([{"id": 1, "text": "Sentence 1"}, {"id": 2, "text": "Sentence 2"}])) # Find timestamped file and ensure it has data path = glob.glob(os.path.join(tempfile.gettempdir(), "export-timestamp*.csv"))[0] self.assertGreater(os.path.getsize(path), 0) def testExtractWorkflow(self): """ Tests column extraction tasks """ workflow = Workflow([Task(lambda x: x, unpack=False, column=0)], batch=1) results = list(workflow([(0, 1)])) self.assertEqual(results[0], 0) results = list(workflow([(0, (1, 2), None)])) self.assertEqual(results[0], (0, 1, None)) results = list(workflow([1])) self.assertEqual(results[0], 1) def testImageWorkflow(self): """ Tests an image task """ workflow = Workflow([ImageTask()]) results = list(workflow([Utils.PATH + "/books.jpg"])) self.assertEqual(results[0].size, (1024, 682)) def testInvalidWorkflow(self): """ Tests task with invalid parameters """ with self.assertRaises(TypeError): Task(invalid=True) def testMergeWorkflow(self): """ Tests merge tasks """ task = Task([lambda x: [pow(y, 2) for y in x], lambda x: [pow(y, 3) for y in x]], merge="hstack") # Test hstack (column-wise) merge workflow = Workflow([task]) results = list(workflow([2, 4])) self.assertEqual(results, [(4, 8), (16, 64)]) # Test vstack (row-wise) merge task.merge = "vstack" results = list(workflow([2, 4])) self.assertEqual(results, [4, 8, 16, 64]) # Test concat (values joined into single string) merge task.merge = "concat" results = list(workflow([2, 4])) self.assertEqual(results, ["4. 8", "16. 64"]) # Test no merge task.merge = None results = list(workflow([2, 4, 6])) self.assertEqual(results, [[4, 16, 36], [8, 64, 216]]) # Test generated (id, data, tag) tuples are properly returned workflow = Workflow([Task(lambda x: [(0, y, None) for y in x])]) results = list(workflow([(1, "text", "tags")])) self.assertEqual(results[0], (0, "text", None)) def testMergeUnbalancedWorkflow(self): """ Test merge tasks with unbalanced outputs (i.e. one action produce more output than another for same input). """ nop = Nop() segment1 = Segmentation(sentences=True) task = Task([nop, segment1]) # Test hstack workflow = Workflow([task]) results = list(workflow(["This is a test sentence. And another sentence to split."])) self.assertEqual( results, [("This is a test sentence. And another sentence to split.", ["This is a test sentence.", "And another sentence to split."])] ) # Test vstack task.merge = "vstack" workflow = Workflow([task]) results = list(workflow(["This is a test sentence. And another sentence to split."])) self.assertEqual( results, ["This is a test sentence. And another sentence to split.", "This is a test sentence.", "And another sentence to split."] ) def testNumpyWorkflow(self): """ Tests a numpy workflow """ task = Task([lambda x: np.power(x, 2), lambda x: np.power(x, 3)], merge="hstack") # Test hstack (column-wise) merge workflow = Workflow([task]) results = list(workflow(np.array([2, 4]))) self.assertTrue(np.array_equal(np.array(results), np.array([[4, 8], [16, 64]]))) # Test vstack (row-wise) merge task.merge = "vstack" results = list(workflow(np.array([2, 4]))) self.assertEqual(results, [4, 8, 16, 64]) # Test no merge task.merge = None results = list(workflow(np.array([2, 4, 6]))) self.assertTrue(np.array_equal(np.array(results), np.array([[4, 16, 36], [8, 64, 216]]))) def testRetrieveWorkflow(self): """ Tests a retrieve task """ # Test retrieve with generated temporary directory workflow = Workflow([RetrieveTask()]) results = list(workflow(["file://" + Utils.PATH + "/books.jpg"])) self.assertTrue(results[0].endswith("books.jpg")) # Test retrieve with specified temporary directory workflow = Workflow([RetrieveTask(directory=os.path.join(tempfile.gettempdir(), "retrieve"))]) results = list(workflow(["file://" + Utils.PATH + "/books.jpg"])) self.assertTrue(results[0].endswith("books.jpg")) def testScheduleWorkflow(self): """ Tests workflow schedules """ # Test workflow schedule with Python workflow = Workflow([Task()]) workflow.schedule("* * * * * *", ["test"], 1) self.assertEqual(len(workflow.tasks), 1) # Test workflow schedule with YAML workflow = """ segmentation: sentences: true workflow: segment: schedule: cron: '* * * * * *' elements: - a sentence to segment iterations: 1 tasks: - action: segmentation task: console """ output = io.StringIO() with contextlib.redirect_stdout(output): app = API(workflow) app.wait() self.assertIn("a sentence to segment", output.getvalue()) def testScheduleErrorWorkflow(self): """ Tests workflow schedules with errors """ def action(elements): raise FileNotFoundError # Test workflow proceeds after exception raised with self.assertLogs() as logs: workflow = Workflow([Task(action=action)]) workflow.schedule("* * * * * *", ["test"], 1) self.assertIn("FileNotFoundError", " ".join(logs.output)) def testStorageWorkflow(self): """ Tests a storage task """ workflow = Workflow([StorageTask()]) results = list(workflow(["local://" + Utils.PATH, "test string"])) self.assertEqual(len(results), 19) def testTensorTransformWorkflow(self): """ Tests a tensor workflow with list transformations """ # Test one-one list transformation task = Task(lambda x: x.tolist()) workflow = Workflow([task]) results = list(workflow(np.array([2]))) self.assertEqual(results, [2]) # Test one-many list transformation task = Task(lambda x: [x.tolist() * 2]) workflow = Workflow([task]) results = list(workflow(np.array([2]))) self.assertEqual(results, [2, 2]) def testTorchWorkflow(self): """ Tests a torch workflow """ # pylint: disable=E1101,E1102 task = Task([lambda x: torch.pow(x, 2), lambda x: torch.pow(x, 3)], merge="hstack") # Test hstack (column-wise) merge workflow = Workflow([task]) results = np.array([x.numpy() for x in workflow(torch.tensor([2, 4]))]) self.assertTrue(np.array_equal(results, np.array([[4, 8], [16, 64]]))) # Test vstack (row-wise) merge task.merge = "vstack" results = list(workflow(torch.tensor([2, 4]))) self.assertEqual(results, [4, 8, 16, 64]) # Test no merge task.merge = None results = np.array([x.numpy() for x in workflow(torch.tensor([2, 4, 6]))]) self.assertTrue(np.array_equal(np.array(results), np.array([[4, 16, 36], [8, 64, 216]]))) def testYamlFunctionWorkflow(self): """ Tests YAML workflow with a function action """ # Create function and add to module def action(elements): return [x * 2 for x in elements] sys.modules[__name__].action = action workflow = """ workflow: run: tasks: - testworkflow.action """ app = API(workflow) self.assertEqual(list(app.workflow("run", [1, 2])), [2, 4]) def testYamlIndexWorkflow(self): """ Tests reading a YAML index workflow in Python. """ app = API(self.config) self.assertEqual( list(app.workflow("index", ["This is a test sentence. And another sentence to split."])), ["This is a test sentence.", "And another sentence to split."], ) # Read from file path = os.path.join(tempfile.gettempdir(), "workflow.yml") with open(path, "w", encoding="utf-8") as f: f.write(self.config) app = API(path) self.assertEqual( list(app.workflow("index", ["This is a test sentence. And another sentence to split."])), ["This is a test sentence.", "And another sentence to split."], ) # Read from YAML object app = API(API.read(self.config)) self.assertEqual( list(app.workflow("index", ["This is a test sentence. And another sentence to split."])), ["This is a test sentence.", "And another sentence to split."], ) def testYamlSearchWorkflow(self): """ Test reading a YAML search workflow in Python. """ # Test search app = API(self.config) list(app.workflow("index", ["This is a test sentence. And another sentence to split."])) self.assertEqual( list(app.workflow("search", ["another"]))[0]["text"], "And another sentence to split.", ) def testYamlWorkflowTask(self): """ Tests YAML workflow with a workflow task """ # Create function and add to module def action(elements): return [x * 2 for x in elements] sys.modules[__name__].action = action workflow = """ workflow: run: tasks: - testworkflow.action flow: tasks: - run """ app = API(workflow) self.assertEqual(list(app.workflow("flow", [1, 2])), [2, 4]) def testYamlTransformWorkflow(self): """ Test reading a YAML transform workflow in Python. """ # Test search app = API(self.config) self.assertEqual(len(list(app.workflow("transform", ["text"]))[0]), 128) def testYamlError(self): """ Tests reading a YAML workflow with errors. """ # Read from string config = """ # Workflow definitions workflow: error: tasks: - action: error """ with self.assertRaises(KeyError): API(config)
30.873346
146
0.558903
15,811
0.968099
0
0
749
0.045861
0
0
6,007
0.367806
48f141e3c4e406a1ed8e50060eb75658e2cb4aab
202
py
Python
apps/summary/urls.py
sotkonstantinidis/testcircle
448aa2148fbc2c969e60f0b33ce112d4740a8861
[ "Apache-2.0" ]
3
2019-02-24T14:24:43.000Z
2019-10-24T18:51:32.000Z
apps/summary/urls.py
sotkonstantinidis/testcircle
448aa2148fbc2c969e60f0b33ce112d4740a8861
[ "Apache-2.0" ]
17
2017-03-14T10:55:56.000Z
2022-03-11T23:20:19.000Z
apps/summary/urls.py
sotkonstantinidis/testcircle
448aa2148fbc2c969e60f0b33ce112d4740a8861
[ "Apache-2.0" ]
2
2016-02-01T06:32:40.000Z
2019-09-06T04:33:50.000Z
from django.conf.urls import url from .views import SummaryPDFCreateView urlpatterns = [ url(r'^(?P<id>[\d]+)/$', SummaryPDFCreateView.as_view(), name='questionnaire_summary'), ]
18.363636
39
0.658416
0
0
0
0
0
0
0
0
42
0.207921
48f3e0cd5e4cb55eec34f20d3487909f95548f7a
1,418
py
Python
utipy/array/blend.py
LudvigOlsen/utipy
c287f7eed15b3591118bba49ecdfc2b2605f59a0
[ "MIT" ]
null
null
null
utipy/array/blend.py
LudvigOlsen/utipy
c287f7eed15b3591118bba49ecdfc2b2605f59a0
[ "MIT" ]
1
2022-02-16T15:24:33.000Z
2022-02-16T15:24:33.000Z
utipy/array/blend.py
LudvigOlsen/utipy
c287f7eed15b3591118bba49ecdfc2b2605f59a0
[ "MIT" ]
null
null
null
""" @author: ludvigolsen """ from typing import Union import numpy as np import pandas as pd from utipy.utils.check_instance import check_instance from utipy.utils.convert_to_type import convert_to_type def blend(x1: Union[list, np.ndarray, pd.Series], x2: Union[list, np.ndarray, pd.Series], amount: float = 0.5) -> Union[list, np.ndarray, pd.Series]: """ Blend two arrays Parameters ---------- x1 : list, np.ndarray, pd.Series The first array. x2 : list, np.ndarray, pd.Series The second array. amount : float Blend rate. Percentage between 0-1 0: Keep only x1. 1: Keep only x2. 0.1: 10% x2 / 90% x1. A value in-between 0-1 will result in integers becoming floats. Returns ------- list, np.ndarray, pd.Series Blended array with type of the original (x1) Examples -------- Uncomment code to run. # x1 = [1,2,3,4,5] # x2 = [4,5,6,7,8] # blend(x1, x2, amount = 0.5) returns [2.5,3.5,4.5,5.5,6.5] """ # Get instance types (np.ndarray, list, pd.Series) instance_type = check_instance(x1) x1_weighted = np.multiply(x1, (1 - amount)) x2_weighted = np.multiply(x2, amount) blended = x1_weighted + x2_weighted # Convert to original type (np.ndarray, list, pd.Series) return convert_to_type(blended, instance_type)
24.448276
149
0.608604
0
0
0
0
0
0
0
0
851
0.600141
48f4b8e6c0c1a95b21e6fbc67429a32685a3063d
126
py
Python
output/models/ms_data/regex/hangul_compatibility_jamo_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/ms_data/regex/hangul_compatibility_jamo_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/ms_data/regex/hangul_compatibility_jamo_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.ms_data.regex.hangul_compatibility_jamo_xsd.hangul_compatibility_jamo import Doc __all__ = [ "Doc", ]
21
99
0.801587
0
0
0
0
0
0
0
0
5
0.039683
48f68e5109bfeba6516e554517563cbef752a170
519
py
Python
ex082.py
favitoria/python123
99074c309b700f48ddc6aa0811a1891145281af7
[ "MIT" ]
null
null
null
ex082.py
favitoria/python123
99074c309b700f48ddc6aa0811a1891145281af7
[ "MIT" ]
null
null
null
ex082.py
favitoria/python123
99074c309b700f48ddc6aa0811a1891145281af7
[ "MIT" ]
null
null
null
resposta = 'Ss' numeros = 0 listaTODOS = [] listaPAR = [] listaIMPAR = [] while resposta != 'N': numeros = int(input('Digite um número: ')) resposta = str(input('Deseja continuar [S/N]? ')) if numeros % 2 == 0: listaPAR.append(numeros) elif numeros % 2 == 1: listaIMPAR.append(numeros) listaTODOS.append(numeros) print(f'Os valores PARES digitados foram: {listaPAR}') print(f'Os valores IMPARES digitados foram: {listaIMPAR}') listaTODOS.sort() print(f'No TOTAL foram: {listaTODOS}')
30.529412
58
0.660886
0
0
0
0
0
0
0
0
183
0.351923
48f6af2a7976b7669c6376018cbf7149ae87451d
2,218
py
Python
CodingInterview2/29_PrintMatrix/print_matrix.py
hscspring/TheAlgorithms-Python
5c2faea1d2d25a9a81a4786e053b0cc58ab46c6f
[ "MIT" ]
10
2020-07-06T11:00:58.000Z
2022-01-29T09:25:24.000Z
CodingInterview2/29_PrintMatrix/print_matrix.py
hscspring/TheAlgorithms-Python
5c2faea1d2d25a9a81a4786e053b0cc58ab46c6f
[ "MIT" ]
null
null
null
CodingInterview2/29_PrintMatrix/print_matrix.py
hscspring/TheAlgorithms-Python
5c2faea1d2d25a9a81a4786e053b0cc58ab46c6f
[ "MIT" ]
3
2020-07-13T06:39:23.000Z
2020-08-15T16:29:48.000Z
""" 面试题 29:顺时针打印矩阵 题目:输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。 """ def make_matrix(rows: int, cols: int) -> list: res = [] k = 0 for i in range(rows): tmp = [] for j in range(cols): k += 1 tmp.append(k) res.append(tmp) return res def print_matrix_clockwisely(matrix: list) -> list: """ Print the given matrix clockwesely. Parameters ----------- matrix: list[list] the given matrix. Returns --------- out: list the clockwise order of the matrix. Notes ------ """ if not matrix: return [] if not matrix[0]: return [] res = [] start = 0 rows, cols = len(matrix), len(matrix[0]) while rows > 2 * start and cols > 2 * start: print_circle2(matrix, rows, cols, start, res) start += 1 return res def print_circle(matrix: list, rows: int, cols: int, start: int, res: list): endx = cols - 1 - start endy = rows - 1 - start # left -> right for i in range(start, endx+1): res.append(matrix[start][i]) # up -> below if start < endy: for i in range(start+1, endy+1): res.append(matrix[i][endx]) # right -> left if start < endx and start < endy: for i in reversed(range(start, endx)): res.append(matrix[endy][i]) # below -> up if start < endx and start < endy - 1: for i in reversed(range(start+1, endy)): res.append(matrix[i][start]) def print_circle2(matrix: list, rows: int, cols: int, start: int, res: list): endx = cols - 1 - start endy = rows - 1 - start # left -> right for i in range(start, endx+1): res.append(matrix[start][i]) # up -> below for i in range(start+1, endy+1): res.append(matrix[i][endx]) # right -> left if start < endy: for i in reversed(range(start, endx)): res.append(matrix[endy][i]) # below -> up if start < endx: for i in reversed(range(start+1, endy)): res.append(matrix[i][start]) if __name__ == '__main__': m = make_matrix(1,5) print(m) res = print_matrix_clockwisely(m) print(res)
21.533981
77
0.540126
0
0
0
0
0
0
0
0
509
0.220537
48f6c64933693697a368fb1d2ae925d6fe4cb255
1,170
py
Python
migrations/versions/ee5315dcf3e1_.py
wildintellect/tasking-manager
373fb231404628e6ae9a1838539b9c3cb23ad73c
[ "BSD-2-Clause" ]
3
2018-04-24T08:12:31.000Z
2020-09-02T18:11:21.000Z
migrations/versions/ee5315dcf3e1_.py
wildintellect/tasking-manager
373fb231404628e6ae9a1838539b9c3cb23ad73c
[ "BSD-2-Clause" ]
28
2019-01-04T17:39:00.000Z
2021-05-06T23:06:24.000Z
migrations/versions/ee5315dcf3e1_.py
wildintellect/tasking-manager
373fb231404628e6ae9a1838539b9c3cb23ad73c
[ "BSD-2-Clause" ]
3
2020-02-29T20:46:09.000Z
2020-11-20T19:44:04.000Z
"""empty message Revision ID: ee5315dcf3e1 Revises: 9f5b73af01db Create Date: 2017-05-24 10:39:46.586986 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'ee5315dcf3e1' down_revision = '9f5b73af01db' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('email_address', sa.String(), nullable=True)) op.add_column('users', sa.Column('facebook_id', sa.String(), nullable=True)) op.add_column('users', sa.Column('is_email_verified', sa.Boolean(), nullable=True)) op.add_column('users', sa.Column('linkedin_id', sa.String(), nullable=True)) op.add_column('users', sa.Column('twitter_id', sa.String(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('users', 'twitter_id') op.drop_column('users', 'linkedin_id') op.drop_column('users', 'is_email_verified') op.drop_column('users', 'facebook_id') op.drop_column('users', 'email_address') # ### end Alembic commands ###
31.621622
87
0.694017
0
0
0
0
0
0
0
0
574
0.490598
48f9216cd7b0c9c64c3f0cc8145822d20126a1a1
572
py
Python
python/random-videogame-generator.py
iamashiq/Hacktoberfest2021-2
9823996e9e97a25fcf70abc6fd6c55e4b60da568
[ "MIT" ]
6
2021-10-04T07:57:24.000Z
2021-11-15T13:35:21.000Z
python/random-videogame-generator.py
iamashiq/Hacktoberfest2021-2
9823996e9e97a25fcf70abc6fd6c55e4b60da568
[ "MIT" ]
2
2021-10-14T16:55:50.000Z
2021-10-31T12:17:20.000Z
python/random-videogame-generator.py
iamashiq/Hacktoberfest2021-2
9823996e9e97a25fcf70abc6fd6c55e4b60da568
[ "MIT" ]
33
2021-10-03T05:00:58.000Z
2021-11-05T19:49:19.000Z
print("Are you trying to find new videogames to play?") print("let me help you!") print("do you like shooting games, yes or no") shooting=input() if shooting = "yes" print("do you like battle royale games?") br=input() if br="yes" print("you should try out call of duty!") else if br="no" print("you should try overwatch!") else if shooting="no" print("do you like sports games, yes or no") sports=input() if sports="yes" print("try out Fifa or NBA2k!") else if sports="no" print("I know, try out rocket league!")
30.105263
55
0.636364
0
0
0
0
0
0
0
0
320
0.559441
48f9edbd6a5a7ba5a520ddc41c7a0b91f9666bf5
1,382
py
Python
cosmic_ray/operators/unary_operator_replacement.py
rob-smallshire/cosmic-ray
4fd751b38eee30568f8366e09452d7aa60be4e26
[ "MIT" ]
null
null
null
cosmic_ray/operators/unary_operator_replacement.py
rob-smallshire/cosmic-ray
4fd751b38eee30568f8366e09452d7aa60be4e26
[ "MIT" ]
null
null
null
cosmic_ray/operators/unary_operator_replacement.py
rob-smallshire/cosmic-ray
4fd751b38eee30568f8366e09452d7aa60be4e26
[ "MIT" ]
null
null
null
"""Implementation of the unary-operator-replacement operator. """ import ast from .operator import Operator from ..util import build_mutations # None indicates we want to delete the operator OPERATORS = (ast.UAdd, ast.USub, ast.Invert, ast.Not, None) def _to_ops(from_op): """ The sequence of operators which `from_op` could be mutated to. """ for to_op in OPERATORS: if to_op and isinstance(from_op, ast.Not): # 'not' can only be removed but not replaced with # '+', '-' or '~' b/c that may lead to strange results pass elif isinstance(from_op, ast.UAdd) and (to_op is None): # '+1' => '1' yields equivalent mutations pass else: yield to_op class MutateUnaryOperator(Operator): """An operator that modifies unary operators.""" def visit_UnaryOp(self, node): # pylint: disable=invalid-name """ http://greentreesnakes.readthedocs.io/en/latest/nodes.html#UnaryOp """ return self.visit_mutation_site( node, len(build_mutations([node.op], _to_ops))) def mutate(self, node, idx): "Perform the `idx`th mutation on node." _, to_op = build_mutations([node.op], _to_ops)[idx] if to_op: node.op = to_op() return node return node.operand
28.791667
78
0.607815
615
0.445007
507
0.36686
0
0
0
0
549
0.39725
48fa5657a82772ca80f844d0c1f8bca709ceaf35
2,069
py
Python
src/icolos/core/workflow_steps/calculation/rmsd.py
jharrymoore/Icolos
c60cc00c34208ab7011d41d52a74651763673e7a
[ "Apache-2.0" ]
11
2022-01-30T14:36:13.000Z
2022-03-22T09:40:57.000Z
src/icolos/core/workflow_steps/calculation/rmsd.py
jharrymoore/Icolos
c60cc00c34208ab7011d41d52a74651763673e7a
[ "Apache-2.0" ]
2
2022-03-23T07:56:49.000Z
2022-03-24T12:01:42.000Z
src/icolos/core/workflow_steps/calculation/rmsd.py
jharrymoore/Icolos
c60cc00c34208ab7011d41d52a74651763673e7a
[ "Apache-2.0" ]
8
2022-01-28T10:32:31.000Z
2022-03-22T09:40:59.000Z
from typing import List from pydantic import BaseModel from icolos.core.containers.compound import Conformer, unroll_conformers from icolos.utils.enums.step_enums import StepRMSDEnum, StepDataManipulationEnum from icolos.core.workflow_steps.step import _LE from icolos.core.workflow_steps.calculation.base import StepCalculationBase _SR = StepRMSDEnum() _SDM = StepDataManipulationEnum() class StepRMSD(StepCalculationBase, BaseModel): def __init__(self, **data): super().__init__(**data) # extend parameters if _SR.METHOD not in self.settings.additional.keys(): self.settings.additional[_SR.METHOD] = _SR.METHOD_ALIGNMOL def _calculate_RMSD(self, conformers: List[Conformer]): for conf in conformers: rmsd_matrix = self._calculate_rms_matrix( conformers=[conf] + conf.get_extra_data()[_SDM.KEY_MATCHED], rms_method=self._get_rms_method(), ) # use the specified tag name if it is the first value and append an index in case there are more for idx, col in enumerate(rmsd_matrix.columns[1:]): combined_tag = "".join([_SR.RMSD_TAG, "" if idx == 0 else str(idx)]) rmsd_value = rmsd_matrix.iloc[[0]][col][0] conf.get_molecule().SetProp(combined_tag, str(rmsd_value)) conf.get_extra_data()[_SDM.KEY_MATCHED][idx].get_molecule().SetProp( combined_tag, str(rmsd_value) ) def execute(self): # this assumes that the conformers that are to be matched for the calculation of the RMSD matrix, are attached # as a list in a generic data field with a specified key conformers = unroll_conformers(compounds=self.get_compounds()) self._calculate_RMSD(conformers=conformers) self._logger.log( f"Annotated {len(conformers)} conformers with RMSD values (tag: {_SR.RMSD_TAG}).", _LE.INFO, ) # TODO: add a nice pandas DF with the RMSD values to a generic data field
43.104167
118
0.669889
1,676
0.810053
0
0
0
0
0
0
439
0.21218
48fb1aa9e5e10603d8a878537cb85772b452f285
468
py
Python
iot/iot_portal/doctype/iot_homepage/iot_homepage.py
srdgame/symlink_iot
6ec524498cccaf2f49f7264a3b284a8956bd430c
[ "MIT" ]
4
2017-09-26T09:21:19.000Z
2021-12-22T10:26:36.000Z
iot/iot_portal/doctype/iot_homepage/iot_homepage.py
srdgame/symlink_iot
6ec524498cccaf2f49f7264a3b284a8956bd430c
[ "MIT" ]
1
2017-11-21T20:53:10.000Z
2017-12-11T02:17:06.000Z
iot/iot_portal/doctype/iot_homepage/iot_homepage.py
srdgame/symlink_iot
6ec524498cccaf2f49f7264a3b284a8956bd430c
[ "MIT" ]
9
2017-03-17T04:12:22.000Z
2022-03-21T09:33:11.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2017, Dirk Chang and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document from frappe.website.utils import delete_page_cache class IOTHomepage(Document): def validate(self): if not self.description: self.description = frappe._("This is an example website auto-generated from IOT") delete_page_cache('iot_home')
31.2
84
0.782051
193
0.412393
0
0
0
0
0
0
183
0.391026
48fb52f8c130468ec6ba0fdb93a761de09a44b65
368
py
Python
src/garage/envs/env_spec.py
Maltimore/garage
a3f44b37eeddca37d157766a9a72e8772f104bcd
[ "MIT" ]
2
2020-03-15T14:35:15.000Z
2021-02-15T16:38:00.000Z
src/garage/envs/env_spec.py
Maltimore/garage
a3f44b37eeddca37d157766a9a72e8772f104bcd
[ "MIT" ]
null
null
null
src/garage/envs/env_spec.py
Maltimore/garage
a3f44b37eeddca37d157766a9a72e8772f104bcd
[ "MIT" ]
1
2020-02-24T03:04:23.000Z
2020-02-24T03:04:23.000Z
"""EnvSpec class.""" class EnvSpec: """EnvSpec class. Args: observation_space (akro.Space): The observation space of the env. action_space (akro.Space): The action space of the env. """ def __init__(self, observation_space, action_space): self.observation_space = observation_space self.action_space = action_space
23
73
0.668478
344
0.934783
0
0
0
0
0
0
195
0.529891
48fc04ddecaf2a0349002da2c688a1f9e69caacb
105
py
Python
exercises/exe41 - 50/exe047.py
thomas-rohde/Classes-Python
f862995510b7aabf68bc14aecf815f597034d8a1
[ "MIT" ]
null
null
null
exercises/exe41 - 50/exe047.py
thomas-rohde/Classes-Python
f862995510b7aabf68bc14aecf815f597034d8a1
[ "MIT" ]
null
null
null
exercises/exe41 - 50/exe047.py
thomas-rohde/Classes-Python
f862995510b7aabf68bc14aecf815f597034d8a1
[ "MIT" ]
null
null
null
t = int(input('Digite um nº: ')) for t0 in range(1, 11): print('{} X {} = {}'.format(t, t0, t * t0))
26.25
47
0.495238
0
0
0
0
0
0
0
0
31
0.292453
48fe1f175aa02923066c86fda95e2c0081a49955
98,484
py
Python
pysnmp-with-texts/CISCO-DIAMETER-BASE-PROTOCOL-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/CISCO-DIAMETER-BASE-PROTOCOL-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/CISCO-DIAMETER-BASE-PROTOCOL-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module CISCO-DIAMETER-BASE-PROTOCOL-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-DIAMETER-BASE-PROTOCOL-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:54:20 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint, ConstraintsIntersection, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint", "ConstraintsIntersection", "SingleValueConstraint") ciscoExperiment, = mibBuilder.importSymbols("CISCO-SMI", "ciscoExperiment") InetAddressType, InetAddress = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddressType", "InetAddress") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") Gauge32, ObjectIdentity, Unsigned32, NotificationType, iso, MibIdentifier, Counter64, Counter32, Bits, Integer32, ModuleIdentity, IpAddress, MibScalar, MibTable, MibTableRow, MibTableColumn, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "ObjectIdentity", "Unsigned32", "NotificationType", "iso", "MibIdentifier", "Counter64", "Counter32", "Bits", "Integer32", "ModuleIdentity", "IpAddress", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "TimeTicks") RowStatus, StorageType, TruthValue, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "StorageType", "TruthValue", "DisplayString", "TextualConvention") ciscoDiameterBasePMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 10, 133)) ciscoDiameterBasePMIB.setRevisions(('2006-08-24 00:01',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoDiameterBasePMIB.setRevisionsDescriptions(('Initial version of this MIB module.',)) if mibBuilder.loadTexts: ciscoDiameterBasePMIB.setLastUpdated('200608240001Z') if mibBuilder.loadTexts: ciscoDiameterBasePMIB.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoDiameterBasePMIB.setContactInfo('Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: ciscoDiameterBasePMIB.setDescription("The MIB module for entities implementing the Diameter Base Protocol. Initial Cisco'ized version of the IETF draft draft-zorn-dime-diameter-base-protocol-mib-00.txt.") ciscoDiameterBasePMIBNotifs = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 0)) ciscoDiameterBasePMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 1)) ciscoDiameterBasePMIBConform = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 2)) cdbpLocalCfgs = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1)) cdbpLocalStats = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 2)) cdbpPeerCfgs = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3)) cdbpPeerStats = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4)) cdbpRealmCfgs = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 5)) cdbpRealmStats = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6)) cdbpTrapCfgs = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 7)) ciscoDiaBaseProtEnableProtocolErrorNotif = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 7, 1), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ciscoDiaBaseProtEnableProtocolErrorNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtEnableProtocolErrorNotif.setDescription('Setting the value of this object to true(1) enables the ciscoDiaBaseProtProtocolErrorNotif notification.') ciscoDiaBaseProtProtocolErrorNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 10, 133, 0, 1)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsProtocolErrors")) if mibBuilder.loadTexts: ciscoDiaBaseProtProtocolErrorNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtProtocolErrorNotif.setDescription('An ciscoDiaBaseProtProtocolErrorNotif notification is sent when both the following conditions are true: 1) the value of ciscoDiaBaseProtEnableProtocolErrorNotif is true(1) 2) the value of cdbpPeerStatsProtocolErrors changes. It can be utilized by an NMS to trigger logical/physical entity table maintenance polls.') ciscoDiaBaseProtEnableTransientFailureNotif = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 7, 2), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ciscoDiaBaseProtEnableTransientFailureNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtEnableTransientFailureNotif.setDescription('Setting the value of this object to true(1) enables the ciscoDiaBaseProtTransientFailureNotif notification.') ciscoDiaBaseProtTransientFailureNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 10, 133, 0, 2)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsTransientFailures")) if mibBuilder.loadTexts: ciscoDiaBaseProtTransientFailureNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtTransientFailureNotif.setDescription('An ciscoDiaBaseProtTransientFailureNotif notification is sent when both the following conditions are true: 1) the value of ciscoDiaBaseProtEnableTransientFailureNotif is true(1) 2) the value of cdbpPeerStatsTransientFailures changes. It can be utilized by an NMS to trigger logical/physical entity table maintenance polls.') ciscoDiaBaseProtEnablePermanentFailureNotif = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 7, 3), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ciscoDiaBaseProtEnablePermanentFailureNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtEnablePermanentFailureNotif.setDescription('Setting the value of this object to true(1) enables the ciscoDiaBaseProtPermanentFailureNotif notification.') ciscoDiaBaseProtPermanentFailureNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 10, 133, 0, 3)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsPermanentFailures")) if mibBuilder.loadTexts: ciscoDiaBaseProtPermanentFailureNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtPermanentFailureNotif.setDescription('An ciscoDiaBaseProtPermanentFailureNotif notification is sent when both the following conditions are true: 1) the value of ciscoDiaBaseProtEnablePermanentFailureNotif is true(1) 2) the value of cdbpPeerStatsPermanentFailures changes. It can be utilized by an NMS to trigger logical/physical entity table maintenance polls.') ciscoDiaBaseProtEnablePeerConnectionDownNotif = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 7, 4), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ciscoDiaBaseProtEnablePeerConnectionDownNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtEnablePeerConnectionDownNotif.setDescription('Setting the value of this object to true(1) enables the ciscoDiaBaseProtPeerConnectionDownNotif notification.') ciscoDiaBaseProtPeerConnectionDownNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 10, 133, 0, 4)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerId")) if mibBuilder.loadTexts: ciscoDiaBaseProtPeerConnectionDownNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtPeerConnectionDownNotif.setDescription('An ciscoDiaBaseProtPeerConnectionDownNotif notification is sent when both the following conditions are true: 1) the value of ciscoDiaBaseProtEnablePeerConnectionDownNotif is true(1) 2) cdbpPeerStatsState changes to closed(1). It can be utilized by an NMS to trigger logical/physical entity table maintenance polls.') ciscoDiaBaseProtEnablePeerConnectionUpNotif = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 7, 5), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ciscoDiaBaseProtEnablePeerConnectionUpNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtEnablePeerConnectionUpNotif.setDescription('Setting the value of this object to true(1) enables the ciscoDiaBaseProtPeerConnectionUpNotif notification.') ciscoDiaBaseProtPeerConnectionUpNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 10, 133, 0, 5)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerId")) if mibBuilder.loadTexts: ciscoDiaBaseProtPeerConnectionUpNotif.setStatus('current') if mibBuilder.loadTexts: ciscoDiaBaseProtPeerConnectionUpNotif.setDescription('An ciscoDiaBaseProtPeerConnectionUpNotif notification is sent when both the following conditions are true: 1) the value of ciscoDiaBaseProtEnablePeerConnectionUpNotif is true(1) 2) the value of cdbpPeerStatsState changes to either rOpen(6)or iOpen(7). It can be utilized by an NMS to trigger logical/physical entity table maintenance polls.') cdbpLocalId = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 1), SnmpAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalId.setStatus('current') if mibBuilder.loadTexts: cdbpLocalId.setDescription("The implementation identification string for the Diameter software in use on the system, for example; 'diameterd'") cdbpLocalIpAddrTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 2), ) if mibBuilder.loadTexts: cdbpLocalIpAddrTable.setStatus('current') if mibBuilder.loadTexts: cdbpLocalIpAddrTable.setDescription("The table listing the Diameter local host's IP Addresses.") cdbpLocalIpAddrEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 2, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalIpAddrIndex")) if mibBuilder.loadTexts: cdbpLocalIpAddrEntry.setStatus('current') if mibBuilder.loadTexts: cdbpLocalIpAddrEntry.setDescription('A row entry representing a Diameter local host IP Address.') cdbpLocalIpAddrIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 2, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpLocalIpAddrIndex.setStatus('current') if mibBuilder.loadTexts: cdbpLocalIpAddrIndex.setDescription('A number uniquely identifying the number of IP Addresses supported by this Diameter host.') cdbpLocalIpAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 2, 1, 2), InetAddressType()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalIpAddrType.setStatus('current') if mibBuilder.loadTexts: cdbpLocalIpAddrType.setDescription('The type of internet address stored in cdbpLocalIpAddress.') cdbpLocalIpAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 2, 1, 3), InetAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalIpAddress.setStatus('current') if mibBuilder.loadTexts: cdbpLocalIpAddress.setDescription('The IP-Address of the host, which is of the type specified in cdbpLocalIpAddrType.') cdbpLocalTcpListenPort = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalTcpListenPort.setStatus('current') if mibBuilder.loadTexts: cdbpLocalTcpListenPort.setDescription("This object represents Diameter TCP 'listen' port.") cdbpLocalSctpListenPort = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalSctpListenPort.setStatus('current') if mibBuilder.loadTexts: cdbpLocalSctpListenPort.setDescription("This object represents Diameter SCTP 'listen' port.") cdbpLocalOriginHost = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 5), SnmpAdminString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cdbpLocalOriginHost.setStatus('current') if mibBuilder.loadTexts: cdbpLocalOriginHost.setDescription('This object represents the Local Origin Host.') cdbpLocalRealm = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 6), SnmpAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalRealm.setStatus('current') if mibBuilder.loadTexts: cdbpLocalRealm.setDescription('This object represents the Local Realm Name.') cdbpRedundancyEnabled = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 7), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: cdbpRedundancyEnabled.setStatus('current') if mibBuilder.loadTexts: cdbpRedundancyEnabled.setDescription('This parameter indicates if cisco redundancy has been enabled, it is enabled if set to true and disabled if set to false.') cdbpRedundancyInfraState = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14))).clone(namedValues=NamedValues(("rfUnknown", 0), ("rfDisabled", 1), ("rfInitialization", 2), ("rfNegotiation", 3), ("rfStandbyCold", 4), ("rfStandbyConfig", 5), ("rfStandbyFileSys", 6), ("rfStandbyBulk", 7), ("rfStandbyHot", 8), ("rfActiveFast", 9), ("rfActiveDrain", 10), ("rfActivePreconfig", 11), ("rfActivePostconfig", 12), ("rfActive", 13), ("rfActiveExtraload", 14)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRedundancyInfraState.setStatus('current') if mibBuilder.loadTexts: cdbpRedundancyInfraState.setDescription("This parameter indicates the current state of cisco redundancy infrastructure state. rfUnknown(0) - unknown state rfDisabled(1) - RF is not functioning at this time rfInitialization(2) - co-ordinating init with platform rfNegotiation(3) - initial negotiation with peer to determine active-standby rfStandbyCold(4) - peer is active, we're cold rfStandbyConfig(5) - sync config from active to standby rfStandbyFileSys(6) - sync file sys from active to standby rfStandbyBulk(7) - clients bulk sync from active to standby rfStandbyHot(8) - standby ready-n-able to be active rfActiveFast(9) - immediate notification of standby going active rfActiveDrain(10) - drain queued messages from peer rfActivePreconfig(11) - active and before config rfActivePostconfig(12) - active and post config rfActive(13) - actively processing new calls rfActiveExtraload(14) - actively processing new calls extra resources other Processing is failed and I have extra load.") cdbpRedundancyLastSwitchover = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 9), SnmpAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRedundancyLastSwitchover.setStatus('current') if mibBuilder.loadTexts: cdbpRedundancyLastSwitchover.setDescription('This object represents the Last Switchover Time.') cdbpLocalApplTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 10), ) if mibBuilder.loadTexts: cdbpLocalApplTable.setStatus('current') if mibBuilder.loadTexts: cdbpLocalApplTable.setDescription('The table listing the Diameter applications supported by this server.') cdbpLocalApplEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 10, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalApplIndex")) if mibBuilder.loadTexts: cdbpLocalApplEntry.setStatus('current') if mibBuilder.loadTexts: cdbpLocalApplEntry.setDescription('A row entry representing a Diameter application on this server.') cdbpLocalApplIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 10, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpLocalApplIndex.setStatus('current') if mibBuilder.loadTexts: cdbpLocalApplIndex.setDescription('A number uniquely identifying a supported Diameter application. Upon reload, cdbpLocalApplIndex values may be changed.') cdbpLocalApplStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 10, 1, 2), StorageType().clone('nonVolatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpLocalApplStorageType.setReference('Textual Conventions for SMIv2, Section 2.') if mibBuilder.loadTexts: cdbpLocalApplStorageType.setStatus('current') if mibBuilder.loadTexts: cdbpLocalApplStorageType.setDescription('The storage type for this conceptual row. None of the columnar objects is writable when the conceptual row is permanent.') cdbpLocalApplRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 10, 1, 3), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpLocalApplRowStatus.setStatus('current') if mibBuilder.loadTexts: cdbpLocalApplRowStatus.setDescription("The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the cdsgStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding cdbpLocalApplIndex has been set. cdbpLocalApplIndex may not be modified while the value of this object is active(1): An attempt to set these objects while the value of cdbpLocalApplStatus is active(1) will result in an inconsistentValue error. Entries in this table with cdbpLocalApplStatus equal to active(1) remain in the table until destroyed. Entries in this table with cdbpLocalApplStatus equal to values other than active(1) will be destroyed after timeout (5 minutes).") cdbpLocalVendorTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 11), ) if mibBuilder.loadTexts: cdbpLocalVendorTable.setStatus('current') if mibBuilder.loadTexts: cdbpLocalVendorTable.setDescription('The table listing the vendor IDs supported by local Diameter.') cdbpLocalVendorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 11, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalVendorIndex")) if mibBuilder.loadTexts: cdbpLocalVendorEntry.setStatus('current') if mibBuilder.loadTexts: cdbpLocalVendorEntry.setDescription('A row entry representing a vendor ID supported by local Diameter.') cdbpLocalVendorIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 11, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpLocalVendorIndex.setStatus('current') if mibBuilder.loadTexts: cdbpLocalVendorIndex.setDescription('A number uniquely identifying the vendor ID supported by local Diameter. Upon reload, cdbpLocalVendorIndex values may be changed.') cdbpLocalVendorId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 11, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 9, 10415, 12645))).clone(namedValues=NamedValues(("diameterVendorIetf", 0), ("diameterVendorCisco", 9), ("diameterVendor3gpp", 10415), ("diameterVendorVodafone", 12645))).clone('diameterVendorIetf')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpLocalVendorId.setStatus('current') if mibBuilder.loadTexts: cdbpLocalVendorId.setDescription('The active vendor ID used for peer connections. diameterVendorIetf(0) - Diameter vendor id ietf diameterVendorCisco(9) - Diameter vendor id cisco diameterVendor3gpp(10415) - Diameter vendor id 3gpp diameterVendorVodafone(12645) - Diameter vendor id vodafone.') cdbpLocalVendorStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 11, 1, 3), StorageType().clone('nonVolatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpLocalVendorStorageType.setReference('Textual Conventions for SMIv2, Section 2.') if mibBuilder.loadTexts: cdbpLocalVendorStorageType.setStatus('current') if mibBuilder.loadTexts: cdbpLocalVendorStorageType.setDescription('The storage type for this conceptual row. None of the objects are writable when the conceptual row is permanent.') cdbpLocalVendorRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 11, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpLocalVendorRowStatus.setStatus('current') if mibBuilder.loadTexts: cdbpLocalVendorRowStatus.setDescription("The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the cdbpLocalVendorRowStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding cdbpLocalVendorId has been set. cdbpLocalVendorId may not be modified while the value of this object is active(1): An attempt to set these objects while the value of cdbpLocalVendorRowStatus is active(1) will result in an inconsistentValue error. Entries in this table with cdbpLocalVendorRowStatus equal to active(1) remain in the table until destroyed. Entries in this table with cdbpLocalVendorRowStatus equal to values other than active(1) will be destroyed after timeout (5 minutes).") cdbpAppAdvToPeerTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 12), ) if mibBuilder.loadTexts: cdbpAppAdvToPeerTable.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvToPeerTable.setDescription('The table listing the applications advertised by this host to each peer and the types of service supported: accounting, authentication or both.') cdbpAppAdvToPeerEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 12, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIndex"), (0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpAppAdvToPeerVendorId"), (0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpAppAdvToPeerIndex")) if mibBuilder.loadTexts: cdbpAppAdvToPeerEntry.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvToPeerEntry.setDescription('A row entry representing a discovered or configured Diameter peer server.') cdbpAppAdvToPeerVendorId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 12, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpAppAdvToPeerVendorId.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvToPeerVendorId.setDescription('The IANA Enterprise Code value assigned to the vendor of the Diameter device.') cdbpAppAdvToPeerIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 12, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpAppAdvToPeerIndex.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvToPeerIndex.setDescription('A number uniquely identifying the Diameter applications advertised as supported by this host to each peer. Upon reload, cdbpAppAdvToPeerIndex values may be changed.') cdbpAppAdvToPeerServices = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 12, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("acct", 1), ("auth", 2), ("both", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpAppAdvToPeerServices.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvToPeerServices.setDescription('The type of services supported for each application, accounting, authentication or both. acct(1) - accounting auth(2) - authentication both(3) - both accounting and authentication.') cdbpAppAdvToPeerStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 12, 1, 4), StorageType().clone('nonVolatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpAppAdvToPeerStorageType.setReference('Textual Conventions for SMIv2, Section 2.') if mibBuilder.loadTexts: cdbpAppAdvToPeerStorageType.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvToPeerStorageType.setDescription('The storage type for this conceptual row. None of the objects are writable when the conceptual row is permanent.') cdbpAppAdvToPeerRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 1, 12, 1, 5), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpAppAdvToPeerRowStatus.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvToPeerRowStatus.setDescription("The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the cdbpAppAdvToPeerRowStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding cdbpAppAdvToPeerVendorId has been set. cdbpAppAdvToPeerVendorId may not be modified while the value of this object is active(1): An attempt to set these objects while the value of cdbpAppAdvToPeerRowStatus is active(1) will result in an inconsistentValue error. Entries in this table with cdbpAppAdvToPeerRowStatus equal to active(1) remain in the table until destroyed. Entries in this table with cdbpAppAdvToPeerRowStatus equal to values other than active(1) will be destroyed after timeout (5 minutes).") cdbpLocalStatsTotalPacketsIn = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 2, 1), Counter32()).setUnits('packets').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalStatsTotalPacketsIn.setStatus('current') if mibBuilder.loadTexts: cdbpLocalStatsTotalPacketsIn.setDescription('The total number of packets received by Diameter Base Protocol.') cdbpLocalStatsTotalPacketsOut = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 2, 2), Counter32()).setUnits('packets').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalStatsTotalPacketsOut.setStatus('current') if mibBuilder.loadTexts: cdbpLocalStatsTotalPacketsOut.setDescription('The total number of packets transmitted by Diameter Base Protocol.') cdbpLocalStatsTotalUpTime = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 2, 3), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalStatsTotalUpTime.setStatus('current') if mibBuilder.loadTexts: cdbpLocalStatsTotalUpTime.setDescription('This object represents the total time the Diameter server has been up until now.') cdbpLocalResetTime = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 2, 4), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpLocalResetTime.setStatus('current') if mibBuilder.loadTexts: cdbpLocalResetTime.setDescription("If the server keeps persistent state (e.g., a process) and supports a 'reset' operation (e.g., can be told to re-read configuration files), this value will be the time elapsed (in hundredths of a second) since the server was 'reset'. For software that does not have persistence or does not support a 'reset' operation, this value will be zero.") cdbpLocalConfigReset = MibScalar((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 2, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("other", 1), ("reset", 2), ("initializing", 3), ("running", 4))).clone('other')).setMaxAccess("readwrite") if mibBuilder.loadTexts: cdbpLocalConfigReset.setStatus('current') if mibBuilder.loadTexts: cdbpLocalConfigReset.setDescription('Status/action object to reinitialize any persistent server state. When set to reset(2), any persistent server state (such as a process) is reinitialized as if the server had just been started. This value will never be returned by a read operation. When read, one of the following values will be returned: other(1) - server in some unknown state. reset(2) - command to reinitialize server state. initializing(3) - server (re)initializing. running(4) - server currently running.') cdbpPeerTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1), ) if mibBuilder.loadTexts: cdbpPeerTable.setStatus('current') if mibBuilder.loadTexts: cdbpPeerTable.setDescription('The table listing information regarding the discovered or configured Diameter peer servers.') cdbpPeerEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIndex")) if mibBuilder.loadTexts: cdbpPeerEntry.setStatus('current') if mibBuilder.loadTexts: cdbpPeerEntry.setDescription('A row entry representing a discovered or configured Diameter peer server.') cdbpPeerIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpPeerIndex.setStatus('current') if mibBuilder.loadTexts: cdbpPeerIndex.setDescription('A number uniquely identifying each Diameter peer with which the host server communicates. Upon reload, cdbpPeerIndex values may be changed.') cdbpPeerId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 2), SnmpAdminString()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpPeerId.setStatus('current') if mibBuilder.loadTexts: cdbpPeerId.setDescription('The server identifier for the Diameter peer. It must be unique and non-empty.') cdbpPeerPortConnect = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerPortConnect.setStatus('current') if mibBuilder.loadTexts: cdbpPeerPortConnect.setDescription('The connection port this server used to connect to the Diameter peer. If there is no active connection, this value will be zero(0).') cdbpPeerPortListen = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535)).clone(3868)).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpPeerPortListen.setStatus('current') if mibBuilder.loadTexts: cdbpPeerPortListen.setDescription('The port the server is listening on.') cdbpPeerProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("tcp", 1), ("sctp", 2))).clone('tcp')).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerProtocol.setStatus('current') if mibBuilder.loadTexts: cdbpPeerProtocol.setDescription('The transport protocol (tcp/sctp) the Diameter peer is using. tcp(1) - Transmission Control Protocol sctp(2) - Stream Control Transmission Protocol.') cdbpPeerSecurity = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("tls", 2), ("ipsec", 3))).clone('other')).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerSecurity.setStatus('current') if mibBuilder.loadTexts: cdbpPeerSecurity.setDescription('The security the Diameter peer is using. other(1) - Unknown Security Protocol. tls(2) - Transport Layer Security Protocol. ipsec(3) - Internet Protocol Security.') cdbpPeerFirmwareRevision = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 7), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerFirmwareRevision.setStatus('current') if mibBuilder.loadTexts: cdbpPeerFirmwareRevision.setDescription('Firmware revision of peer. If no firmware revision, the revision of the Diameter software module may be reported instead.') cdbpPeerStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 8), StorageType().clone('nonVolatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpPeerStorageType.setReference('Textual Conventions for SMIv2, Section 2.') if mibBuilder.loadTexts: cdbpPeerStorageType.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStorageType.setDescription('The storage type for this conceptual row. Only cdbpPeerPortListen object is writable when the conceptual row is permanent.') cdbpPeerRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 1, 1, 9), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpPeerRowStatus.setStatus('current') if mibBuilder.loadTexts: cdbpPeerRowStatus.setDescription("The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the cdbpPeerRowStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding cdbpPeerId has been set. cdbpPeerId may not be modified while the value of this object is active(1): An attempt to set these objects while the value of cdbpPeerRowStatus is active(1) will result in an inconsistentValue error. Entries in this table with cdbpPeerRowStatus equal to active(1) remain in the table until destroyed. Entries in this table with cdbpPeerRowStatus equal to values other than active(1) will be destroyed after timeout (5 minutes).") cdbpPeerIpAddrTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 2), ) if mibBuilder.loadTexts: cdbpPeerIpAddrTable.setStatus('current') if mibBuilder.loadTexts: cdbpPeerIpAddrTable.setDescription('The table listing the Diameter server IP Addresses.') cdbpPeerIpAddrEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 2, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIndex"), (0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIpAddressIndex")) if mibBuilder.loadTexts: cdbpPeerIpAddrEntry.setStatus('current') if mibBuilder.loadTexts: cdbpPeerIpAddrEntry.setDescription('A row entry representing peer Diameter server IP Addresses.') cdbpPeerIpAddressIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 2, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpPeerIpAddressIndex.setStatus('current') if mibBuilder.loadTexts: cdbpPeerIpAddressIndex.setDescription('A number uniquely identifying the number of IP Addresses supported by all Diameter peers.') cdbpPeerIpAddressType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 2, 1, 2), InetAddressType()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerIpAddressType.setStatus('current') if mibBuilder.loadTexts: cdbpPeerIpAddressType.setDescription('The type of address stored in diameterPeerIpAddress.') cdbpPeerIpAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 2, 1, 3), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cdbpPeerIpAddress.setStatus('current') if mibBuilder.loadTexts: cdbpPeerIpAddress.setDescription('The active IP Address(es) used for connections.') cdbpAppAdvFromPeerTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 3), ) if mibBuilder.loadTexts: cdbpAppAdvFromPeerTable.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvFromPeerTable.setDescription('The table listing the applications advertised by each peer to this host and the types of service supported: accounting, authentication or both.') cdbpAppAdvFromPeerEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 3, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIndex"), (0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpAppAdvFromPeerVendorId"), (0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpAppAdvFromPeerIndex")) if mibBuilder.loadTexts: cdbpAppAdvFromPeerEntry.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvFromPeerEntry.setDescription('A row entry representing a discovered or configured Diameter peer server.') cdbpAppAdvFromPeerVendorId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 3, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpAppAdvFromPeerVendorId.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvFromPeerVendorId.setDescription('The IANA Enterprise Code value assigned to the vendor of the Diameter device.') cdbpAppAdvFromPeerIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 3, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpAppAdvFromPeerIndex.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvFromPeerIndex.setDescription('A number uniquely identifying the applications advertised as supported from each Diameter peer.') cdbpAppAdvFromPeerType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 3, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("acct", 1), ("auth", 2), ("both", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpAppAdvFromPeerType.setStatus('current') if mibBuilder.loadTexts: cdbpAppAdvFromPeerType.setDescription('The type of services supported for each application, accounting, authentication or both. acct(1) - accounting auth(2) - authentication both(3) - both accounting and authentication.') cdbpPeerVendorTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 4), ) if mibBuilder.loadTexts: cdbpPeerVendorTable.setStatus('current') if mibBuilder.loadTexts: cdbpPeerVendorTable.setDescription('The table listing the Vendor IDs supported by the peer.') cdbpPeerVendorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 4, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIndex"), (0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerVendorIndex")) if mibBuilder.loadTexts: cdbpPeerVendorEntry.setStatus('current') if mibBuilder.loadTexts: cdbpPeerVendorEntry.setDescription('A row entry representing a Vendor ID supported by the peer.') cdbpPeerVendorIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 4, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpPeerVendorIndex.setStatus('current') if mibBuilder.loadTexts: cdbpPeerVendorIndex.setDescription('A number uniquely identifying the Vendor ID supported by the peer. Upon reload, cdbpPeerVendorIndex values may be changed.') cdbpPeerVendorId = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 4, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 9, 10415, 12645))).clone(namedValues=NamedValues(("diameterVendorIetf", 0), ("diameterVendorCisco", 9), ("diameterVendor3gpp", 10415), ("diameterVendorVodafone", 12645))).clone('diameterVendorIetf')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpPeerVendorId.setStatus('current') if mibBuilder.loadTexts: cdbpPeerVendorId.setDescription('The active vendor ID used for peer connections. diameterVendorIetf(0) - Diameter vendor id ietf diameterVendorCisco(9) - Diameter vendor id cisco diameterVendor3gpp(10415) - Diameter vendor id 3gpp diameterVendorVodafone(12645) - Diameter vendor id vodafone.') cdbpPeerVendorStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 4, 1, 3), StorageType().clone('nonVolatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpPeerVendorStorageType.setReference('Textual Conventions for SMIv2, Section 2.') if mibBuilder.loadTexts: cdbpPeerVendorStorageType.setStatus('current') if mibBuilder.loadTexts: cdbpPeerVendorStorageType.setDescription('The storage type for this conceptual row. None of the objects are writable when the conceptual row is permanent.') cdbpPeerVendorRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 3, 4, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cdbpPeerVendorRowStatus.setStatus('current') if mibBuilder.loadTexts: cdbpPeerVendorRowStatus.setDescription("The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the cdbpPeerVendorRowStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding cdbpPeerVendorId has been set. Also, a newly created row cannot be made active until the corresponding 'cdbpPeerIndex' has been set. cdbpPeerVendorId may not be modified while the value of this object is active(1): An attempt to set these objects while the value of cdbpPeerVendorRowStatus is active(1) will result in an inconsistentValue error. Entries in this table with cdbpPeerVendorRowStatus equal to active(1) remain in the table until destroyed. Entries in this table with cdbpPeerVendorRowStatus equal to values other than active(1) will be destroyed after timeout (5 minutes).") cdbpPeerStatsTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1), ) if mibBuilder.loadTexts: cdbpPeerStatsTable.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsTable.setDescription('The table listing the Diameter peer statistics.') cdbpPeerStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIndex")) if mibBuilder.loadTexts: cdbpPeerStatsEntry.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsEntry.setDescription('A row entry representing a Diameter peer.') cdbpPeerStatsState = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("closed", 1), ("waitConnAck", 2), ("waitICEA", 3), ("elect", 4), ("waitReturns", 5), ("rOpen", 6), ("iOpen", 7), ("closing", 8)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsState.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsState.setDescription('Connection state in the Peer State Machine of the peer with which this Diameter server is communicating. closed(1) - Connection closed with this peer. waitConnAck(2) - Waiting for an acknowledgment from this peer. waitICEA(3) - Waiting for a Capabilities-Exchange- Answer from this peer. elect(4) - When the peer and the server are both trying to bring up a connection with each other at the same time. An election process begins which determines which socket remains open. waitReturns(5) - Waiting for election returns. r-open(6) - Responder transport connection is used for communication. i-open(7) - Initiator transport connection is used for communication. closing(8) - Actively closing and doing cleanup.') cdbpPeerStatsStateDuration = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 2), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsStateDuration.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsStateDuration.setDescription('This object represents the Peer state duration.') cdbpPeerStatsLastDiscCause = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("rebooting", 1), ("busy", 2), ("doNotWantToTalk", 3), ("election", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsLastDiscCause.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsLastDiscCause.setDescription("The last cause for a peers disconnection. rebooting(1) - A scheduled reboot is imminent. busy(2) - The peer's internal resources are constrained, and it has determined that the transport connection needs to be shutdown. doNotWantToTalk(3) - The peer has determined that it does not see a need for the transport connection to exist, since it does not expect any messages to be exchanged in the foreseeable future. electionLost(4) - The peer has determined that it has lost the election process and has therefore disconnected the transport connection.") cdbpPeerStatsWhoInitDisconnect = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("host", 1), ("peer", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsWhoInitDisconnect.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsWhoInitDisconnect.setDescription('Did the host or peer initiate the disconnect? host(1) - If this server initiated the disconnect. peer(2) - If the peer with which this server was connected initiated the disconnect.') cdbpPeerStatsDWCurrentStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("okay", 1), ("suspect", 2), ("down", 3), ("reopen", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDWCurrentStatus.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDWCurrentStatus.setDescription('This object indicates the connection status. okay(1) - Indicates the connection is presumed working. suspect(2) - Indicates the connection is possibly congested or down. down(3) - The peer is no longer reachable, causing the transport connection to be shutdown. reopen(4) - Three watchdog messages are exchanged with accepted round trip times, and the connection to the peer is considered stabilized.') cdbpPeerStatsTimeoutConnAtmpts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 6), Counter32()).setUnits('attempts').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsTimeoutConnAtmpts.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsTimeoutConnAtmpts.setDescription('If there is no transport connection with a peer, this is the number of times the server attempts to connect to that peer. This is reset on disconnection.') cdbpPeerStatsASRsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 7), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsASRsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsASRsIn.setDescription('Abort-Session-Request messages received from the peer.') cdbpPeerStatsASRsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 8), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsASRsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsASRsOut.setDescription('Abort-Session-Request messages sent to the peer.') cdbpPeerStatsASAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 9), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsASAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsASAsIn.setDescription('Number of Abort-Session-Answer messages received from the peer.') cdbpPeerStatsASAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 10), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsASAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsASAsOut.setDescription('Number of Abort-Session-Answer messages sent to the peer.') cdbpPeerStatsACRsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 11), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsACRsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsACRsIn.setDescription('Number of Accounting-Request messages received from the peer.') cdbpPeerStatsACRsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 12), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsACRsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsACRsOut.setDescription('Number of Accounting-Request messages sent to the peer.') cdbpPeerStatsACAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 13), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsACAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsACAsIn.setDescription('Number of Accounting-Answer messages received from the peer.') cdbpPeerStatsACAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 14), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsACAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsACAsOut.setDescription('Number of Accounting-Answer messages sent to the peer.') cdbpPeerStatsCERsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 15), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsCERsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsCERsIn.setDescription('Number of Capabilities-Exchange-Request messages received from the peer.') cdbpPeerStatsCERsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 16), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsCERsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsCERsOut.setDescription('Number of Capabilities-Exchange-Request messages sent to the peer.') cdbpPeerStatsCEAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 17), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsCEAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsCEAsIn.setDescription('Number of Capabilities-Exchange-Answer messages received from the peer.') cdbpPeerStatsCEAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 18), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsCEAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsCEAsOut.setDescription('Number of Capabilities-Exchange-Answer messages sent to the peer.') cdbpPeerStatsDWRsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 19), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDWRsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDWRsIn.setDescription('Number of Device-Watchdog-Request messages received from the peer.') cdbpPeerStatsDWRsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 20), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDWRsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDWRsOut.setDescription('Number of Device-Watchdog-Request messages sent to the peer.') cdbpPeerStatsDWAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 21), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDWAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDWAsIn.setDescription('Number of Device-Watchdog-Answer messages received from the peer.') cdbpPeerStatsDWAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 22), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDWAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDWAsOut.setDescription('Number of Device-Watchdog-Answer messages sent to the peer.') cdbpPeerStatsDPRsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 23), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDPRsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDPRsIn.setDescription('Number of Disconnect-Peer-Request messages received.') cdbpPeerStatsDPRsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 24), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDPRsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDPRsOut.setDescription('Number of Disconnect-Peer-Request messages sent.') cdbpPeerStatsDPAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 25), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDPAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDPAsIn.setDescription('Number of Disconnect-Peer-Answer messages received.') cdbpPeerStatsDPAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 26), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDPAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDPAsOut.setDescription('Number of Disconnect-Peer-Answer messages sent.') cdbpPeerStatsRARsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 27), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsRARsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsRARsIn.setDescription('Number of Re-Auth-Request messages received.') cdbpPeerStatsRARsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 28), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsRARsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsRARsOut.setDescription('Number of Re-Auth-Request messages sent.') cdbpPeerStatsRAAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 29), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsRAAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsRAAsIn.setDescription('Number of Re-Auth-Answer messages received.') cdbpPeerStatsRAAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 30), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsRAAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsRAAsOut.setDescription('Number of Re-Auth-Answer messages sent.') cdbpPeerStatsSTRsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 31), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsSTRsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsSTRsIn.setDescription('Number of Session-Termination-Request messages received from the peer.') cdbpPeerStatsSTRsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 32), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsSTRsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsSTRsOut.setDescription('Number of Session-Termination-Request messages sent to the peer.') cdbpPeerStatsSTAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 33), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsSTAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsSTAsIn.setDescription('Number of Session-Termination-Answer messages received from the peer.') cdbpPeerStatsSTAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 34), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsSTAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsSTAsOut.setDescription('Number of Session-Termination-Answer messages sent to the peer.') cdbpPeerStatsDWReqTimer = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 35), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsDWReqTimer.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsDWReqTimer.setDescription('Device-Watchdog Request Timer, which is the interval between packets sent to peers.') cdbpPeerStatsRedirectEvents = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 36), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsRedirectEvents.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsRedirectEvents.setDescription('Redirect Event count, which is the number of redirects sent from a peer.') cdbpPeerStatsAccDupRequests = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 37), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsAccDupRequests.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsAccDupRequests.setDescription('The number of duplicate Diameter Accounting-Request packets received.') cdbpPeerStatsMalformedReqsts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 38), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsMalformedReqsts.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsMalformedReqsts.setDescription('The number of malformed Diameter packets received.') cdbpPeerStatsAccsNotRecorded = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 39), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsAccsNotRecorded.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsAccsNotRecorded.setDescription('The number of Diameter Accounting-Request packets which were received and responded to but not recorded.') cdbpPeerStatsAccRetrans = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 40), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsAccRetrans.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsAccRetrans.setDescription('The number of Diameter Accounting-Request packets retransmitted to this Diameter server.') cdbpPeerStatsTotalRetrans = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 41), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsTotalRetrans.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsTotalRetrans.setDescription('The number of Diameter packets retransmitted to this Diameter server, not to include Diameter Accounting-Request packets retransmitted.') cdbpPeerStatsAccPendReqstsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 42), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsAccPendReqstsOut.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsAccPendReqstsOut.setDescription('The number of Diameter Accounting-Request packets sent to this peer that have not yet timed out or received a response. This variable is incremented when an Accounting-Request is sent to this server and decremented due to receipt of an Accounting-Response, a timeout or a retransmission.') cdbpPeerStatsAccReqstsDropped = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 43), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsAccReqstsDropped.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsAccReqstsDropped.setDescription('The number of Accounting-Requests to this server that have been dropped.') cdbpPeerStatsHByHDropMessages = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 44), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsHByHDropMessages.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsHByHDropMessages.setDescription('An answer message that is received with an unknown hop-by-hop identifier. Does not include accounting requests dropped.') cdbpPeerStatsEToEDupMessages = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 45), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsEToEDupMessages.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsEToEDupMessages.setDescription('Duplicate answer messages that are to be locally consumed. Does not include duplicate accounting requests received.') cdbpPeerStatsUnknownTypes = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 46), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsUnknownTypes.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsUnknownTypes.setDescription('The number of Diameter packets of unknown type which were received.') cdbpPeerStatsProtocolErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 47), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsProtocolErrors.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsProtocolErrors.setDescription('This object represents the Number of protocol errors returned to peer, but not including redirects.') cdbpPeerStatsTransientFailures = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 48), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsTransientFailures.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsTransientFailures.setDescription('This object represents the transient failure count.') cdbpPeerStatsPermanentFailures = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 49), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsPermanentFailures.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsPermanentFailures.setDescription('This object represents the Number of permanent failures returned to peer.') cdbpPeerStatsTransportDown = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 4, 1, 1, 50), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpPeerStatsTransportDown.setStatus('current') if mibBuilder.loadTexts: cdbpPeerStatsTransportDown.setDescription('This object represents the Number of unexpected transport failures.') cdbpRealmKnownPeersTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 5, 1), ) if mibBuilder.loadTexts: cdbpRealmKnownPeersTable.setStatus('current') if mibBuilder.loadTexts: cdbpRealmKnownPeersTable.setDescription('The table listing the Diameter realms and known peers.') cdbpRealmKnownPeersEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 5, 1, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteIndex"), (0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmKnownPeersIndex")) if mibBuilder.loadTexts: cdbpRealmKnownPeersEntry.setStatus('current') if mibBuilder.loadTexts: cdbpRealmKnownPeersEntry.setDescription('A row entry representing a Diameter realm and known peers.') cdbpRealmKnownPeersIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 5, 1, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpRealmKnownPeersIndex.setStatus('current') if mibBuilder.loadTexts: cdbpRealmKnownPeersIndex.setDescription('A number uniquely identifying a peer known to this realm. Upon reload, cdbpRealmKnownPeersIndex values may be changed.') cdbpRealmKnownPeers = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 5, 1, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmKnownPeers.setStatus('current') if mibBuilder.loadTexts: cdbpRealmKnownPeers.setDescription('The index of the peer this realm knows about. This is an ordered list, where the ordering signifies the order in which the peers are tried. Same as the cdbpPeerIndex') cdbpRealmKnownPeersChosen = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 5, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("roundRobin", 1), ("loadBalance", 2), ("firstPreferred", 3), ("mostRecentFirst", 4), ("other", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmKnownPeersChosen.setStatus('current') if mibBuilder.loadTexts: cdbpRealmKnownPeersChosen.setDescription('How the realm chooses which peer to send packets to. roundRobin(1) - The peer used for each transaction is selected based on the order in which peers are configured. loadBalance(2) - The peer used for each transaction is based on the load metric (maybe implementation dependent) of all peers defined for the realm, with the least loaded server selected first. firstPreferred(3) - The first defined server is always used for transactions unless failover occurs. mostRecentFirst(4) - The most recently used server is used first for each transaction.') cdbpRealmMessageRouteTable = MibTable((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1), ) if mibBuilder.loadTexts: cdbpRealmMessageRouteTable.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteTable.setDescription('The table listing the Diameter realm-based message route information.') cdbpRealmMessageRouteEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1), ).setIndexNames((0, "CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteIndex")) if mibBuilder.loadTexts: cdbpRealmMessageRouteEntry.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteEntry.setDescription('A row entry representing a Diameter realm based message route server.') cdbpRealmMessageRouteIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: cdbpRealmMessageRouteIndex.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteIndex.setDescription('A number uniquely identifying each realm.') cdbpRealmMessageRouteRealm = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 2), SnmpAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteRealm.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteRealm.setDescription('This object represents the realm name') cdbpRealmMessageRouteApp = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteApp.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteApp.setDescription('Application id used to route packets to this realm.') cdbpRealmMessageRouteType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("acct", 1), ("auth", 2), ("both", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteType.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteType.setDescription('The types of service supported for each realm application: accounting, authentication or both. acct(1) - accounting auth(2) - authentication both(3) - both accounting and authentication.') cdbpRealmMessageRouteAction = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("local", 1), ("relay", 2), ("proxy", 3), ("redirect", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteAction.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteAction.setDescription('The action is used to identify how a message should be treated based on the realm, application and type. local(1) - Diameter messages that resolve to a route entry with the Local Action set to Local can be satisfied locally, and do not need to be routed to another server. relay(2) - All Diameter messages that fall within this category MUST be routed to a next-hop server, without modifying any non-routing AVPs. proxy(3) - All Diameter messages that fall within this category MUST be routed to a next-hop server. redirect(4) - Diameter messages that fall within this category MUST have the identity of the home Diameter server(s) appended, and returned to the sender of the message.') cdbpRealmMessageRouteACRsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 6), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteACRsIn.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteACRsIn.setDescription('Number of Accounting-Request messages received from the realm.') cdbpRealmMessageRouteACRsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 7), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteACRsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteACRsOut.setDescription('Number of Accounting-Request messages sent to the realm.') cdbpRealmMessageRouteACAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 8), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteACAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteACAsIn.setDescription('Number of Accounting-Answer messages received from the realm.') cdbpRealmMessageRouteACAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 9), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteACAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteACAsOut.setDescription('Number of Accounting-Answer messages sent to the realm.') cdbpRealmMessageRouteRARsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 10), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteRARsIn.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteRARsIn.setDescription('Number of Re-Auth-Request messages received from the realm.') cdbpRealmMessageRouteRARsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 11), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteRARsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteRARsOut.setDescription('Number of Re-Auth-Request messages sent to the realm.') cdbpRealmMessageRouteRAAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 12), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteRAAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteRAAsIn.setDescription('Number of Re-Auth-Answer messages received from the realm.') cdbpRealmMessageRouteRAAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 13), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteRAAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteRAAsOut.setDescription('Number of Re-Auth-Answer messages sent to the realm.') cdbpRealmMessageRouteSTRsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 14), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteSTRsIn.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteSTRsIn.setDescription('Number of Session-Termination-Request messages received from the realm.') cdbpRealmMessageRouteSTRsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 15), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteSTRsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteSTRsOut.setDescription('Number of Session-Termination-Request messages sent to the realm.') cdbpRealmMessageRouteSTAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 16), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteSTAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteSTAsIn.setDescription('Number of Session-Termination-Answer messages received from the realm.') cdbpRealmMessageRouteSTAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 17), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteSTAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteSTAsOut.setDescription('Number of Session-Termination-Answer messages sent to the realm.') cdbpRealmMessageRouteASRsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 18), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteASRsIn.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteASRsIn.setDescription('Number of Abort-Session-Request messages received from the realm.') cdbpRealmMessageRouteASRsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 19), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteASRsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteASRsOut.setDescription('Number of Abort-Session-Request messages sent to the realm.') cdbpRealmMessageRouteASAsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 20), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteASAsIn.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteASAsIn.setDescription('Number of Abort-Session-Answer messages received from the realm.') cdbpRealmMessageRouteASAsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 21), Counter32()).setUnits('messages').setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteASAsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteASAsOut.setDescription('Number of Abort-Session-Answer messages sent to the realm.') cdbpRealmMessageRouteAccRetrans = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 22), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteAccRetrans.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteAccRetrans.setDescription('The number of Diameter accounting packets retransmitted to this realm.') cdbpRealmMessageRouteAccDupReqsts = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 23), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteAccDupReqsts.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteAccDupReqsts.setDescription('The number of duplicate Diameter accounting packets sent to this realm.') cdbpRealmMessageRoutePendReqstsOut = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 24), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRoutePendReqstsOut.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRoutePendReqstsOut.setDescription('The number of Diameter Accounting-Request packets sent to this peer that have not yet timed out or received a response. This variable is incremented when an Accounting-Request is sent to this server and decremented due to receipt of an Accounting-Response, a timeout or a retransmission.') cdbpRealmMessageRouteReqstsDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 10, 133, 1, 6, 1, 1, 25), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cdbpRealmMessageRouteReqstsDrop.setStatus('current') if mibBuilder.loadTexts: cdbpRealmMessageRouteReqstsDrop.setDescription('The number of requests dropped by this realm.') ciscoDiameterBasePMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 1)) ciscoDiameterBasePMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2)) ciscoDiameterBasePMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 1, 1)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBLocalCfgGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBPeerCfgGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBPeerStatsGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBNotificationsGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBTrapCfgGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBLocalCfgSkippedGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBLocalStatsSkippedGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBPeerCfgSkippedGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBPeerStatsSkippedGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBRealmCfgSkippedGroup"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiameterBasePMIBRealmStatsSkippedGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBCompliance = ciscoDiameterBasePMIBCompliance.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBCompliance.setDescription('The compliance statement for Diameter Base Protocol entities.') ciscoDiameterBasePMIBLocalCfgGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 1)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalRealm"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRedundancyEnabled"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRedundancyInfraState"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRedundancyLastSwitchover"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalOriginHost"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalVendorId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalVendorStorageType"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalVendorRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBLocalCfgGroup = ciscoDiameterBasePMIBLocalCfgGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBLocalCfgGroup.setDescription('A collection of objects providing configuration common to the server.') ciscoDiameterBasePMIBPeerCfgGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 2)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerPortConnect"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerPortListen"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerProtocol"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerSecurity"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerFirmwareRevision"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStorageType"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerRowStatus"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIpAddressType"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerIpAddress"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerVendorId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerVendorStorageType"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerVendorRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBPeerCfgGroup = ciscoDiameterBasePMIBPeerCfgGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBPeerCfgGroup.setDescription('A collection of objects providing configuration of the Diameter peers.') ciscoDiameterBasePMIBPeerStatsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 3)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsState"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsStateDuration"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsLastDiscCause"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsWhoInitDisconnect"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDWCurrentStatus"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsTimeoutConnAtmpts"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsASRsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsASRsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsASAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsASAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsACRsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsACRsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsACAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsACAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsCERsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsCERsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsCEAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsCEAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDWRsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDWRsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDWAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDWAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDPRsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDPRsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDPAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDPAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsRARsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsRARsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsRAAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsRAAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsSTRsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsSTRsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsSTAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsSTAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDWReqTimer"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsRedirectEvents"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsAccDupRequests"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsMalformedReqsts"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsAccsNotRecorded"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsAccRetrans"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsTotalRetrans"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsAccPendReqstsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsAccReqstsDropped"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsHByHDropMessages"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsEToEDupMessages"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsUnknownTypes"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsProtocolErrors"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsTransientFailures"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsPermanentFailures"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsTransportDown")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBPeerStatsGroup = ciscoDiameterBasePMIBPeerStatsGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBPeerStatsGroup.setDescription('A collection of objects providing statistics of the Diameter peers.') ciscoDiameterBasePMIBNotificationsGroup = NotificationGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 4)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtProtocolErrorNotif"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtTransientFailureNotif"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtPermanentFailureNotif"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtPeerConnectionDownNotif"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtPeerConnectionUpNotif")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBNotificationsGroup = ciscoDiameterBasePMIBNotificationsGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBNotificationsGroup.setDescription('The set of notifications which an agent is required to implement.') ciscoDiameterBasePMIBTrapCfgGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 5)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtEnableProtocolErrorNotif"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtEnableTransientFailureNotif"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtEnablePermanentFailureNotif"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtEnablePeerConnectionDownNotif"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "ciscoDiaBaseProtEnablePeerConnectionUpNotif")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBTrapCfgGroup = ciscoDiameterBasePMIBTrapCfgGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBTrapCfgGroup.setDescription('A collection of objects providing configuration for base protocol notifications.') ciscoDiameterBasePMIBLocalCfgSkippedGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 6)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalId"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalIpAddrType"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalIpAddress"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalTcpListenPort"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalSctpListenPort"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalStatsTotalPacketsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalStatsTotalPacketsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalStatsTotalUpTime"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalResetTime"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalConfigReset"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalApplStorageType"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalApplRowStatus"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpAppAdvToPeerServices"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpAppAdvToPeerStorageType"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpAppAdvToPeerRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBLocalCfgSkippedGroup = ciscoDiameterBasePMIBLocalCfgSkippedGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBLocalCfgSkippedGroup.setDescription('A collection of objects providing configuration common to the server.') ciscoDiameterBasePMIBLocalStatsSkippedGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 7)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalStatsTotalPacketsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalStatsTotalPacketsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalStatsTotalUpTime"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalResetTime"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpLocalConfigReset")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBLocalStatsSkippedGroup = ciscoDiameterBasePMIBLocalStatsSkippedGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBLocalStatsSkippedGroup.setDescription('A collection of objects providing statistics common to the server.') ciscoDiameterBasePMIBPeerCfgSkippedGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 8)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpAppAdvFromPeerType")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBPeerCfgSkippedGroup = ciscoDiameterBasePMIBPeerCfgSkippedGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBPeerCfgSkippedGroup.setDescription('A collection of objects providing configuration for Diameter peers.') ciscoDiameterBasePMIBPeerStatsSkippedGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 9)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDWCurrentStatus"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsDWReqTimer"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsRedirectEvents"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsAccDupRequests"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpPeerStatsEToEDupMessages")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBPeerStatsSkippedGroup = ciscoDiameterBasePMIBPeerStatsSkippedGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBPeerStatsSkippedGroup.setDescription('A collection of objects providing statistics of Diameter peers.') ciscoDiameterBasePMIBRealmCfgSkippedGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 10)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmKnownPeers"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmKnownPeersChosen")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBRealmCfgSkippedGroup = ciscoDiameterBasePMIBRealmCfgSkippedGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBRealmCfgSkippedGroup.setDescription('A collection of objects providing configuration for realm message routing.') ciscoDiameterBasePMIBRealmStatsSkippedGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 10, 133, 2, 2, 11)).setObjects(("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteRealm"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteApp"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteType"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteAction"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteACRsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteACRsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteACAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteACAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteRARsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteRARsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteRAAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteRAAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteSTRsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteSTRsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteSTAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteSTAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteASRsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteASRsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteASAsIn"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteASAsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteAccRetrans"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteAccDupReqsts"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRoutePendReqstsOut"), ("CISCO-DIAMETER-BASE-PROTOCOL-MIB", "cdbpRealmMessageRouteReqstsDrop")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoDiameterBasePMIBRealmStatsSkippedGroup = ciscoDiameterBasePMIBRealmStatsSkippedGroup.setStatus('current') if mibBuilder.loadTexts: ciscoDiameterBasePMIBRealmStatsSkippedGroup.setDescription('A collection of objects providing statistics of realm message routing.') mibBuilder.exportSymbols("CISCO-DIAMETER-BASE-PROTOCOL-MIB", cdbpRealmMessageRouteACRsIn=cdbpRealmMessageRouteACRsIn, cdbpRealmStats=cdbpRealmStats, ciscoDiameterBasePMIBCompliance=ciscoDiameterBasePMIBCompliance, cdbpPeerStatsSTAsOut=cdbpPeerStatsSTAsOut, cdbpPeerProtocol=cdbpPeerProtocol, cdbpPeerTable=cdbpPeerTable, ciscoDiaBaseProtPeerConnectionDownNotif=ciscoDiaBaseProtPeerConnectionDownNotif, cdbpLocalVendorIndex=cdbpLocalVendorIndex, cdbpPeerStatsDWReqTimer=cdbpPeerStatsDWReqTimer, cdbpPeerStatsACAsIn=cdbpPeerStatsACAsIn, cdbpPeerStatsDWRsOut=cdbpPeerStatsDWRsOut, ciscoDiaBaseProtEnablePeerConnectionDownNotif=ciscoDiaBaseProtEnablePeerConnectionDownNotif, cdbpPeerStatsDPAsIn=cdbpPeerStatsDPAsIn, cdbpPeerId=cdbpPeerId, cdbpAppAdvFromPeerTable=cdbpAppAdvFromPeerTable, cdbpRealmMessageRouteSTRsIn=cdbpRealmMessageRouteSTRsIn, cdbpRealmMessageRouteApp=cdbpRealmMessageRouteApp, cdbpLocalVendorEntry=cdbpLocalVendorEntry, cdbpRealmMessageRouteAccDupReqsts=cdbpRealmMessageRouteAccDupReqsts, cdbpAppAdvToPeerVendorId=cdbpAppAdvToPeerVendorId, cdbpLocalIpAddrType=cdbpLocalIpAddrType, cdbpPeerSecurity=cdbpPeerSecurity, ciscoDiaBaseProtTransientFailureNotif=ciscoDiaBaseProtTransientFailureNotif, cdbpPeerStatsAccPendReqstsOut=cdbpPeerStatsAccPendReqstsOut, ciscoDiameterBasePMIBLocalCfgGroup=ciscoDiameterBasePMIBLocalCfgGroup, cdbpRealmMessageRouteRealm=cdbpRealmMessageRouteRealm, cdbpPeerEntry=cdbpPeerEntry, cdbpRedundancyLastSwitchover=cdbpRedundancyLastSwitchover, cdbpRealmMessageRouteAction=cdbpRealmMessageRouteAction, cdbpPeerIpAddrTable=cdbpPeerIpAddrTable, cdbpPeerStatsSTAsIn=cdbpPeerStatsSTAsIn, cdbpRealmCfgs=cdbpRealmCfgs, cdbpPeerStatsTransientFailures=cdbpPeerStatsTransientFailures, cdbpRealmKnownPeersIndex=cdbpRealmKnownPeersIndex, cdbpLocalVendorTable=cdbpLocalVendorTable, cdbpPeerStorageType=cdbpPeerStorageType, cdbpAppAdvFromPeerVendorId=cdbpAppAdvFromPeerVendorId, cdbpPeerStatsRAAsOut=cdbpPeerStatsRAAsOut, cdbpLocalId=cdbpLocalId, ciscoDiameterBasePMIBNotifs=ciscoDiameterBasePMIBNotifs, ciscoDiameterBasePMIBGroups=ciscoDiameterBasePMIBGroups, cdbpPeerStats=cdbpPeerStats, cdbpRealmMessageRouteASRsOut=cdbpRealmMessageRouteASRsOut, cdbpRealmMessageRouteAccRetrans=cdbpRealmMessageRouteAccRetrans, cdbpAppAdvToPeerServices=cdbpAppAdvToPeerServices, cdbpPeerStatsACRsOut=cdbpPeerStatsACRsOut, cdbpRedundancyEnabled=cdbpRedundancyEnabled, cdbpPeerVendorRowStatus=cdbpPeerVendorRowStatus, cdbpPeerStatsUnknownTypes=cdbpPeerStatsUnknownTypes, ciscoDiameterBasePMIBCompliances=ciscoDiameterBasePMIBCompliances, cdbpPeerStatsEToEDupMessages=cdbpPeerStatsEToEDupMessages, cdbpPeerVendorEntry=cdbpPeerVendorEntry, ciscoDiaBaseProtEnableProtocolErrorNotif=ciscoDiaBaseProtEnableProtocolErrorNotif, cdbpPeerStatsTable=cdbpPeerStatsTable, cdbpPeerIpAddrEntry=cdbpPeerIpAddrEntry, ciscoDiameterBasePMIBConform=ciscoDiameterBasePMIBConform, cdbpPeerStatsSTRsOut=cdbpPeerStatsSTRsOut, cdbpRealmMessageRouteIndex=cdbpRealmMessageRouteIndex, cdbpAppAdvToPeerIndex=cdbpAppAdvToPeerIndex, ciscoDiameterBasePMIBPeerStatsGroup=ciscoDiameterBasePMIBPeerStatsGroup, ciscoDiaBaseProtEnablePeerConnectionUpNotif=ciscoDiaBaseProtEnablePeerConnectionUpNotif, cdbpLocalApplRowStatus=cdbpLocalApplRowStatus, ciscoDiaBaseProtEnablePermanentFailureNotif=ciscoDiaBaseProtEnablePermanentFailureNotif, ciscoDiameterBasePMIBPeerStatsSkippedGroup=ciscoDiameterBasePMIBPeerStatsSkippedGroup, PYSNMP_MODULE_ID=ciscoDiameterBasePMIB, ciscoDiameterBasePMIBObjects=ciscoDiameterBasePMIBObjects, cdbpLocalRealm=cdbpLocalRealm, cdbpLocalVendorId=cdbpLocalVendorId, cdbpLocalResetTime=cdbpLocalResetTime, ciscoDiameterBasePMIBRealmCfgSkippedGroup=ciscoDiameterBasePMIBRealmCfgSkippedGroup, cdbpPeerStatsDPRsIn=cdbpPeerStatsDPRsIn, cdbpPeerStatsEntry=cdbpPeerStatsEntry, cdbpPeerStatsAccDupRequests=cdbpPeerStatsAccDupRequests, cdbpRealmMessageRoutePendReqstsOut=cdbpRealmMessageRoutePendReqstsOut, cdbpTrapCfgs=cdbpTrapCfgs, ciscoDiameterBasePMIBTrapCfgGroup=ciscoDiameterBasePMIBTrapCfgGroup, cdbpAppAdvFromPeerType=cdbpAppAdvFromPeerType, cdbpPeerIndex=cdbpPeerIndex, cdbpPeerVendorId=cdbpPeerVendorId, cdbpAppAdvToPeerRowStatus=cdbpAppAdvToPeerRowStatus, cdbpLocalStatsTotalPacketsOut=cdbpLocalStatsTotalPacketsOut, cdbpPeerStatsHByHDropMessages=cdbpPeerStatsHByHDropMessages, cdbpRealmMessageRouteASAsIn=cdbpRealmMessageRouteASAsIn, cdbpLocalStats=cdbpLocalStats, cdbpPeerStatsRedirectEvents=cdbpPeerStatsRedirectEvents, cdbpPeerStatsASRsOut=cdbpPeerStatsASRsOut, cdbpPeerStatsTotalRetrans=cdbpPeerStatsTotalRetrans, cdbpRealmMessageRouteEntry=cdbpRealmMessageRouteEntry, cdbpPeerStatsState=cdbpPeerStatsState, cdbpPeerStatsSTRsIn=cdbpPeerStatsSTRsIn, cdbpPeerFirmwareRevision=cdbpPeerFirmwareRevision, cdbpLocalTcpListenPort=cdbpLocalTcpListenPort, cdbpPeerStatsCERsOut=cdbpPeerStatsCERsOut, cdbpLocalApplStorageType=cdbpLocalApplStorageType, cdbpPeerStatsAccRetrans=cdbpPeerStatsAccRetrans, cdbpPeerStatsPermanentFailures=cdbpPeerStatsPermanentFailures, cdbpLocalIpAddrIndex=cdbpLocalIpAddrIndex, cdbpRealmKnownPeersEntry=cdbpRealmKnownPeersEntry, cdbpPeerStatsDWAsIn=cdbpPeerStatsDWAsIn, cdbpLocalStatsTotalUpTime=cdbpLocalStatsTotalUpTime, cdbpPeerStatsDPAsOut=cdbpPeerStatsDPAsOut, ciscoDiaBaseProtPermanentFailureNotif=ciscoDiaBaseProtPermanentFailureNotif, ciscoDiameterBasePMIBLocalStatsSkippedGroup=ciscoDiameterBasePMIBLocalStatsSkippedGroup, cdbpPeerStatsRAAsIn=cdbpPeerStatsRAAsIn, cdbpPeerStatsStateDuration=cdbpPeerStatsStateDuration, cdbpPeerStatsProtocolErrors=cdbpPeerStatsProtocolErrors, ciscoDiameterBasePMIBNotificationsGroup=ciscoDiameterBasePMIBNotificationsGroup, cdbpRealmMessageRouteACRsOut=cdbpRealmMessageRouteACRsOut, cdbpLocalApplEntry=cdbpLocalApplEntry, cdbpPeerStatsDWAsOut=cdbpPeerStatsDWAsOut, cdbpPeerStatsAccReqstsDropped=cdbpPeerStatsAccReqstsDropped, cdbpRealmKnownPeersTable=cdbpRealmKnownPeersTable, cdbpPeerStatsAccsNotRecorded=cdbpPeerStatsAccsNotRecorded, cdbpLocalVendorRowStatus=cdbpLocalVendorRowStatus, cdbpLocalIpAddress=cdbpLocalIpAddress, cdbpLocalIpAddrEntry=cdbpLocalIpAddrEntry, cdbpRealmMessageRouteRARsIn=cdbpRealmMessageRouteRARsIn, cdbpRealmMessageRouteACAsIn=cdbpRealmMessageRouteACAsIn, cdbpLocalOriginHost=cdbpLocalOriginHost, cdbpRealmMessageRouteRAAsIn=cdbpRealmMessageRouteRAAsIn, cdbpRealmMessageRouteRAAsOut=cdbpRealmMessageRouteRAAsOut, ciscoDiameterBasePMIBPeerCfgSkippedGroup=ciscoDiameterBasePMIBPeerCfgSkippedGroup, cdbpPeerPortConnect=cdbpPeerPortConnect, cdbpPeerStatsWhoInitDisconnect=cdbpPeerStatsWhoInitDisconnect, cdbpPeerStatsCEAsOut=cdbpPeerStatsCEAsOut, cdbpAppAdvFromPeerIndex=cdbpAppAdvFromPeerIndex, cdbpRealmMessageRouteASRsIn=cdbpRealmMessageRouteASRsIn, cdbpPeerStatsLastDiscCause=cdbpPeerStatsLastDiscCause, cdbpPeerStatsASAsIn=cdbpPeerStatsASAsIn, cdbpPeerIpAddressType=cdbpPeerIpAddressType, cdbpPeerStatsRARsOut=cdbpPeerStatsRARsOut, cdbpPeerStatsDWCurrentStatus=cdbpPeerStatsDWCurrentStatus, cdbpRealmMessageRouteSTRsOut=cdbpRealmMessageRouteSTRsOut, cdbpLocalCfgs=cdbpLocalCfgs, cdbpRealmMessageRouteReqstsDrop=cdbpRealmMessageRouteReqstsDrop, cdbpLocalStatsTotalPacketsIn=cdbpLocalStatsTotalPacketsIn, cdbpPeerCfgs=cdbpPeerCfgs, cdbpRealmKnownPeers=cdbpRealmKnownPeers, cdbpPeerStatsMalformedReqsts=cdbpPeerStatsMalformedReqsts, cdbpRealmMessageRouteRARsOut=cdbpRealmMessageRouteRARsOut, cdbpRealmMessageRouteSTAsOut=cdbpRealmMessageRouteSTAsOut, cdbpLocalIpAddrTable=cdbpLocalIpAddrTable, cdbpPeerStatsACRsIn=cdbpPeerStatsACRsIn, ciscoDiameterBasePMIBRealmStatsSkippedGroup=ciscoDiameterBasePMIBRealmStatsSkippedGroup, cdbpRealmKnownPeersChosen=cdbpRealmKnownPeersChosen, cdbpLocalApplTable=cdbpLocalApplTable, cdbpRealmMessageRouteType=cdbpRealmMessageRouteType, cdbpPeerStatsASRsIn=cdbpPeerStatsASRsIn, cdbpPeerStatsTransportDown=cdbpPeerStatsTransportDown, cdbpRedundancyInfraState=cdbpRedundancyInfraState, ciscoDiameterBasePMIBPeerCfgGroup=ciscoDiameterBasePMIBPeerCfgGroup, cdbpRealmMessageRouteACAsOut=cdbpRealmMessageRouteACAsOut, cdbpAppAdvFromPeerEntry=cdbpAppAdvFromPeerEntry, ciscoDiaBaseProtEnableTransientFailureNotif=ciscoDiaBaseProtEnableTransientFailureNotif, cdbpLocalConfigReset=cdbpLocalConfigReset, cdbpPeerIpAddress=cdbpPeerIpAddress, cdbpAppAdvToPeerTable=cdbpAppAdvToPeerTable, cdbpPeerStatsTimeoutConnAtmpts=cdbpPeerStatsTimeoutConnAtmpts, cdbpPeerStatsDWRsIn=cdbpPeerStatsDWRsIn, cdbpRealmMessageRouteTable=cdbpRealmMessageRouteTable, cdbpPeerStatsRARsIn=cdbpPeerStatsRARsIn, cdbpPeerStatsACAsOut=cdbpPeerStatsACAsOut, cdbpRealmMessageRouteSTAsIn=cdbpRealmMessageRouteSTAsIn, cdbpPeerStatsASAsOut=cdbpPeerStatsASAsOut, cdbpPeerStatsDPRsOut=cdbpPeerStatsDPRsOut, cdbpPeerVendorTable=cdbpPeerVendorTable, ciscoDiaBaseProtPeerConnectionUpNotif=ciscoDiaBaseProtPeerConnectionUpNotif, cdbpPeerVendorStorageType=cdbpPeerVendorStorageType, cdbpPeerVendorIndex=cdbpPeerVendorIndex, cdbpPeerStatsCERsIn=cdbpPeerStatsCERsIn, cdbpRealmMessageRouteASAsOut=cdbpRealmMessageRouteASAsOut, ciscoDiameterBasePMIBLocalCfgSkippedGroup=ciscoDiameterBasePMIBLocalCfgSkippedGroup, cdbpPeerPortListen=cdbpPeerPortListen, cdbpAppAdvToPeerEntry=cdbpAppAdvToPeerEntry, ciscoDiaBaseProtProtocolErrorNotif=ciscoDiaBaseProtProtocolErrorNotif, ciscoDiameterBasePMIB=ciscoDiameterBasePMIB, cdbpLocalApplIndex=cdbpLocalApplIndex, cdbpAppAdvToPeerStorageType=cdbpAppAdvToPeerStorageType, cdbpLocalVendorStorageType=cdbpLocalVendorStorageType, cdbpPeerIpAddressIndex=cdbpPeerIpAddressIndex, cdbpPeerRowStatus=cdbpPeerRowStatus, cdbpLocalSctpListenPort=cdbpLocalSctpListenPort, cdbpPeerStatsCEAsIn=cdbpPeerStatsCEAsIn)
174.617021
9,504
0.799176
0
0
0
0
0
0
0
0
40,008
0.406239
48ff11c606361c503d4ae242b33d2e5d2c9cf908
1,337
py
Python
py_build/funcs.py
Aesonus/py-build
790a750492b0f6ecd52f6f564d3aa4522e255406
[ "MIT" ]
null
null
null
py_build/funcs.py
Aesonus/py-build
790a750492b0f6ecd52f6f564d3aa4522e255406
[ "MIT" ]
null
null
null
py_build/funcs.py
Aesonus/py-build
790a750492b0f6ecd52f6f564d3aa4522e255406
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import Callable, Sequence, TYPE_CHECKING import functools if TYPE_CHECKING: from .build import BuildStepCallable def split_step_name(name: str, new = ' ', old='_'): return name.replace(old, new).capitalize() def print_step_name(formatter=split_step_name, args: Sequence=()): """Gets a decorator that formats the name of the build step and prints it""" fmt_args = args def format_step_name(func: Callable): @functools.wraps(func) def decorated(*args, **kwargs): print(formatter(func.__name__, *fmt_args)) return func(*args, **kwargs) return decorated return format_step_name def print_step_doc(): def decorate_with(func: Callable): @functools.wraps(func) def output_func_doc(*args, **kwargs): print(func.__doc__) return func(*args, *kwargs) return output_func_doc return decorate_with def composed(*decorators: BuildStepCallable) -> BuildStepCallable: """ Used to compose a decorator. Useful for defining specific outputs and progress reports to a build step and resusing """ def decorated(func: BuildStepCallable): for decorator in reversed(decorators): func = decorator(func) return func return decorated
33.425
80
0.682872
0
0
0
0
298
0.222887
0
0
217
0.162304
48ff6f626f5b448c258b452afb93725c786ec289
3,713
py
Python
src/jellyroll/managers.py
jacobian-archive/jellyroll
02751b3108b6f6ae732a801d42ca3c85cc759978
[ "BSD-3-Clause" ]
3
2015-03-02T06:34:45.000Z
2016-11-24T18:53:59.000Z
src/jellyroll/managers.py
jacobian/jellyroll
02751b3108b6f6ae732a801d42ca3c85cc759978
[ "BSD-3-Clause" ]
null
null
null
src/jellyroll/managers.py
jacobian/jellyroll
02751b3108b6f6ae732a801d42ca3c85cc759978
[ "BSD-3-Clause" ]
null
null
null
import datetime from django.db import models from django.db.models import signals from django.contrib.contenttypes.models import ContentType from django.utils.encoding import force_unicode from tagging.fields import TagField class ItemManager(models.Manager): def __init__(self): super(ItemManager, self).__init__() self.models_by_name = {} def create_or_update(self, instance, timestamp=None, url=None, tags="", source="INTERACTIVE", source_id="", **kwargs): """ Create or update an Item from some instace. """ # If the instance hasn't already been saved, save it first. This # requires disconnecting the post-save signal that might be sent to # this function (otherwise we could get an infinite loop). if instance._get_pk_val() is None: try: signals.post_save.disconnect(self.create_or_update, sender=type(instance)) except Exception, err: reconnect = False else: reconnect = True instance.save() if reconnect: signals.post_save.connect(self.create_or_update, sender=type(instance)) # Make sure the item "should" be registered. if not getattr(instance, "jellyrollable", True): return # Check to see if the timestamp is being updated, possibly pulling # the timestamp from the instance. if hasattr(instance, "timestamp"): timestamp = instance.timestamp if timestamp is None: update_timestamp = False timestamp = datetime.datetime.now() else: update_timestamp = True # Ditto for tags. if not tags: for f in instance._meta.fields: if isinstance(f, TagField): tags = getattr(instance, f.attname) break if not url: if hasattr(instance,'url'): url = instance.url # Create the Item object. ctype = ContentType.objects.get_for_model(instance) item, created = self.get_or_create( content_type = ctype, object_id = force_unicode(instance._get_pk_val()), defaults = dict( timestamp = timestamp, source = source, source_id = source_id, tags = tags, url = url, ) ) item.tags = tags item.source = source item.source_id = source_id if update_timestamp: item.timestamp = timestamp # Save and return the item. item.save() return item def follow_model(self, model): """ Follow a particular model class, updating associated Items automatically. """ self.models_by_name[model.__name__.lower()] = model signals.post_save.connect(self.create_or_update, sender=model) def get_for_model(self, model): """ Return a QuerySet of only items of a certain type. """ return self.filter(content_type=ContentType.objects.get_for_model(model)) def get_last_update_of_model(self, model, **kwargs): """ Return the last time a given model's items were updated. Returns the epoch if the items were never updated. """ qs = self.get_for_model(model) if kwargs: qs = qs.filter(**kwargs) try: return qs.order_by('-timestamp')[0].timestamp except IndexError: return datetime.datetime.fromtimestamp(0)
35.361905
122
0.578777
3,486
0.938863
0
0
0
0
0
0
839
0.225963
5b011773dfebfb2a161d58f218cd80c611a2ea9c
578
py
Python
app_metrics.py
GSH-LAN/byceps
ab8918634e90aaa8574bd1bb85627759cef122fe
[ "BSD-3-Clause" ]
33
2018-01-16T02:04:51.000Z
2022-03-22T22:57:29.000Z
app_metrics.py
GSH-LAN/byceps
ab8918634e90aaa8574bd1bb85627759cef122fe
[ "BSD-3-Clause" ]
7
2019-06-16T22:02:03.000Z
2021-10-02T13:45:31.000Z
app_metrics.py
GSH-LAN/byceps
ab8918634e90aaa8574bd1bb85627759cef122fe
[ "BSD-3-Clause" ]
14
2019-06-01T21:39:24.000Z
2022-03-14T17:56:43.000Z
""" metrics application instance ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :Copyright: 2006-2021 Jochen Kupperschmidt :License: Revised BSD (see `LICENSE` file for details) """ import os from byceps.config import ConfigurationError from byceps.metrics.application import create_app ENV_VAR_NAME_DATABASE_URI = 'DATABASE_URI' database_uri = os.environ.get(ENV_VAR_NAME_DATABASE_URI) if not database_uri: raise ConfigurationError( f"No database URI was specified via the '{ENV_VAR_NAME_DATABASE_URI}' " "environment variable.", ) app = create_app(database_uri)
22.230769
79
0.730104
0
0
0
0
0
0
0
0
272
0.470588
5b0196e4037e9465e0b4a7171647fde301968ecb
1,927
py
Python
mysql_tests/test_schema.py
maestro-1/gino
3f06b4a9948a7657044686ae738ef3509b4729e1
[ "BSD-3-Clause" ]
1,376
2019-12-26T23:41:36.000Z
2022-03-31T11:08:04.000Z
mysql_tests/test_schema.py
maestro-1/gino
3f06b4a9948a7657044686ae738ef3509b4729e1
[ "BSD-3-Clause" ]
522
2017-07-22T00:49:06.000Z
2019-12-25T17:02:22.000Z
mysql_tests/test_schema.py
maestro-1/gino
3f06b4a9948a7657044686ae738ef3509b4729e1
[ "BSD-3-Clause" ]
89
2020-01-02T02:12:37.000Z
2022-03-21T14:14:51.000Z
from enum import Enum import pytest import gino from gino.dialects.aiomysql import AsyncEnum pytestmark = pytest.mark.asyncio db = gino.Gino() class MyEnum(Enum): ONE = "one" TWO = "two" class Blog(db.Model): __tablename__ = "s_blog" id = db.Column(db.BigInteger(), primary_key=True) title = db.Column(db.Unicode(255), index=True, comment="Title Comment") visits = db.Column(db.BigInteger(), default=0) comment_id = db.Column(db.ForeignKey("s_comment.id")) number = db.Column(db.Enum(MyEnum), nullable=False, default=MyEnum.TWO) number2 = db.Column(AsyncEnum(MyEnum), nullable=False, default=MyEnum.TWO) class Comment(db.Model): __tablename__ = "s_comment" id = db.Column(db.BigInteger(), primary_key=True) blog_id = db.Column(db.ForeignKey("s_blog.id", name="blog_id_fk")) blog_seq = db.Sequence("blog_seq", metadata=db, schema="schema_test") async def test(engine, define=True): async with engine.acquire() as conn: assert not await engine.dialect.has_table(conn, "non_exist") Blog.__table__.comment = "Blog Comment" db.bind = engine await db.gino.create_all() await Blog.number.type.create_async(engine, checkfirst=True) await Blog.number2.type.create_async(engine, checkfirst=True) await db.gino.create_all(tables=[Blog.__table__], checkfirst=True) await blog_seq.gino.create(checkfirst=True) await Blog.__table__.gino.create(checkfirst=True) await db.gino.drop_all() await db.gino.drop_all(tables=[Blog.__table__], checkfirst=True) await Blog.__table__.gino.drop(checkfirst=True) await blog_seq.gino.drop(checkfirst=True) if define: class Comment2(db.Model): __tablename__ = "s_comment_2" id = db.Column(db.BigInteger(), primary_key=True) blog_id = db.Column(db.ForeignKey("s_blog.id")) await db.gino.create_all() await db.gino.drop_all()
30.109375
78
0.701609
868
0.450441
0
0
0
0
1,019
0.528801
153
0.079398
5b0240511c5c9c995140e0add95f3c10735d13f4
903
py
Python
solutions/29-distinct-powers.py
whitegreyblack/euler
bd8e7ca444eeb51b3c923f1235906054c507ecc8
[ "MIT" ]
null
null
null
solutions/29-distinct-powers.py
whitegreyblack/euler
bd8e7ca444eeb51b3c923f1235906054c507ecc8
[ "MIT" ]
null
null
null
solutions/29-distinct-powers.py
whitegreyblack/euler
bd8e7ca444eeb51b3c923f1235906054c507ecc8
[ "MIT" ]
null
null
null
# problem 29 # Distinct powers """ Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5: 2**2=4, 2**3=8, 2**4=16, 2**5=32 3**2=9, 3**3=27, 3**4=81, 3**5=243 4**2=16, 4**3=64, 4**4=256, 4**5=1024 5**2=25, 5**3=125, 5**4=625, 5**5=3125 If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms: 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100? """ # analysis """ ^ | 2 | 3 | 4 | 5 | N | ---+---+---+---+----+---+ 2 | 4 | 8 | 16| 25 |2^N| ---+---+---+---+----+---+ 3 | 9 | 27| 81| 243|3^N| ---+---+---+---+----+---+ 4 | 16| 64|256|1024|4^N| ---+---+---+---+----+---+ 5 | 25|125|625|3125|5^N| ---+---+---+---+----+---+ """ # solution s = set(a**b for a in range(2, 101) for b in range(2, 101)) print(len(s))
25.083333
70
0.499446
0
0
0
0
0
0
0
0
837
0.910773
5b0340e8c87e83abc062cbdb7773314cbba482e5
2,633
py
Python
flexget/plugins/input/input_csv.py
metaMMA/Flexget
a38986422461d7935ead1e2b4ed4c88bcd0a90f5
[ "MIT" ]
null
null
null
flexget/plugins/input/input_csv.py
metaMMA/Flexget
a38986422461d7935ead1e2b4ed4c88bcd0a90f5
[ "MIT" ]
1
2017-10-09T23:06:44.000Z
2017-10-09T23:06:44.000Z
flexget/plugins/input/input_csv.py
metaMMA/Flexget
a38986422461d7935ead1e2b4ed4c88bcd0a90f5
[ "MIT" ]
null
null
null
from __future__ import unicode_literals, division, absolute_import from builtins import * # noqa pylint: disable=unused-import, redefined-builtin from future.utils import PY3 import logging import csv from requests import RequestException from flexget import plugin from flexget.entry import Entry from flexget.event import event from flexget.utils.cached_input import cached log = logging.getLogger('csv') class InputCSV(object): """ Adds support for CSV format. Configuration may seem a bit complex, but this has advantage of being universal solution regardless of CSV and internal entry fields. Configuration format: csv: url: <url> values: <field>: <number> Example DB-fansubs: csv: url: http://www.dattebayo.com/t/dump values: title: 3 # title is in 3th field url: 1 # download url is in 1st field Fields title and url are mandatory. First field is 1. List of other common (optional) fields can be found from wiki. """ schema = { 'type': 'object', 'properties': { 'url': {'type': 'string', 'format': 'url'}, 'values': { 'type': 'object', 'additionalProperties': {'type': 'integer'}, 'required': ['title', 'url'], }, }, 'required': ['url', 'values'], 'additionalProperties': False, } @cached('csv') def on_task_input(self, task, config): entries = [] try: r = task.requests.get(config['url']) except RequestException as e: raise plugin.PluginError('Error fetching `%s`: %s' % (config['url'], e)) # CSV module needs byte strings, we'll convert back to unicode later if PY3: page = r.text.splitlines() else: page = r.text.encode('utf-8').splitlines() for row in csv.reader(page): if not row: continue entry = Entry() for name, index in list(config.get('values', {}).items()): try: # Convert the value back to unicode if PY3: entry[name] = row[index - 1].strip() else: entry[name] = row[index - 1].decode('utf-8').strip() except IndexError: raise plugin.PluginError('Field `%s` index is out of range' % name) entries.append(entry) return entries @event('plugin.register') def register_plugin(): plugin.register(InputCSV, 'csv', api_ver=2)
29.255556
87
0.565515
2,119
0.804785
0
0
1,195
0.453855
0
0
1,054
0.400304
5b03dd11f975d3847001932de43a5378848ce948
2,043
py
Python
gdget.py
tienfuc/gdcmdtools
357ada27cdb6ef0cc155b8fb52b6f6368cd1f277
[ "BSD-2-Clause" ]
29
2015-09-10T08:00:30.000Z
2021-12-24T01:15:53.000Z
gdget.py
tienfuc/gdcmdtools
357ada27cdb6ef0cc155b8fb52b6f6368cd1f277
[ "BSD-2-Clause" ]
56
2015-09-10T02:56:16.000Z
2020-10-06T13:17:21.000Z
gdget.py
tienfuc/gdcmdtools
357ada27cdb6ef0cc155b8fb52b6f6368cd1f277
[ "BSD-2-Clause" ]
4
2015-09-30T03:35:33.000Z
2019-07-07T14:19:26.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import re from gdcmdtools.base import BASE_INFO from gdcmdtools.base import DEBUG_LEVEL from gdcmdtools.get import GDGet from gdcmdtools.get import export_format import argparse from argparse import RawTextHelpFormatter from pprint import pprint import logging logger = logging.getLogger() __THIS_APP = 'gdget' __THIS_DESCRIPTION = 'Tool to download file from Google Drive' __THIS_VERSION = BASE_INFO["version"] def test(): assert True if __name__ == '__main__': arg_parser = argparse.ArgumentParser( description='%s v%s - %s - %s (%s)' % (__THIS_APP, __THIS_VERSION, __THIS_DESCRIPTION, BASE_INFO["app"], BASE_INFO["description"]), formatter_class=RawTextHelpFormatter) arg_parser.add_argument( 'file_id', help='The file id or drive link for the file you\'re going to download') help_export_format = "\n".join( [ re.search( ".*google-apps\.(.*)", k).group(1) + ": " + ", ".join( export_format[k]) for k in export_format.iterkeys()]) arg_parser.add_argument( '-f', '--export_format', metavar='FORMAT', default='raw', required=False, help='specify the export format for downloading,\ngoogle_format: export_format\n%s' % help_export_format) arg_parser.add_argument( '-s', '--save_as', metavar='NEW_FILE_NAME', help='save the downloaded file as ') arg_parser.add_argument('--debug', choices=DEBUG_LEVEL, default=DEBUG_LEVEL[-1], help='define the debug level') args = arg_parser.parse_args() # set debug devel logger.setLevel(getattr(logging, args.debug.upper())) logger.debug(args) get = GDGet(args.file_id, args.export_format, args.save_as) result = get.run() sys.exit(0)
24.614458
93
0.603035
0
0
0
0
0
0
0
0
482
0.235928
5b042f6383e41d397423d2d9b9c278a9f5788a29
325
py
Python
Lotus/controller/common.py
Jayin/Lotus
6a4791d81b29158a1a83aa6a5d607ab5d677dba4
[ "Apache-2.0" ]
null
null
null
Lotus/controller/common.py
Jayin/Lotus
6a4791d81b29158a1a83aa6a5d607ab5d677dba4
[ "Apache-2.0" ]
null
null
null
Lotus/controller/common.py
Jayin/Lotus
6a4791d81b29158a1a83aa6a5d607ab5d677dba4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from Lotus.app import app from flask import render_template @app.route('/') def index(): return 'welcome' @app.errorhandler(404) def page_not_found(error): return render_template('404.html') @app.errorhandler(405) def request_method_error(error): return render_template('405.html')
16.25
38
0.713846
0
0
0
0
231
0.710769
0
0
55
0.169231
5b062f73819a8130b2460252ff5ee938a80ac7e2
8,261
py
Python
src/retrocookie/git.py
cjolowicz/retrocookie
bc15dd46070ce50df21eeb016a385529d601f2b0
[ "MIT" ]
15
2020-06-21T14:35:42.000Z
2022-03-30T15:48:55.000Z
src/retrocookie/git.py
cjolowicz/retrocookie
bc15dd46070ce50df21eeb016a385529d601f2b0
[ "MIT" ]
223
2020-05-22T14:35:05.000Z
2022-03-28T00:19:23.000Z
src/retrocookie/git.py
cjolowicz/retrocookie
bc15dd46070ce50df21eeb016a385529d601f2b0
[ "MIT" ]
4
2020-11-19T12:55:01.000Z
2022-03-15T14:24:25.000Z
"""Git interface.""" from __future__ import annotations import contextlib import functools import operator import re import subprocess # noqa: S404 from dataclasses import dataclass from dataclasses import field from pathlib import Path from typing import Any from typing import cast from typing import Iterator from typing import List from typing import Optional import pygit2 from retrocookie.utils import removeprefix def git( *args: str, check: bool = True, **kwargs: Any ) -> subprocess.CompletedProcess[str]: """Invoke git.""" return subprocess.run( # noqa: S603,S607 ["git", *args], check=check, text=True, capture_output=True, **kwargs ) VERSION_PATTERN = re.compile( r""" (?P<major>\d+)\. (?P<minor>\d+) (\.(?P<patch>\d+))? """, re.VERBOSE, ) @dataclass(frozen=True, order=True) class Version: """Simplistic representation of git versions.""" major: int minor: int patch: int _text: Optional[str] = field(default=None, compare=False) @classmethod def parse(cls, text: str) -> Version: """Extract major.minor[.patch] from the start of the text.""" match = VERSION_PATTERN.match(text) if match is None: raise ValueError(f"invalid version {text!r}") parts = match.groupdict(default="0") return cls( int(parts["major"]), int(parts["minor"]), int(parts["patch"]), _text=text ) def __str__(self) -> str: """Return the original representation.""" return ( self._text if self._text is not None else f"{self.major}.{self.minor}.{self.patch}" ) def version() -> Version: """Return the git version.""" text = git("version").stdout.strip() text = removeprefix(text, "git version ") return Version.parse(text) def get_default_branch() -> str: """Return the default branch for new repositories.""" get_configs = [ pygit2.Config.get_global_config, pygit2.Config.get_system_config, ] for get_config in get_configs: with contextlib.suppress(IOError, KeyError): config = get_config() branch = config["init.defaultBranch"] assert isinstance(branch, str) # noqa: S101 return branch return "master" class Repository: """Git repository.""" def __init__( self, path: Optional[Path] = None, *, repo: Optional[pygit2.Repository] = None ) -> None: """Initialize.""" if repo is None: self.path = path or Path.cwd() self.repo = pygit2.Repository(self.path) else: self.path = Path(repo.workdir or repo.path) self.repo = repo def git(self, *args: str, **kwargs: Any) -> subprocess.CompletedProcess[str]: """Invoke git.""" return git(*args, cwd=self.path, **kwargs) @classmethod def init(cls, path: Path, *, bare: bool = False) -> Repository: """Create a repository.""" # https://github.com/libgit2/libgit2/issues/2849 path.parent.mkdir(exist_ok=True, parents=True) repo = pygit2.init_repository(path, bare=bare) return cls(path, repo=repo) @classmethod def clone(cls, url: str, path: Path, *, mirror: bool = False) -> Repository: """Clone a repository.""" options = ["--mirror"] if mirror else [] git("clone", *options, url, str(path)) return cls(path) def create_branch(self, branch: str, ref: str = "HEAD") -> None: """Create a branch.""" commit = self.repo.revparse_single(ref) self.repo.branches.create(branch, commit) def get_current_branch(self) -> str: """Return the current branch.""" return self.repo.head.shorthand # type: ignore[no-any-return] def exists_branch(self, branch: str) -> bool: """Return True if the branch exists.""" return branch in self.repo.branches def switch_branch(self, branch: str) -> None: """Switch the current branch.""" self.repo.checkout(self.repo.branches[branch]) def update_remote(self) -> None: """Update the remotes.""" self.git("remote", "update") def fetch_commits(self, source: Repository, *commits: str) -> None: """Fetch the given commits and their immediate parents.""" path = source.path.resolve() self.git("fetch", "--no-tags", "--depth=2", str(path), *commits) def push(self, remote: str, *refs: str, force: bool = False) -> None: """Update remote refs.""" options = ["--force-with-lease"] if force else [] self.git("push", *options, remote, *refs) def parse_revisions(self, *revisions: str) -> List[str]: """Parse revisions using the format specified in gitrevisions(7).""" process = self.git("rev-list", "--no-walk", *revisions) result = process.stdout.split() result.reverse() return result def lookup_replacement(self, commit: str) -> str: """Lookup the replace ref for the given commit.""" refname = f"refs/replace/{commit}" ref = self.repo.lookup_reference(refname) return cast(str, ref.target.hex) def _ensure_relative(self, path: Path) -> Path: """Interpret the path relative to the repository root.""" return path.relative_to(self.path) if path.is_absolute() else path def read_text(self, path: Path, *, ref: str = "HEAD") -> str: """Return the contents of the blob at the given path.""" commit = self.repo.revparse_single(ref) path = self._ensure_relative(path) blob = functools.reduce(operator.truediv, path.parts, commit.tree) return cast(str, blob.data.decode()) def exists(self, path: Path, *, ref: str = "HEAD") -> bool: """Return True if a blob exists at the given path.""" commit = self.repo.revparse_single(ref) path = self._ensure_relative(path) try: functools.reduce(operator.truediv, path.parts, commit.tree) return True except KeyError: return False def add(self, *paths: Path) -> None: """Add paths to the index.""" for path in paths: path = self._ensure_relative(path) self.repo.index.add(path) else: self.repo.index.add_all() self.repo.index.write() def commit(self, message: str) -> None: """Create a commit.""" try: head = self.repo.head refname = head.name parents = [head.target] except pygit2.GitError: branch = get_default_branch() refname = f"refs/heads/{branch}" parents = [] tree = self.repo.index.write_tree() author = committer = self.repo.default_signature self.repo.create_commit(refname, author, committer, message, tree, parents) def cherrypick(self, *refs: str) -> None: """Cherry-pick the given commits.""" self.git("cherry-pick", *refs) @contextlib.contextmanager def worktree( self, branch: str, path: Path, *, base: str = "HEAD", force: bool = False, force_remove: bool = False, ) -> Iterator[Repository]: """Context manager to add and remove a worktree.""" repository = self.add_worktree(branch, path, base=base, force=force) try: yield repository finally: self.remove_worktree(path, force=force_remove) def add_worktree( self, branch: str, path: Path, *, base: str = "HEAD", force: bool = False, ) -> Repository: """Add a worktree.""" self.git( "worktree", "add", str(path), "--no-track", "-B" if force else "-b", branch, base, ) return Repository(path) def remove_worktree(self, path: Path, *, force: bool = False) -> None: """Remove a worktree.""" if force: self.git("worktree", "remove", "--force", str(path)) else: self.git("worktree", "remove", str(path))
30.824627
86
0.587459
6,753
0.817456
458
0.055441
1,916
0.231933
0
0
1,695
0.205181
5b084682efe35e9ca46aead0d385f2c28ccda23b
5,630
py
Python
apps/user/views.py
awsbreathpanda/dailyfresh
c218cdc3ea261b695ff00b6781ba3040f5d06eff
[ "MIT" ]
null
null
null
apps/user/views.py
awsbreathpanda/dailyfresh
c218cdc3ea261b695ff00b6781ba3040f5d06eff
[ "MIT" ]
7
2021-03-30T14:18:30.000Z
2022-01-13T03:13:37.000Z
apps/user/views.py
awsbreathpanda/dailyfresh
c218cdc3ea261b695ff00b6781ba3040f5d06eff
[ "MIT" ]
null
null
null
from django.shortcuts import redirect from django.contrib.auth import authenticate, login, logout from celery_tasks.tasks import celery_send_mail from apps.user.models import User import re from django.shortcuts import render from django.views import View from utils.security import get_user_token, get_activation_link, get_user_id from django.conf import settings from django.http import HttpResponse from django.urls import reverse # Create your views here. # /user/register class RegisterView(View): def get(self, request): return render(request, 'user_register.html') def post(self, request): username = request.POST.get('username') password = request.POST.get('password') rpassword = request.POST.get('rpassword') email = request.POST.get('email') allow = request.POST.get('allow') if not all([username, password, rpassword, email, allow]): context = {'errmsg': '数据不完整'} return render(request, 'user_register.html', context=context) if password != rpassword: context = {'errmsg': '密码不一致'} return render(request, 'user_register.html', context=context) if not re.match(r'^[a-z0-9][\w.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): context = {'errmsg': '邮箱格式不正确'} return render(request, 'user_register.html', context=context) if allow != 'on': context = {'errmsg': '请同意天天生鲜用户协议'} try: user = User.objects.get(username=username) except User.DoesNotExist: user = None if user is not None: context = {'errmsg': '已经创建该用户名'} return render(request, 'user_register.html', context=context) user = User.objects.create_user(username, email, password) user.is_active = 0 user.save() user_token = get_user_token(user.id) activation_link = get_activation_link(settings.ACTIVATION_URL_PATH, user_token) # send email subject = '天天生鲜欢迎信息' message = '' html_message = ( '<h1>%s,欢迎您成为天天生鲜的注册会员</h1><p>请点击以下链接激活你的账户</p><br><a href="%s">%s</a>' % (username, activation_link, activation_link)) from_email = 'dailyfresh<[email protected]>' recipient_list = [ '[email protected]', ] celery_send_mail.delay(subject, message, from_email, recipient_list, html_message=html_message) context = {'errmsg': '添加用户成功'} return render(request, 'user_register.html', context=context) # /user/activate/(token) class ActivateView(View): def get(self, request, token): token_bytes = token.encode('utf-8') user_id = get_user_id(token_bytes) user = User.objects.get(id=user_id) user.is_active = 1 user.save() # TODO return HttpResponse('<h1>Activate User Successfully</h1>') # /user/login class LoginView(View): def get(self, request): username = request.COOKIES.get('username') checked = 'checked' if username is None: username = '' checked = '' context = {'username': username, 'checked': checked} return render(request, 'user_login.html', context=context) def post(self, request): username = request.POST.get('username') password = request.POST.get('password') remember = request.POST.get('remember') if not all([username, password]): context = {'errmsg': '参数不完整'} return render(request, 'user_login.html', context=context) user = authenticate(request, username=username, password=password) if user is None: context = {'errmsg': '用户不存在'} return render(request, 'user_login.html', context=context) if not user.is_active: context = {'errmsg': '用户未激活'} return render(request, 'user_login.html', context=context) login(request, user) next_url = request.GET.get('next', reverse('goods:index')) response = redirect(next_url) if remember == 'on': response.set_cookie('username', username, max_age=7 * 24 * 3600) else: response.delete_cookie('username') return response # /user/ class UserInfoView(View): def get(self, request): if not request.user.is_authenticated: next_url = reverse( 'user:login') + '?next=' + request.get_full_path() return redirect(next_url) else: return render(request, 'user_center_info.html') # /user/order/(page) class UserOrderView(View): def get(self, request, page): if not request.user.is_authenticated: next_url = reverse( 'user:login') + '?next=' + request.get_full_path() return redirect(next_url) else: return render(request, 'user_center_order.html') # /user/address class UserAddressView(View): def get(self, request): if not request.user.is_authenticated: next_url = reverse( 'user:login') + '?next=' + request.get_full_path() return redirect(next_url) else: return render(request, 'user_center_site.html') # /user/logout class LogoutView(View): def get(self, request): logout(request) return redirect(reverse('goods:index'))
31.80791
83
0.59325
5,218
0.89718
0
0
0
0
0
0
1,220
0.209766
5b08fda32750d87556f3ccf00e2fba375865e05c
2,666
py
Python
heatzy/pilote_v1.py
Devotics/heatzy-home-hassistant
34ef71604d10b1d45be4cfb17d811bdd33042ce7
[ "MIT" ]
22
2019-03-07T22:51:12.000Z
2021-03-06T12:14:50.000Z
heatzy/pilote_v1.py
Devotics/heatzy-home-hassistant
34ef71604d10b1d45be4cfb17d811bdd33042ce7
[ "MIT" ]
15
2019-03-07T13:04:11.000Z
2021-03-11T21:34:34.000Z
heatzy/pilote_v1.py
Devotics/heatzy-home-hassistant
34ef71604d10b1d45be4cfb17d811bdd33042ce7
[ "MIT" ]
7
2019-11-17T11:01:50.000Z
2021-02-24T18:13:28.000Z
from homeassistant.components.climate import ClimateEntity from homeassistant.components.climate.const import (HVAC_MODE_AUTO, PRESET_AWAY, PRESET_COMFORT, PRESET_ECO, PRESET_NONE, SUPPORT_PRESET_MODE) from homeassistant.const import TEMP_CELSIUS HEATZY_TO_HA_STATE = { '\u8212\u9002': PRESET_COMFORT, '\u7ecf\u6d4e': PRESET_ECO, '\u89e3\u51bb': PRESET_AWAY, '\u505c\u6b62': PRESET_NONE, } HA_TO_HEATZY_STATE = { PRESET_COMFORT: [1, 1, 0], PRESET_ECO: [1, 1, 1], PRESET_AWAY: [1, 1, 2], PRESET_NONE: [1, 1, 3], } class HeatzyPiloteV1Thermostat(ClimateEntity): def __init__(self, api, device): self._api = api self._device = device @property def temperature_unit(self): """Return the unit of measurement used by the platform.""" return TEMP_CELSIUS @property def supported_features(self): """Return the list of supported features.""" return SUPPORT_PRESET_MODE @property def unique_id(self): """Return a unique ID.""" return self._device.get('did') @property def name(self): return self._device.get('dev_alias') @property def hvac_modes(self): """Return the list of available hvac operation modes. Need to be a subset of HVAC_MODES. """ return [ HVAC_MODE_AUTO ] @property def hvac_mode(self): """Return hvac operation ie. heat, cool mode. Need to be one of HVAC_MODE_*. """ return HVAC_MODE_AUTO @property def preset_modes(self): """Return a list of available preset modes. Requires SUPPORT_PRESET_MODE. """ return [ PRESET_NONE, PRESET_COMFORT, PRESET_ECO, PRESET_AWAY ] @property def preset_mode(self): """Return the current preset mode, e.g., home, away, temp. Requires SUPPORT_PRESET_MODE. """ return HEATZY_TO_HA_STATE.get(self._device.get('attr').get('mode')) async def async_set_preset_mode(self, preset_mode): """Set new preset mode.""" await self._api.async_control_device(self.unique_id, { 'raw': HA_TO_HEATZY_STATE.get(preset_mode), }) await self.async_update() async def async_update(self): """Retrieve latest state.""" self._device = await self._api.async_get_device(self.unique_id)
27.484536
79
0.577269
1,908
0.715679
0
0
1,323
0.496249
388
0.145536
679
0.254689
5b0af9dfbe74e34130cf9a393f33916249893c28
8,315
py
Python
kubernetes-the-hard-way/system/collections/ansible_collections/community/general/plugins/modules/cloud/misc/proxmox_template.py
jkroepke/homelab
ffdd849e39b52972870f5552e734fd74cb1254a1
[ "Apache-2.0" ]
5
2020-12-16T21:42:09.000Z
2022-03-28T16:04:32.000Z
kubernetes-the-hard-way/system/collections/ansible_collections/community/general/plugins/modules/cloud/misc/proxmox_template.py
jkroepke/kubernetes-the-hard-way
70fd096a04addec0777744c9731a4e3fbdc40c8f
[ "Apache-2.0" ]
null
null
null
kubernetes-the-hard-way/system/collections/ansible_collections/community/general/plugins/modules/cloud/misc/proxmox_template.py
jkroepke/kubernetes-the-hard-way
70fd096a04addec0777744c9731a4e3fbdc40c8f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # # Copyright: Ansible Project # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: proxmox_template short_description: management of OS templates in Proxmox VE cluster description: - allows you to upload/delete templates in Proxmox VE cluster options: api_host: description: - the host of the Proxmox VE cluster type: str required: true api_user: description: - the user to authenticate with type: str required: true api_password: description: - the password to authenticate with - you can use PROXMOX_PASSWORD environment variable type: str validate_certs: description: - enable / disable https certificate verification default: 'no' type: bool node: description: - Proxmox VE node, when you will operate with template type: str required: true src: description: - path to uploaded file - required only for C(state=present) type: path template: description: - the template name - required only for states C(absent), C(info) type: str content_type: description: - content type - required only for C(state=present) type: str default: 'vztmpl' choices: ['vztmpl', 'iso'] storage: description: - target storage type: str default: 'local' timeout: description: - timeout for operations type: int default: 30 force: description: - can be used only with C(state=present), exists template will be overwritten type: bool default: 'no' state: description: - Indicate desired state of the template type: str choices: ['present', 'absent'] default: present notes: - Requires proxmoxer and requests modules on host. This modules can be installed with pip. requirements: [ "proxmoxer", "requests" ] author: Sergei Antipov (@UnderGreen) ''' EXAMPLES = ''' - name: Upload new openvz template with minimal options community.general.proxmox_template: node: uk-mc02 api_user: root@pam api_password: 1q2w3e api_host: node1 src: ~/ubuntu-14.04-x86_64.tar.gz - name: > Upload new openvz template with minimal options use environment PROXMOX_PASSWORD variable(you should export it before) community.general.proxmox_template: node: uk-mc02 api_user: root@pam api_host: node1 src: ~/ubuntu-14.04-x86_64.tar.gz - name: Upload new openvz template with all options and force overwrite community.general.proxmox_template: node: uk-mc02 api_user: root@pam api_password: 1q2w3e api_host: node1 storage: local content_type: vztmpl src: ~/ubuntu-14.04-x86_64.tar.gz force: yes - name: Delete template with minimal options community.general.proxmox_template: node: uk-mc02 api_user: root@pam api_password: 1q2w3e api_host: node1 template: ubuntu-14.04-x86_64.tar.gz state: absent ''' import os import time try: from proxmoxer import ProxmoxAPI HAS_PROXMOXER = True except ImportError: HAS_PROXMOXER = False from ansible.module_utils.basic import AnsibleModule def get_template(proxmox, node, storage, content_type, template): return [True for tmpl in proxmox.nodes(node).storage(storage).content.get() if tmpl['volid'] == '%s:%s/%s' % (storage, content_type, template)] def upload_template(module, proxmox, api_host, node, storage, content_type, realpath, timeout): taskid = proxmox.nodes(node).storage(storage).upload.post(content=content_type, filename=open(realpath, 'rb')) while timeout: task_status = proxmox.nodes(api_host.split('.')[0]).tasks(taskid).status.get() if task_status['status'] == 'stopped' and task_status['exitstatus'] == 'OK': return True timeout = timeout - 1 if timeout == 0: module.fail_json(msg='Reached timeout while waiting for uploading template. Last line in task before timeout: %s' % proxmox.node(node).tasks(taskid).log.get()[:1]) time.sleep(1) return False def delete_template(module, proxmox, node, storage, content_type, template, timeout): volid = '%s:%s/%s' % (storage, content_type, template) proxmox.nodes(node).storage(storage).content.delete(volid) while timeout: if not get_template(proxmox, node, storage, content_type, template): return True timeout = timeout - 1 if timeout == 0: module.fail_json(msg='Reached timeout while waiting for deleting template.') time.sleep(1) return False def main(): module = AnsibleModule( argument_spec=dict( api_host=dict(required=True), api_user=dict(required=True), api_password=dict(no_log=True), validate_certs=dict(type='bool', default=False), node=dict(), src=dict(type='path'), template=dict(), content_type=dict(default='vztmpl', choices=['vztmpl', 'iso']), storage=dict(default='local'), timeout=dict(type='int', default=30), force=dict(type='bool', default=False), state=dict(default='present', choices=['present', 'absent']), ) ) if not HAS_PROXMOXER: module.fail_json(msg='proxmoxer required for this module') state = module.params['state'] api_user = module.params['api_user'] api_host = module.params['api_host'] api_password = module.params['api_password'] validate_certs = module.params['validate_certs'] node = module.params['node'] storage = module.params['storage'] timeout = module.params['timeout'] # If password not set get it from PROXMOX_PASSWORD env if not api_password: try: api_password = os.environ['PROXMOX_PASSWORD'] except KeyError as e: module.fail_json(msg='You should set api_password param or use PROXMOX_PASSWORD environment variable') try: proxmox = ProxmoxAPI(api_host, user=api_user, password=api_password, verify_ssl=validate_certs) except Exception as e: module.fail_json(msg='authorization on proxmox cluster failed with exception: %s' % e) if state == 'present': try: content_type = module.params['content_type'] src = module.params['src'] template = os.path.basename(src) if get_template(proxmox, node, storage, content_type, template) and not module.params['force']: module.exit_json(changed=False, msg='template with volid=%s:%s/%s is already exists' % (storage, content_type, template)) elif not src: module.fail_json(msg='src param to uploading template file is mandatory') elif not (os.path.exists(src) and os.path.isfile(src)): module.fail_json(msg='template file on path %s not exists' % src) if upload_template(module, proxmox, api_host, node, storage, content_type, src, timeout): module.exit_json(changed=True, msg='template with volid=%s:%s/%s uploaded' % (storage, content_type, template)) except Exception as e: module.fail_json(msg="uploading of template %s failed with exception: %s" % (template, e)) elif state == 'absent': try: content_type = module.params['content_type'] template = module.params['template'] if not template: module.fail_json(msg='template param is mandatory') elif not get_template(proxmox, node, storage, content_type, template): module.exit_json(changed=False, msg='template with volid=%s:%s/%s is already deleted' % (storage, content_type, template)) if delete_template(module, proxmox, node, storage, content_type, template, timeout): module.exit_json(changed=True, msg='template with volid=%s:%s/%s deleted' % (storage, content_type, template)) except Exception as e: module.fail_json(msg="deleting of template %s failed with exception: %s" % (template, e)) if __name__ == '__main__': main()
33.26
138
0.657486
0
0
0
0
0
0
0
0
4,073
0.489838
5b0b336675387a3e79e4c5c116c3b8865c4ef0c0
9,024
py
Python
polling_stations/apps/councils/management/commands/import_councils.py
DemocracyClub/UK-Polling-Stations
d5c428fc7fbccf0c13a84fa0045dfd332b2879e7
[ "BSD-3-Clause" ]
29
2015-03-10T08:41:34.000Z
2022-01-12T08:51:38.000Z
polling_stations/apps/councils/management/commands/import_councils.py
DemocracyClub/UK-Polling-Stations
d5c428fc7fbccf0c13a84fa0045dfd332b2879e7
[ "BSD-3-Clause" ]
4,112
2015-04-01T21:27:38.000Z
2022-03-31T19:22:11.000Z
polling_stations/apps/councils/management/commands/import_councils.py
DemocracyClub/UK-Polling-Stations
d5c428fc7fbccf0c13a84fa0045dfd332b2879e7
[ "BSD-3-Clause" ]
31
2015-03-18T14:52:50.000Z
2022-02-24T10:31:07.000Z
import json from html import unescape import requests from django.apps import apps from django.contrib.gis.geos import GEOSGeometry, MultiPolygon, Polygon from django.conf import settings from django.core.management.base import BaseCommand from requests.exceptions import HTTPError from retry import retry from councils.models import Council, CouncilGeography from polling_stations.settings.constants.councils import WELSH_COUNCIL_NAMES def union_areas(a1, a2): if not a1: return a2 return MultiPolygon(a1.union(a2)) NIR_IDS = [ "ABC", "AND", "ANN", "BFS", "CCG", "DRS", "FMO", "LBC", "MEA", "MUL", "NMD", ] class Command(BaseCommand): """ Turn off auto system check for all apps We will maunally run system checks only for the 'councils' and 'pollingstations' apps """ requires_system_checks = [] contact_details = {} def add_arguments(self, parser): parser.add_argument( "-t", "--teardown", default=False, action="store_true", required=False, help="<Optional> Clear Councils and CouncilGeography tables before importing", ) parser.add_argument( "-u", "--alt-url", required=False, help="<Optional> Alternative url to override settings.BOUNDARIES_URL", ) parser.add_argument( "--only-contact-details", action="store_true", help="Only update contact information for imported councils, " "don't update boundaries", ) def feature_to_multipolygon(self, feature): geometry = GEOSGeometry(json.dumps(feature["geometry"]), srid=4326) if isinstance(geometry, Polygon): return MultiPolygon(geometry) return geometry @retry(HTTPError, tries=2, delay=30) def get_ons_boundary_json(self, url): r = requests.get(url) r.raise_for_status() """ When an ArcGIS server can't generate a response within X amount of time, it will return a 202 ACCEPTED response with a body like { "processingTime": "27.018 seconds", "status": "Processing", "generating": {} } and expects the client to poll it. """ if r.status_code == 202: raise HTTPError("202 Accepted", response=r) return r.json() def attach_boundaries(self, url=None, id_field="LAD20CD"): """ Fetch each council's boundary from ONS and attach it to an existing council object :param url: The URL of the geoJSON file containing council boundaries :param id_field: The name of the feature properties field containing the council ID :return: """ if not url: url = settings.BOUNDARIES_URL self.stdout.write("Downloading ONS boundaries from %s..." % (url)) feature_collection = self.get_ons_boundary_json(url) for feature in feature_collection["features"]: gss_code = feature["properties"][id_field] try: council = Council.objects.get(identifiers__contains=[gss_code]) self.stdout.write( "Found boundary for %s: %s" % (gss_code, council.name) ) except Council.DoesNotExist: self.stderr.write( "No council object with GSS {} found".format(gss_code) ) continue council_geography, _ = CouncilGeography.objects.get_or_create( council=council ) council_geography.gss = gss_code council_geography.geography = self.feature_to_multipolygon(feature) council_geography.save() def load_contact_details(self): return requests.get(settings.EC_COUNCIL_CONTACT_DETAILS_API_URL).json() def get_council_name(self, council_data): """ At the time of writing, the council name can be NULL in the API meaning we can't rely on the key being populated in all cases. This is normally only an issue with councils covered by EONI, so if we see one of them without a name, we assign a hardcoded name. """ name = None if council_data["official_name"]: name = council_data["official_name"] else: if council_data["code"] in NIR_IDS: name = "Electoral Office for Northern Ireland" if not name: raise ValueError("No official name for {}".format(council_data["code"])) return unescape(name) def import_councils_from_ec(self): self.stdout.write("Importing councils...") bucks_defaults = { "name": "Buckinghamshire Council", "electoral_services_email": "[email protected] (general enquiries), [email protected] (postal vote enquiries), [email protected] (proxy vote enquiries), [email protected] (overseas voter enquiries)", "electoral_services_website": "https://www.buckinghamshire.gov.uk/your-council/council-and-democracy/election-and-voting/", "electoral_services_postcode": "HP19 8FF", "electoral_services_address": "Electoral Services\r\nBuckinghamshire Council\r\nThe Gateway\r\nGatehouse Road\r\nAylesbury", "electoral_services_phone_numbers": ["01296 798141"], "identifiers": ["E06000060"], "registration_address": None, "registration_email": "", "registration_phone_numbers": [], "registration_postcode": None, "registration_website": "", "name_translated": {}, } bucks_council, created = Council.objects.get_or_create( council_id="BUC", defaults=bucks_defaults ) if not created: for key, value in bucks_defaults.items(): setattr(bucks_council, key, value) bucks_council.save() self.seen_ids.add("BUC") for council_data in self.load_contact_details(): self.seen_ids.add(council_data["code"]) if council_data["code"] in ("CHN", "AYL", "SBU", "WYO"): continue council, _ = Council.objects.get_or_create(council_id=council_data["code"]) council.name = self.get_council_name(council_data) council.identifiers = council_data["identifiers"] if council_data["electoral_services"]: electoral_services = council_data["electoral_services"][0] council.electoral_services_email = electoral_services["email"] council.electoral_services_address = unescape( electoral_services["address"] ) council.electoral_services_postcode = electoral_services["postcode"] council.electoral_services_phone_numbers = electoral_services["tel"] council.electoral_services_website = electoral_services[ "website" ].replace("\\", "") if council_data["registration"]: registration = council_data["registration"][0] council.registration_email = registration["email"] council.registration_address = unescape(registration["address"]) council.registration_postcode = registration["postcode"] council.registration_phone_numbers = registration["tel"] council.registration_website = registration["website"].replace("\\", "") if council.council_id in WELSH_COUNCIL_NAMES: council.name_translated["cy"] = WELSH_COUNCIL_NAMES[council.council_id] elif council.name_translated.get("cy"): del council.name_translated["cy"] council.save() def handle(self, **options): """ Manually run system checks for the 'councils' and 'pollingstations' apps Management commands can ignore checks that only apply to the apps supporting the website part of the project """ self.check( [apps.get_app_config("councils"), apps.get_app_config("pollingstations")] ) if options["teardown"]: self.stdout.write("Clearing councils table..") Council.objects.all().delete() self.stdout.write("Clearing councils_geography table..") CouncilGeography.objects.all().delete() self.seen_ids = set() self.import_councils_from_ec() if not options["only_contact_details"]: self.attach_boundaries(options.get("alt_url")) # Clean up old councils that we've not seen in the EC data Council.objects.exclude(council_id__in=self.seen_ids).delete() self.stdout.write("..done")
37.6
275
0.614251
8,348
0.925089
0
0
603
0.066822
0
0
3,205
0.355164
5b0b4a59e216a0cba015910bd19bb58090619801
3,693
py
Python
saleor/webhook/observability/payload_schema.py
DevPoke/saleor
ced3a2249a18031f9f593e71d1d18aa787ec1060
[ "CC-BY-4.0" ]
null
null
null
saleor/webhook/observability/payload_schema.py
DevPoke/saleor
ced3a2249a18031f9f593e71d1d18aa787ec1060
[ "CC-BY-4.0" ]
null
null
null
saleor/webhook/observability/payload_schema.py
DevPoke/saleor
ced3a2249a18031f9f593e71d1d18aa787ec1060
[ "CC-BY-4.0" ]
null
null
null
from datetime import datetime from enum import Enum from json.encoder import ESCAPE_ASCII, ESCAPE_DCT # type: ignore from typing import List, Optional, Tuple, TypedDict class JsonTruncText: def __init__(self, text="", truncated=False, added_bytes=0): self.text = text self.truncated = truncated self._added_bytes = max(0, added_bytes) def __eq__(self, other): if not isinstance(other, JsonTruncText): return False return (self.text, self.truncated) == (other.text, other.truncated) def __repr__(self): return f'JsonTruncText(text="{self.text}", truncated={self.truncated})' @property def byte_size(self) -> int: return len(self.text) + self._added_bytes @staticmethod def json_char_len(char: str) -> int: try: return len(ESCAPE_DCT[char]) except KeyError: return 6 if ord(char) < 0x10000 else 12 @classmethod def truncate(cls, s: str, limit: int): limit = max(limit, 0) s_init_len = len(s) s = s[:limit] added_bytes = 0 for match in ESCAPE_ASCII.finditer(s): start, end = match.span(0) markup = cls.json_char_len(match.group(0)) - 1 added_bytes += markup if end + added_bytes > limit: return cls( text=s[:start], truncated=True, added_bytes=added_bytes - markup, ) if end + added_bytes == limit: s = s[:end] return cls( text=s, truncated=len(s) < s_init_len, added_bytes=added_bytes, ) return cls( text=s, truncated=len(s) < s_init_len, added_bytes=added_bytes, ) class ObservabilityEventTypes(str, Enum): API_CALL = "api_call" EVENT_DELIVERY_ATTEMPT = "event_delivery_attempt" HttpHeaders = List[Tuple[str, str]] class App(TypedDict): id: str name: str class Webhook(TypedDict): id: str name: str target_url: str subscription_query: Optional[JsonTruncText] class ObservabilityEventBase(TypedDict): event_type: ObservabilityEventTypes class GraphQLOperation(TypedDict): name: Optional[JsonTruncText] operation_type: Optional[str] query: Optional[JsonTruncText] result: Optional[JsonTruncText] result_invalid: bool class ApiCallRequest(TypedDict): id: str method: str url: str time: float headers: HttpHeaders content_length: int class ApiCallResponse(TypedDict): headers: HttpHeaders status_code: Optional[int] content_length: int class ApiCallPayload(ObservabilityEventBase): request: ApiCallRequest response: ApiCallResponse app: Optional[App] gql_operations: List[GraphQLOperation] class EventDeliveryPayload(TypedDict): content_length: int body: JsonTruncText class EventDelivery(TypedDict): id: str status: str event_type: str event_sync: bool payload: EventDeliveryPayload class EventDeliveryAttemptRequest(TypedDict): headers: HttpHeaders class EventDeliveryAttemptResponse(TypedDict): headers: HttpHeaders status_code: Optional[int] content_length: int body: JsonTruncText class EventDeliveryAttemptPayload(ObservabilityEventBase): id: str time: datetime duration: Optional[float] status: str next_retry: Optional[datetime] request: EventDeliveryAttemptRequest response: EventDeliveryAttemptResponse event_delivery: EventDelivery webhook: Webhook app: App
24.296053
79
0.642296
3,443
0.932304
0
0
1,200
0.324939
0
0
114
0.030869
5b0e8250fd1078639a824b073c3ab62b92fe28cf
4,537
py
Python
NMTK_apps/NMTK_server/wms/djpaste.py
bhargavasana/nmtk
9bebfcc4b43c28a1f2b2574060ea3195fca2c7dd
[ "Unlicense" ]
null
null
null
NMTK_apps/NMTK_server/wms/djpaste.py
bhargavasana/nmtk
9bebfcc4b43c28a1f2b2574060ea3195fca2c7dd
[ "Unlicense" ]
null
null
null
NMTK_apps/NMTK_server/wms/djpaste.py
bhargavasana/nmtk
9bebfcc4b43c28a1f2b2574060ea3195fca2c7dd
[ "Unlicense" ]
null
null
null
# (c) 2013 Chander Ganesan and contributors; written to work with Django and Paste (http://pythonpaste.org) # Paste CGI "middleware" for Django by Chander Ganesan <[email protected]> # Open Technology Group, Inc <http://www.otg-nc.com> # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php import os import sys import subprocess import urllib try: import select except ImportError: select = None from paste.util import converters from paste.cgiapp import * from paste.cgiapp import StdinReader, proc_communicate from paste.cgiapp import CGIApplication as PasteCGIApplication import urllib from django.http import HttpResponse # Taken from http://plumberjack.blogspot.com/2009/09/how-to-treat-logger-like-output-stream.html import logging mod_logger=logging.getLogger(__name__) class LoggerWriter: def __init__(self, logger, level): self.logger = logger self.level = level def write(self, message): if message.strip() and message != '\n': self.logger.log(self.level, message) class CGIApplication(PasteCGIApplication): def __call__(self, request, environ, logger=None): if not logger: self.logger=LoggerWriter(logging.getLogger(__name__), logging.ERROR) else: self.logger=logger if 'REQUEST_URI' not in environ: environ['REQUEST_URI'] = ( urllib.quote(environ.get('SCRIPT_NAME', '')) + urllib.quote(environ.get('PATH_INFO', ''))) if self.include_os_environ: cgi_environ = os.environ.copy() else: cgi_environ = {} for name in environ: # Should unicode values be encoded? if (name.upper() == name and isinstance(environ[name], str)): cgi_environ[name] = environ[name] if self.query_string is not None: old = cgi_environ.get('QUERY_STRING', '') if old: old += '&' cgi_environ['QUERY_STRING'] = old + self.query_string cgi_environ['SCRIPT_FILENAME'] = self.script proc = subprocess.Popen( [self.script], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=cgi_environ, cwd=os.path.dirname(self.script), ) writer = CGIWriter() if select and sys.platform != 'win32': proc_communicate( proc, stdin=request, stdout=writer, stderr=self.logger) else: stdout, stderr = proc.communicate(request.read()) if stderr: self.logger.write(stderr) writer.write(stdout) if not writer.headers_finished: return HttpResponse(status=400) return writer.response class CGIWriter(object): def __init__(self): self.status = '200 OK' self.headers = [] self.headers_finished = False self.writer = None self.buffer = '' def write(self, data): if self.headers_finished: self.response.write(data) return self.buffer += data while '\n' in self.buffer: if '\r\n' in self.buffer and self.buffer.find('\r\n') < self.buffer.find('\n'): line1, self.buffer = self.buffer.split('\r\n', 1) else: line1, self.buffer = self.buffer.split('\n', 1) if not line1: self.headers_finished = True self.response=HttpResponse(status=int(self.status.split(' ')[0])) for name, value in self.headers: self.response[name]=value self.response.write(self.buffer) del self.buffer del self.headers del self.status break elif ':' not in line1: raise CGIError( "Bad header line: %r" % line1) else: name, value = line1.split(':', 1) value = value.lstrip() name = name.strip() if name.lower() == 'status': if ' ' not in value: # WSGI requires this space, sometimes CGI scripts don't set it: value = '%s General' % value self.status = value else: self.headers.append((name, value))
36.007937
107
0.561384
3,704
0.816399
0
0
0
0
0
0
720
0.158695
5b0f67ce020d1273d176ad58ddcab8801ec9c7f2
181
py
Python
Ago-Dic-2019/JOSE ONOFRE/PRACTICAS/Practica1/RestaurantSeat.py
Arbupa/DAS_Sistemas
52263ab91436b2e5a24ce6f8493aaa2e2fe92fb1
[ "MIT" ]
41
2017-09-26T09:36:32.000Z
2022-03-19T18:05:25.000Z
Ago-Dic-2019/JOSE ONOFRE/PRACTICAS/Practica1/RestaurantSeat.py
Arbupa/DAS_Sistemas
52263ab91436b2e5a24ce6f8493aaa2e2fe92fb1
[ "MIT" ]
67
2017-09-11T05:06:12.000Z
2022-02-14T04:44:04.000Z
Ago-Dic-2019/JOSE ONOFRE/PRACTICAS/Practica1/RestaurantSeat.py
Arbupa/DAS_Sistemas
52263ab91436b2e5a24ce6f8493aaa2e2fe92fb1
[ "MIT" ]
210
2017-09-01T00:10:08.000Z
2022-03-19T18:05:12.000Z
cantidad= input("Cuantas personas van a cenar?") cant = int(cantidad) print(cant) if cant > 8: print("Lo siento, tendran que esperar") else: print("La mesa esta lista")
15.083333
48
0.674033
0
0
0
0
0
0
0
0
83
0.458564
5b0faab2d16278cb33dcd52c6711c4e057f78b52
7,424
py
Python
build/piman.app/pysnmp/carrier/asyncore/dgram/base.py
jackgisel/team-athens
91e2aa810c0064f8b6b39ee53c3b05f037e0aeb0
[ "Apache-2.0" ]
null
null
null
build/piman.app/pysnmp/carrier/asyncore/dgram/base.py
jackgisel/team-athens
91e2aa810c0064f8b6b39ee53c3b05f037e0aeb0
[ "Apache-2.0" ]
null
null
null
build/piman.app/pysnmp/carrier/asyncore/dgram/base.py
jackgisel/team-athens
91e2aa810c0064f8b6b39ee53c3b05f037e0aeb0
[ "Apache-2.0" ]
null
null
null
# # This file is part of pysnmp software. # # Copyright (c) 2005-2019, Ilya Etingof <[email protected]> # License: http://snmplabs.com/pysnmp/license.html # import socket import errno import sys from pysnmp.carrier.asyncore.base import AbstractSocketTransport from pysnmp.carrier import sockfix, sockmsg, error from pysnmp import debug # Ignore these socket errors sockErrors = {errno.ESHUTDOWN: True, errno.ENOTCONN: True, errno.ECONNRESET: False, errno.ECONNREFUSED: False, errno.EAGAIN: False, errno.EWOULDBLOCK: False} if hasattr(errno, 'EBADFD'): # bad FD may happen upon FD closure on n-1 select() event sockErrors[errno.EBADFD] = True class DgramSocketTransport(AbstractSocketTransport): sockType = socket.SOCK_DGRAM retryCount = 3 retryInterval = 1 addressType = lambda x: x def __init__(self, sock=None, sockMap=None): self.__outQueue = [] self._sendto = lambda s, b, a: s.sendto(b, a) def __recvfrom(s, sz): d, a = s.recvfrom(sz) return d, self.addressType(a) self._recvfrom = __recvfrom AbstractSocketTransport.__init__(self, sock, sockMap) def openClientMode(self, iface=None): if iface is not None: try: self.socket.bind(iface) except socket.error: raise error.CarrierError( 'bind() for %s failed: %s' % (iface is None and "<all local>" or iface, sys.exc_info()[1])) return self def openServerMode(self, iface): try: self.socket.bind(iface) except socket.error: raise error.CarrierError('bind() for %s failed: %s' % (iface, sys.exc_info()[1],)) return self def enableBroadcast(self, flag=1): try: self.socket.setsockopt( socket.SOL_SOCKET, socket.SO_BROADCAST, flag ) except socket.error: raise error.CarrierError('setsockopt() for SO_BROADCAST failed: %s' % (sys.exc_info()[1],)) debug.logger & debug.flagIO and debug.logger('enableBroadcast: %s option SO_BROADCAST on socket %s' % (flag and "enabled" or "disabled", self.socket.fileno())) return self def enablePktInfo(self, flag=1): if (not hasattr(self.socket, 'sendmsg') or not hasattr(self.socket, 'recvmsg')): raise error.CarrierError('sendmsg()/recvmsg() interface is not supported by this OS and/or Python version') try: if self.socket.family == socket.AF_INET: self.socket.setsockopt(socket.SOL_IP, socket.IP_PKTINFO, flag) if self.socket.family == socket.AF_INET6: self.socket.setsockopt(socket.SOL_IPV6, socket.IPV6_RECVPKTINFO, flag) except socket.error: raise error.CarrierError('setsockopt() for %s failed: %s' % (self.socket.family == socket.AF_INET6 and "IPV6_RECVPKTINFO" or "IP_PKTINFO", sys.exc_info()[1])) self._sendto = sockmsg.getSendTo(self.addressType) self._recvfrom = sockmsg.getRecvFrom(self.addressType) debug.logger & debug.flagIO and debug.logger('enablePktInfo: %s option %s on socket %s' % (self.socket.family == socket.AF_INET6 and "IPV6_RECVPKTINFO" or "IP_PKTINFO", flag and "enabled" or "disabled", self.socket.fileno())) return self def enableTransparent(self, flag=1): try: if self.socket.family == socket.AF_INET: self.socket.setsockopt( socket.SOL_IP, socket.IP_TRANSPARENT, flag ) if self.socket.family == socket.AF_INET6: self.socket.setsockopt( socket.SOL_IPV6, socket.IPV6_TRANSPARENT, flag ) except socket.error: raise error.CarrierError('setsockopt() for IP_TRANSPARENT failed: %s' % sys.exc_info()[1]) except OSError: raise error.CarrierError('IP_TRANSPARENT socket option requires superusre previleges') debug.logger & debug.flagIO and debug.logger('enableTransparent: %s option IP_TRANSPARENT on socket %s' % (flag and "enabled" or "disabled", self.socket.fileno())) return self def sendMessage(self, outgoingMessage, transportAddress): self.__outQueue.append( (outgoingMessage, self.normalizeAddress(transportAddress)) ) debug.logger & debug.flagIO and debug.logger('sendMessage: outgoingMessage queued (%d octets) %s' % (len(outgoingMessage), debug.hexdump(outgoingMessage))) def normalizeAddress(self, transportAddress): if not isinstance(transportAddress, self.addressType): transportAddress = self.addressType(transportAddress) if not transportAddress.getLocalAddress(): transportAddress.setLocalAddress(self.getLocalAddress()) return transportAddress def getLocalAddress(self): # one evil OS does not seem to support getsockname() for DGRAM sockets try: return self.socket.getsockname() except Exception: return '0.0.0.0', 0 # asyncore API def handle_connect(self): pass def writable(self): return self.__outQueue def handle_write(self): outgoingMessage, transportAddress = self.__outQueue.pop(0) debug.logger & debug.flagIO and debug.logger('handle_write: transportAddress %r -> %r outgoingMessage (%d octets) %s' % (transportAddress.getLocalAddress(), transportAddress, len(outgoingMessage), debug.hexdump(outgoingMessage))) if not transportAddress: debug.logger & debug.flagIO and debug.logger('handle_write: missing dst address, loosing outgoing msg') return try: self._sendto( self.socket, outgoingMessage, transportAddress ) except socket.error: if sys.exc_info()[1].args[0] in sockErrors: debug.logger & debug.flagIO and debug.logger('handle_write: ignoring socket error %s' % (sys.exc_info()[1],)) else: raise error.CarrierError('sendto() failed for %s: %s' % (transportAddress, sys.exc_info()[1])) def readable(self): return 1 def handle_read(self): try: incomingMessage, transportAddress = self._recvfrom(self.socket, 65535) transportAddress = self.normalizeAddress(transportAddress) debug.logger & debug.flagIO and debug.logger( 'handle_read: transportAddress %r -> %r incomingMessage (%d octets) %s' % (transportAddress, transportAddress.getLocalAddress(), len(incomingMessage), debug.hexdump(incomingMessage))) if not incomingMessage: self.handle_close() return else: self._cbFun(self, transportAddress, incomingMessage) return except socket.error: if sys.exc_info()[1].args[0] in sockErrors: debug.logger & debug.flagIO and debug.logger('handle_read: known socket error %s' % (sys.exc_info()[1],)) sockErrors[sys.exc_info()[1].args[0]] and self.handle_close() return else: raise error.CarrierError('recvfrom() failed: %s' % (sys.exc_info()[1],)) def handle_close(self): pass # no datagram connection
40.791209
237
0.630119
6,699
0.902344
0
0
0
0
0
0
1,353
0.182247
5b10e569de8510acb457502268786c36584d12b7
5,539
py
Python
src/coreclr/scripts/superpmi-replay.py
JimmyCushnie/runtime
b7eb82871f1d742efb444873e11dd6241cea73d2
[ "MIT" ]
2
2021-05-04T11:27:27.000Z
2021-06-18T14:04:08.000Z
src/coreclr/scripts/superpmi-replay.py
JimmyCushnie/runtime
b7eb82871f1d742efb444873e11dd6241cea73d2
[ "MIT" ]
18
2019-12-03T00:21:59.000Z
2022-01-30T04:45:58.000Z
src/coreclr/scripts/superpmi-replay.py
JimmyCushnie/runtime
b7eb82871f1d742efb444873e11dd6241cea73d2
[ "MIT" ]
2
2022-01-23T12:24:04.000Z
2022-02-07T15:44:03.000Z
#!/usr/bin/env python3 # # Licensed to the .NET Foundation under one or more agreements. # The .NET Foundation licenses this file to you under the MIT license. # ## # Title : superpmi_setup.py # # Notes: # # Script to run "superpmi replay" for various collections under various COMPlus_JitStressRegs value. ################################################################################ ################################################################################ import argparse from os import path import os from os import listdir from coreclr_arguments import * from superpmi_setup import run_command parser = argparse.ArgumentParser(description="description") parser.add_argument("-arch", help="Architecture") parser.add_argument("-platform", help="OS platform") parser.add_argument("-jit_directory", help="path to the directory containing clrjit binaries") parser.add_argument("-log_directory", help="path to the directory containing superpmi log files") jit_flags = [ "JitStressRegs=0", "JitStressRegs=1", "JitStressRegs=2", "JitStressRegs=3", "JitStressRegs=4", "JitStressRegs=8", "JitStressRegs=0x10", "JitStressRegs=0x80", "JitStressRegs=0x1000", ] def setup_args(args): """ Setup the args for SuperPMI to use. Args: args (ArgParse): args parsed by arg parser Returns: args (CoreclrArguments) """ coreclr_args = CoreclrArguments(args, require_built_core_root=False, require_built_product_dir=False, require_built_test_dir=False, default_build_type="Checked") coreclr_args.verify(args, "arch", lambda unused: True, "Unable to set arch") coreclr_args.verify(args, "platform", lambda unused: True, "Unable to set platform") coreclr_args.verify(args, "jit_directory", lambda jit_directory: os.path.isdir(jit_directory), "jit_directory doesn't exist") coreclr_args.verify(args, "log_directory", lambda log_directory: True, "log_directory doesn't exist") return coreclr_args def main(main_args): """Main entrypoint Args: main_args ([type]): Arguments to the script """ python_path = sys.executable cwd = os.path.dirname(os.path.realpath(__file__)) coreclr_args = setup_args(main_args) spmi_location = path.join(cwd, "artifacts", "spmi") log_directory = coreclr_args.log_directory platform_name = coreclr_args.platform os_name = "win" if platform_name.lower() == "windows" else "unix" arch_name = coreclr_args.arch host_arch_name = "x64" if arch_name.endswith("64") else "x86" jit_path = path.join(coreclr_args.jit_directory, 'clrjit_{}_{}_{}.dll'.format(os_name, arch_name, host_arch_name)) print("Running superpmi.py download") run_command([python_path, path.join(cwd, "superpmi.py"), "download", "--no_progress", "-target_os", platform_name, "-target_arch", arch_name, "-core_root", cwd, "-spmi_location", spmi_location], _exit_on_fail=True) failed_runs = [] for jit_flag in jit_flags: log_file = path.join(log_directory, 'superpmi_{}.log'.format(jit_flag.replace("=", "_"))) print("Running superpmi.py replay for {}".format(jit_flag)) _, _, return_code = run_command([ python_path, path.join(cwd, "superpmi.py"), "replay", "-core_root", cwd, "-jitoption", jit_flag, "-jitoption", "TieredCompilation=0", "-target_os", platform_name, "-target_arch", arch_name, "-arch", host_arch_name, "-jit_path", jit_path, "-spmi_location", spmi_location, "-log_level", "debug", "-log_file", log_file]) if return_code != 0: failed_runs.append("Failure in {}".format(log_file)) # Consolidate all superpmi_*.logs in superpmi_platform_architecture.log final_log_name = path.join(log_directory, "superpmi_{}_{}.log".format(platform_name, arch_name)) print("Consolidating final {}".format(final_log_name)) with open(final_log_name, "a") as final_superpmi_log: for superpmi_log in listdir(log_directory): if not superpmi_log.startswith("superpmi_Jit") or not superpmi_log.endswith(".log"): continue print("Appending {}".format(superpmi_log)) final_superpmi_log.write("======================================================={}".format(os.linesep)) final_superpmi_log.write("Contents from {}{}".format(superpmi_log, os.linesep)) final_superpmi_log.write("======================================================={}".format(os.linesep)) with open(path.join(log_directory, superpmi_log), "r") as current_superpmi_log: contents = current_superpmi_log.read() final_superpmi_log.write(contents) # Log failures summary if len(failed_runs) > 0: final_superpmi_log.write(os.linesep) final_superpmi_log.write(os.linesep) final_superpmi_log.write("========Failed runs summary========".format(os.linesep)) final_superpmi_log.write(os.linesep.join(failed_runs)) return 0 if len(failed_runs) == 0 else 1 if __name__ == "__main__": args = parser.parse_args() sys.exit(main(args))
37.938356
118
0.609677
0
0
0
0
0
0
0
0
2,026
0.36577
5b10fde1a0b02a1e7f85ed42e2bfe8b97109fa80
514
py
Python
parse_cookie.py
olnikiforov/hillel
911bb94169aa277932e346e564e5efd69073d634
[ "MIT" ]
null
null
null
parse_cookie.py
olnikiforov/hillel
911bb94169aa277932e346e564e5efd69073d634
[ "MIT" ]
1
2021-04-01T18:56:38.000Z
2021-04-01T18:56:38.000Z
parse_cookie.py
olnikiforov/hillel
911bb94169aa277932e346e564e5efd69073d634
[ "MIT" ]
null
null
null
def parse_cookie(query: str) -> dict: res = {} if query: data = query.split(';') for i in data: if '=' in i: res[i.split('=')[0]] = '='.join(i.split('=')[1:]) return res if __name__ == '__main__': assert parse_cookie('name=Dima;') == {'name': 'Dima'} assert parse_cookie('') == {} assert parse_cookie('name=Dima;age=28;') == {'name': 'Dima', 'age': '28'} assert parse_cookie('name=Dima=User;age=28;') == {'name': 'Dima=User', 'age': '28'}
30.235294
87
0.509728
0
0
0
0
0
0
0
0
141
0.274319
5b110f22e3b74f1f108abb0d9e76465e1a151a75
2,234
py
Python
neuralgym/callbacks/model_saver.py
pancookie/SNPGAN_TECcompletion
2245179db9d9c64da20a6dd7098795a1cf724ad3
[ "MIT" ]
1
2022-02-06T07:38:43.000Z
2022-02-06T07:38:43.000Z
neuralgym/callbacks/model_saver.py
pancookie/SNPGAN_TECcompletion
2245179db9d9c64da20a6dd7098795a1cf724ad3
[ "MIT" ]
null
null
null
neuralgym/callbacks/model_saver.py
pancookie/SNPGAN_TECcompletion
2245179db9d9c64da20a6dd7098795a1cf724ad3
[ "MIT" ]
null
null
null
"""model_saver""" import os from . import PeriodicCallback, CallbackLoc from ..utils.logger import callback_log class ModelSaver(PeriodicCallback): """Save model to file at every pstep step_start. Args: pstep (int): Save to model every pstep. saver: Tensorflow saver. dump_prefix (str): Prefix for saving model files. """ def __init__(self, pstep, saver, dump_prefix, train_spe=None, save_every_epochs=50, op_lr=False, optim=None): super().__init__(CallbackLoc.step_start, pstep) self._saver = saver self._dump_prefix = dump_prefix ; self.train_spe = train_spe ; self.see = save_every_epochs # self.optim = optim ; self.op_lr = op_lr # self.best_losses = {} # self.best_losses['d_loss'] = 999.; self.best_losses['g_loss'] = 999.; self.best_losses['avg_loss'] = 999. dump_dir = os.path.dirname(self._dump_prefix) if not os.path.exists(dump_dir): os.makedirs(dump_dir) callback_log('Initialize ModelSaver: mkdirs %s.' % dump_dir) ''' # make two folders to save best D, G, and avg loss self.dump_dir_d = os.path.join(os.path.join(dump_dir, 'best_D')) if not os.path.exists(self.dump_dir_d): os.makedirs(self.dump_dir_d) self.dump_dir_g = os.path.join(os.path.join(dump_dir, 'best_G')) if not os.path.exists(self.dump_dir_g): os.makedirs(self.dump_dir_g) self.dump_dir_avg = os.path.join(os.path.join(dump_dir, 'best_avg')) if not os.path.exists(self.dump_dir_avg): os.makedirs(self.dump_dir_avg) ''' def run(self, sess, step): ''' if self.op_lr: g_lr = sess.run(self.optim['g']._lr) d_lr = sess.run(self.optim['d']._lr) callback_log('At step {}, lr: g: {}, d: {}.'.format( step, g_lr, d_lr)) ''' # save the best loss # save model if step != 0 and int(step/self.train_spe)%self.see == 0: callback_log('Trigger ModelSaver: Save model to {}-{}.'.format( self._dump_prefix, step)) self._saver.save(sess, self._dump_prefix, global_step=step)
37.864407
115
0.606088
2,118
0.948075
0
0
0
0
0
0
1,320
0.590868
5b1186da0e35b3ea68ef672cbd4ad76ad6086353
1,352
py
Python
rower_monitor/boat_metrics.py
sergiomo/diy-rower-monitor
32730025874f32015b8a582175db36cdd351ce1e
[ "Unlicense" ]
null
null
null
rower_monitor/boat_metrics.py
sergiomo/diy-rower-monitor
32730025874f32015b8a582175db36cdd351ce1e
[ "Unlicense" ]
null
null
null
rower_monitor/boat_metrics.py
sergiomo/diy-rower-monitor
32730025874f32015b8a582175db36cdd351ce1e
[ "Unlicense" ]
null
null
null
from .time_series import TimeSeries class BoatModel: def __init__(self, workout): self.workout = workout self.position = TimeSeries() self.speed = TimeSeries() def update(self): """This function gets called on every flywheel encoder tick.""" pass class RotatingWheel(BoatModel): """A simple model to calculate boat speed and distance traveled. We assume the "boat" is just a wheel moving on the ground, with the same rotational speed as the rower's flywheel.""" WHEEL_CIRCUMFERENCE_METERS = 1.0 def update(self): if len(self.position) == 0: current_position = 0 else: current_position = self.position.values[-1] + 1.0 / self.workout.machine.num_encoder_pulses_per_revolution self.position.append( value=current_position, timestamp=self.workout.machine.encoder_pulse_timestamps[-1] ) if len(self.workout.machine.flywheel_speed) > 0: # Linear speed of a rolling wheel [m/s] = rotational speed [rev/s] * cirumference [m] boat_speed = self.workout.machine.flywheel_speed.values[-1] * self.WHEEL_CIRCUMFERENCE_METERS self.speed.append( value=boat_speed, timestamp=self.workout.machine.flywheel_speed.timestamps[-1] )
35.578947
118
0.647929
1,310
0.968935
0
0
0
0
0
0
334
0.247041
5b11b42643e2e5c40307befa37ef00c0f90f66bd
121
py
Python
trackMe-backend/src/config.py
matth3wliuu/trackMe
0fb22bb8adf147fb4d4ed09c5c7253d0e54bf992
[ "MIT" ]
1
2022-01-28T06:20:03.000Z
2022-01-28T06:20:03.000Z
trackMe-backend/src/config.py
matth3wliuu/trackMe
0fb22bb8adf147fb4d4ed09c5c7253d0e54bf992
[ "MIT" ]
null
null
null
trackMe-backend/src/config.py
matth3wliuu/trackMe
0fb22bb8adf147fb4d4ed09c5c7253d0e54bf992
[ "MIT" ]
null
null
null
dbConfig = { "user": "root", "password": "123567l098", "host": "localhost", "database": "trackMe_dev" }
20.166667
29
0.545455
0
0
0
0
0
0
0
0
74
0.61157
5b1363485151128caf183c9f6b705444acca65c5
136
py
Python
src/localsrv/urls.py
vladiibine/localsrv
7bb8fd2e08f43a1b5adef9ad17ab534a317e0a57
[ "MIT" ]
null
null
null
src/localsrv/urls.py
vladiibine/localsrv
7bb8fd2e08f43a1b5adef9ad17ab534a317e0a57
[ "MIT" ]
4
2015-04-28T08:20:26.000Z
2015-06-13T06:32:31.000Z
src/localsrv/urls.py
vladiibine/localsrv
7bb8fd2e08f43a1b5adef9ad17ab534a317e0a57
[ "MIT" ]
1
2018-03-04T20:29:27.000Z
2018-03-04T20:29:27.000Z
from django.conf.urls import url from .views import serve_all urlpatterns = ( url(r'^.*$', serve_all, name="localsrv:serve_all"), )
22.666667
55
0.705882
0
0
0
0
0
0
0
0
27
0.198529
5b14c0f520aa2dfc088e43cb4960682061f61a03
409
py
Python
netrd/__init__.py
sdmccabe/netrd
f703c19b02f42c9f54bcab57014381da11dd58da
[ "MIT" ]
116
2019-01-17T18:31:43.000Z
2022-03-31T13:37:21.000Z
netrd/__init__.py
sdmccabe/netrd
f703c19b02f42c9f54bcab57014381da11dd58da
[ "MIT" ]
175
2019-01-15T01:19:13.000Z
2021-05-25T16:51:26.000Z
netrd/__init__.py
sdmccabe/netrd
f703c19b02f42c9f54bcab57014381da11dd58da
[ "MIT" ]
36
2019-01-14T20:38:32.000Z
2022-01-21T20:58:38.000Z
""" netrd ----- netrd stands for Network Reconstruction and Distances. It is a repository of different algorithms for constructing a network from time series data, as well as for comparing two networks. It is the product of the Network Science Insitute 2019 Collabathon. """ from . import distance # noqa from . import reconstruction # noqa from . import dynamics # noqa from . import utilities # noqa
25.5625
73
0.760391
0
0
0
0
0
0
0
0
300
0.733496
5b14c2ff1b60260805608d9bdfcac0cbbde63652
5,613
py
Python
pytorch/GPT.py
lyq628/NLP-Tutorials
7c9d117a3542695e79419c835ba9e98ef80800b8
[ "MIT" ]
643
2018-11-30T09:14:29.000Z
2022-03-28T14:04:15.000Z
pytorch/GPT.py
lyq628/NLP-Tutorials
7c9d117a3542695e79419c835ba9e98ef80800b8
[ "MIT" ]
22
2019-01-03T17:58:12.000Z
2022-02-10T01:56:00.000Z
pytorch/GPT.py
lyq628/NLP-Tutorials
7c9d117a3542695e79419c835ba9e98ef80800b8
[ "MIT" ]
258
2018-12-03T17:15:04.000Z
2022-03-30T07:45:49.000Z
from transformer import Encoder from torch import nn,optim from torch.nn.functional import cross_entropy,softmax, relu from torch.utils.data import DataLoader from torch.utils.data.dataloader import default_collate import torch import utils import os import pickle class GPT(nn.Module): def __init__(self, model_dim, max_len, num_layer, num_head, n_vocab, lr, max_seg=3, drop_rate=0.2,padding_idx=0): super().__init__() self.padding_idx = padding_idx self.n_vocab = n_vocab self.max_len = max_len self.word_emb = nn.Embedding(n_vocab,model_dim) self.word_emb.weight.data.normal_(0,0.1) self.segment_emb = nn.Embedding(num_embeddings= max_seg, embedding_dim=model_dim) self.segment_emb.weight.data.normal_(0,0.1) self.position_emb = torch.empty(1,max_len,model_dim) nn.init.kaiming_normal_(self.position_emb,mode='fan_out', nonlinearity='relu') self.position_emb = nn.Parameter(self.position_emb) self.encoder = Encoder(n_head=num_head, emb_dim=model_dim, drop_rate=drop_rate, n_layer=num_layer) self.task_mlm = nn.Linear(in_features=model_dim, out_features=n_vocab) self.task_nsp = nn.Linear(in_features=model_dim*self.max_len, out_features=2) self.opt = optim.Adam(self.parameters(),lr) def forward(self,seqs, segs, training=False): embed = self.input_emb(seqs, segs) z = self.encoder(embed, training, mask = self.mask(seqs)) # [n, step, model_dim] mlm_logits = self.task_mlm(z) # [n, step, n_vocab] nsp_logits = self.task_nsp(z.reshape(z.shape[0],-1)) # [n, n_cls] return mlm_logits, nsp_logits def step(self, seqs, segs, seqs_, nsp_labels): self.opt.zero_grad() mlm_logits, nsp_logits = self(seqs, segs, training=True) pred_loss = cross_entropy(mlm_logits.reshape(-1,self.n_vocab),seqs_.reshape(-1)) nsp_loss = cross_entropy(nsp_logits,nsp_labels.reshape(-1)) loss = pred_loss + 0.2 * nsp_loss loss.backward() self.opt.step() return loss.cpu().data.numpy(), mlm_logits def input_emb(self,seqs, segs): # device = next(self.parameters()).device # self.position_emb = self.position_emb.to(device) return self.word_emb(seqs) + self.segment_emb(segs) + self.position_emb def mask(self, seqs): device = next(self.parameters()).device batch_size, seq_len = seqs.shape mask = torch.triu(torch.ones((seq_len,seq_len), dtype=torch.long), diagonal=1).to(device) # [seq_len ,seq_len] pad = torch.eq(seqs,self.padding_idx) # [n, seq_len] mask = torch.where(pad[:,None,None,:],1,mask[None,None,:,:]).to(device) # [n, 1, seq_len, seq_len] return mask>0 # [n, 1, seq_len, seq_len] @property def attentions(self): attentions = { "encoder": [l.mh.attention.cpu().data.numpy() for l in self.encoder.encoder_layers] } return attentions def train(): MODEL_DIM = 256 N_LAYER = 4 LEARNING_RATE = 1e-4 dataset = utils.MRPCData("./MRPC",2000) print("num word: ",dataset.num_word) model = GPT( model_dim=MODEL_DIM, max_len=dataset.max_len-1, num_layer=N_LAYER, num_head=4, n_vocab=dataset.num_word, lr=LEARNING_RATE, max_seg=dataset.num_seg, drop_rate=0.2, padding_idx=dataset.pad_id ) if torch.cuda.is_available(): print("GPU train avaliable") device =torch.device("cuda") model = model.cuda() else: device = torch.device("cpu") model = model.cpu() loader = DataLoader(dataset,batch_size=32,shuffle=True) for epoch in range(100): for batch_idx, batch in enumerate(loader): seqs, segs,xlen,nsp_labels = batch seqs, segs,nsp_labels = seqs.type(torch.LongTensor).to(device), segs.type(torch.LongTensor).to(device),nsp_labels.to(device) # pred: [n, step, n_vocab] loss,pred = model.step(seqs=seqs[:,:-1], segs= segs[:,:-1], seqs_=seqs[:,1:], nsp_labels=nsp_labels) if batch_idx %100 == 0: pred = pred[0].cpu().data.numpy().argmax(axis = 1) # [step] print( "Epoch: ",epoch, "|batch: ", batch_idx, "| loss: %.3f" % loss, "\n| tgt: ", " ".join([dataset.i2v[i] for i in seqs[0, 1:].cpu().data.numpy()[:xlen[0].sum()+1]]), "\n| prd: ", " ".join([dataset.i2v[i] for i in pred[:xlen[0].sum()+1]]), ) os.makedirs("./visual/models/gpt",exist_ok=True) torch.save(model.state_dict(),"./visual/models/gpt/model.pth") export_attention(model,device,dataset) def export_attention(model,device,data,name="gpt"): model.load_state_dict(torch.load("./visual/models/gpt/model.pth",map_location=device)) seqs, segs,xlen,nsp_labels = data[:32] seqs, segs,xlen,nsp_labels = torch.from_numpy(seqs),torch.from_numpy(segs),torch.from_numpy(xlen),torch.from_numpy(nsp_labels) seqs, segs,nsp_labels = seqs.type(torch.LongTensor).to(device), segs.type(torch.LongTensor).to(device),nsp_labels.to(device) model(seqs[:,:-1],segs[:,:-1],False) seqs = seqs.cpu().data.numpy() data = {"src": [[data.i2v[i] for i in seqs[j]] for j in range(len(seqs))], "attentions": model.attentions} path = "./visual/tmp/%s_attention_matrix.pkl" % name os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "wb") as f: pickle.dump(data, f) if __name__ == "__main__": train()
43.176923
136
0.637983
2,766
0.492785
0
0
190
0.03385
0
0
559
0.09959
5b14e976757ac56925070b1b4efc08dd156d8a00
22,691
py
Python
skyportal/plot.py
dannygoldstein/skyportal
3f3518136530fcf5bd1787a4c890782164627fce
[ "BSD-3-Clause" ]
null
null
null
skyportal/plot.py
dannygoldstein/skyportal
3f3518136530fcf5bd1787a4c890782164627fce
[ "BSD-3-Clause" ]
null
null
null
skyportal/plot.py
dannygoldstein/skyportal
3f3518136530fcf5bd1787a4c890782164627fce
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import pandas as pd from bokeh.core.json_encoder import serialize_json from bokeh.core.properties import List, String from bokeh.document import Document from bokeh.layouts import row, column from bokeh.models import CustomJS, HoverTool, Range1d, Slider, Button from bokeh.models.widgets import CheckboxGroup, TextInput, Panel, Tabs from bokeh.palettes import viridis from bokeh.plotting import figure, ColumnDataSource from bokeh.util.compiler import bundle_all_models from bokeh.util.serialization import make_id from matplotlib import cm from matplotlib.colors import rgb2hex import os from skyportal.models import ( DBSession, Obj, Photometry, Group, Instrument, Telescope, PHOT_ZP, ) import sncosmo DETECT_THRESH = 5 # sigma SPEC_LINES = { 'H': ([3970, 4102, 4341, 4861, 6563], '#ff0000'), 'He': ([3886, 4472, 5876, 6678, 7065], '#002157'), 'He II': ([3203, 4686], '#003b99'), 'C II': ([3919, 4267, 6580, 7234, 9234], '#570199'), 'C III': ([4650, 5696], '#a30198'), 'C IV': ([5801], '#ff0073'), 'O': ([7772, 7774, 7775, 8447, 9266], '#007236'), 'O II': ([3727], '#00a64d'), 'O III': ([4959, 5007], '#00bf59'), 'Na': ([5890, 5896, 8183, 8195], '#aba000'), 'Mg': ([2780, 2852, 3829, 3832, 3838, 4571, 5167, 5173, 5184], '#8c6239'), 'Mg II': ([2791, 2796, 2803, 4481], '#bf874e'), 'Si II': ([3856, 5041, 5056, 5670, 6347, 6371], '#5674b9'), 'S II': ([5433, 5454, 5606, 5640, 5647, 6715], '#a38409'), 'Ca II': ([3934, 3969, 7292, 7324, 8498, 8542, 8662], '#005050'), 'Fe II': ([5018, 5169], '#f26c4f'), 'Fe III': ([4397, 4421, 4432, 5129, 5158], '#f9917b'), } # TODO add groups # Galaxy lines # # 'H': '4341, 4861, 6563; # 'N II': '6548, 6583; # 'O I': '6300;' # 'O II': '3727; # 'O III': '4959, 5007; # 'Mg II': '2798; # 'S II': '6717, 6731' # 'H': '3970, 4102, 4341, 4861, 6563' # 'Na': '5890, 5896, 8183, 8195' # 'He': '3886, 4472, 5876, 6678, 7065' # 'Mg': '2780, 2852, 3829, 3832, 3838, 4571, 5167, 5173, 5184' # 'He II': '3203, 4686' # 'Mg II': '2791, 2796, 2803, 4481' # 'O': '7772, 7774, 7775, 8447, 9266' # 'Si II': '3856, 5041, 5056, 5670 6347, 6371' # 'O II': '3727' # 'Ca II': '3934, 3969, 7292, 7324, 8498, 8542, 8662' # 'O III': '4959, 5007' # 'Fe II': '5018, 5169' # 'S II': '5433, 5454, 5606, 5640, 5647, 6715' # 'Fe III': '4397, 4421, 4432, 5129, 5158' # # Other # # 'Tel: 6867-6884, 7594-7621' # 'Tel': '#b7b7b7', # 'H: 4341, 4861, 6563; # 'N II': 6548, 6583; # 'O I': 6300; # 'O II': 3727; # 'O III': 4959, 5007; # 'Mg II': 2798; # 'S II': 6717, 6731' class CheckboxWithLegendGroup(CheckboxGroup): colors = List(String, help="List of legend colors") __implementation__ = """ import {empty, input, label, div} from "core/dom" import * as p from "core/properties" import {CheckboxGroup, CheckboxGroupView} from "models/widgets/checkbox_group" export class CheckboxWithLegendGroupView extends CheckboxGroupView render: () -> super() empty(@el) active = @model.active colors = @model.colors for text, i in @model.labels inputEl = input({type: "checkbox", value: "#{i}"}) inputEl.addEventListener("change", () => @change_input()) if @model.disabled then inputEl.disabled = true if i in active then inputEl.checked = true attrs = { style: "border-left: 12px solid #{colors[i]}; padding-left: 0.3em;" } labelEl = label(attrs, inputEl, text) if @model.inline labelEl.classList.add("bk-bs-checkbox-inline") @el.appendChild(labelEl) else divEl = div({class: "bk-bs-checkbox"}, labelEl) @el.appendChild(divEl) return @ export class CheckboxWithLegendGroup extends CheckboxGroup type: "CheckboxWithLegendGroup" default_view: CheckboxWithLegendGroupView @define { colors: [ p.Array, [] ] } """ # TODO replace with (script, div) method def _plot_to_json(plot): """Convert plot to JSON objects necessary for rendering with `bokehJS`. Parameters ---------- plot : bokeh.plotting.figure.Figure Bokeh plot object to be rendered. Returns ------- (str, str) Returns (docs_json, render_items) json for the desired plot. """ render_items = [{'docid': plot._id, 'elementid': make_id()}] doc = Document() doc.add_root(plot) docs_json_inner = doc.to_json() docs_json = {render_items[0]['docid']: docs_json_inner} docs_json = serialize_json(docs_json) render_items = serialize_json(render_items) custom_model_js = bundle_all_models() return docs_json, render_items, custom_model_js tooltip_format = [ ('mjd', '@mjd{0.000000}'), ('flux', '@flux'), ('filter', '@filter'), ('fluxerr', '@fluxerr'), ('mag', '@mag'), ('magerr', '@magerr'), ('lim_mag', '@lim_mag'), ('instrument', '@instrument'), ('stacked', '@stacked'), ] cmap = cm.get_cmap('jet_r') def get_color(bandpass_name, cmap_limits=(3000.0, 10000.0)): if bandpass_name.startswith('ztf'): return {'ztfg': 'green', 'ztfi': 'orange', 'ztfr': 'red'}[bandpass_name] else: bandpass = sncosmo.get_bandpass(bandpass_name) wave = bandpass.wave_eff rgb = cmap((cmap_limits[1] - wave) / (cmap_limits[1] - cmap_limits[0]))[:3] bandcolor = rgb2hex(rgb) return bandcolor # TODO make async so that thread isn't blocked def photometry_plot(obj_id, user, width=600, height=300): """Create scatter plot of photometry for object. Parameters ---------- obj_id : str ID of Obj to be plotted. Returns ------- (str, str) Returns (docs_json, render_items) json for the desired plot. """ data = pd.read_sql( DBSession() .query( Photometry, Telescope.nickname.label("telescope"), Instrument.name.label("instrument"), ) .join(Instrument, Instrument.id == Photometry.instrument_id) .join(Telescope, Telescope.id == Instrument.telescope_id) .filter(Photometry.obj_id == obj_id) .filter( Photometry.groups.any(Group.id.in_([g.id for g in user.accessible_groups])) ) .statement, DBSession().bind, ) if data.empty: return None, None, None data['color'] = [get_color(f) for f in data['filter']] data['label'] = [ f'{i} {f}-band' for i, f in zip(data['instrument'], data['filter']) ] data['zp'] = PHOT_ZP data['magsys'] = 'ab' data['alpha'] = 1.0 data['lim_mag'] = -2.5 * np.log10(data['fluxerr'] * DETECT_THRESH) + data['zp'] # Passing a dictionary to a bokeh datasource causes the frontend to die, # deleting the dictionary column fixes that del data['original_user_data'] # keep track of things that are only upper limits data['hasflux'] = ~data['flux'].isna() # calculate the magnitudes - a photometry point is considered "significant" # or "detected" (and thus can be represented by a magnitude) if its snr # is above DETECT_THRESH obsind = data['hasflux'] & ( data['flux'].fillna(0.0) / data['fluxerr'] >= DETECT_THRESH ) data.loc[~obsind, 'mag'] = None data.loc[obsind, 'mag'] = -2.5 * np.log10(data[obsind]['flux']) + PHOT_ZP # calculate the magnitude errors using standard error propagation formulae # https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulae data.loc[~obsind, 'magerr'] = None coeff = 2.5 / np.log(10) magerrs = np.abs(coeff * data[obsind]['fluxerr'] / data[obsind]['flux']) data.loc[obsind, 'magerr'] = magerrs data['obs'] = obsind data['stacked'] = False split = data.groupby('label', sort=False) finite = np.isfinite(data['flux']) fdata = data[finite] lower = np.min(fdata['flux']) * 0.95 upper = np.max(fdata['flux']) * 1.05 plot = figure( plot_width=width, plot_height=height, active_drag='box_zoom', tools='box_zoom,wheel_zoom,pan,reset,save', y_range=(lower, upper), ) imhover = HoverTool(tooltips=tooltip_format) plot.add_tools(imhover) model_dict = {} for i, (label, sdf) in enumerate(split): # for the flux plot, we only show things that have a flux value df = sdf[sdf['hasflux']] key = f'obs{i}' model_dict[key] = plot.scatter( x='mjd', y='flux', color='color', marker='circle', fill_color='color', alpha='alpha', source=ColumnDataSource(df), ) imhover.renderers.append(model_dict[key]) key = f'bin{i}' model_dict[key] = plot.scatter( x='mjd', y='flux', color='color', marker='circle', fill_color='color', source=ColumnDataSource( data=dict( mjd=[], flux=[], fluxerr=[], filter=[], color=[], lim_mag=[], mag=[], magerr=[], stacked=[], instrument=[], ) ), ) imhover.renderers.append(model_dict[key]) key = 'obserr' + str(i) y_err_x = [] y_err_y = [] for d, ro in df.iterrows(): px = ro['mjd'] py = ro['flux'] err = ro['fluxerr'] y_err_x.append((px, px)) y_err_y.append((py - err, py + err)) model_dict[key] = plot.multi_line( xs='xs', ys='ys', color='color', alpha='alpha', source=ColumnDataSource( data=dict( xs=y_err_x, ys=y_err_y, color=df['color'], alpha=[1.0] * len(df) ) ), ) key = f'binerr{i}' model_dict[key] = plot.multi_line( xs='xs', ys='ys', color='color', source=ColumnDataSource(data=dict(xs=[], ys=[], color=[])), ) plot.xaxis.axis_label = 'MJD' plot.yaxis.axis_label = 'Flux (μJy)' plot.toolbar.logo = None toggle = CheckboxWithLegendGroup( labels=list(data.label.unique()), active=list(range(len(data.label.unique()))), colors=list(data.color.unique()), ) # TODO replace `eval` with Namespaces # https://github.com/bokeh/bokeh/pull/6340 toggle.callback = CustomJS( args={'toggle': toggle, **model_dict}, code=open( os.path.join(os.path.dirname(__file__), '../static/js/plotjs', 'togglef.js') ).read(), ) slider = Slider(start=0.0, end=15.0, value=0.0, step=1.0, title='Binsize (days)') callback = CustomJS( args={'slider': slider, 'toggle': toggle, **model_dict}, code=open( os.path.join(os.path.dirname(__file__), '../static/js/plotjs', 'stackf.js') ) .read() .replace('default_zp', str(PHOT_ZP)) .replace('detect_thresh', str(DETECT_THRESH)), ) slider.js_on_change('value', callback) # Mark the first and last detections detection_dates = data[data['hasflux']]['mjd'] if len(detection_dates) > 0: first = round(detection_dates.min(), 6) last = round(detection_dates.max(), 6) first_color = "#34b4eb" last_color = "#8992f5" midpoint = (upper + lower) / 2 line_top = 5 * upper - 4 * midpoint line_bottom = 5 * lower - 4 * midpoint first_x = np.full(5000, first) last_x = np.full(5000, last) y = np.linspace(line_bottom, line_top, num=5000) first_r = plot.line( x=first_x, y=y, line_alpha=0.5, line_color=first_color, line_width=2, ) plot.add_tools( HoverTool(tooltips=[("First detection", f'{first}')], renderers=[first_r],) ) last_r = plot.line( x=last_x, y=y, line_alpha=0.5, line_color=last_color, line_width=2 ) plot.add_tools( HoverTool(tooltips=[("Last detection", f'{last}')], renderers=[last_r],) ) layout = row(plot, toggle) layout = column(slider, layout) p1 = Panel(child=layout, title='Flux') # now make the mag light curve ymax = np.nanmax(data['mag']) + 0.1 ymin = np.nanmin(data['mag']) - 0.1 plot = figure( plot_width=width, plot_height=height, active_drag='box_zoom', tools='box_zoom,wheel_zoom,pan,reset,save', y_range=(ymax, ymin), toolbar_location='above', ) # Mark the first and last detections again if len(detection_dates) > 0: midpoint = (ymax + ymin) / 2 line_top = 5 * ymax - 4 * midpoint line_bottom = 5 * ymin - 4 * midpoint y = np.linspace(line_bottom, line_top, num=5000) first_r = plot.line( x=first_x, y=y, line_alpha=0.5, line_color=first_color, line_width=2, ) plot.add_tools( HoverTool(tooltips=[("First detection", f'{first}')], renderers=[first_r],) ) last_r = plot.line( x=last_x, y=y, line_alpha=0.5, line_color=last_color, line_width=2 ) plot.add_tools( HoverTool( tooltips=[("Last detection", f'{last}')], renderers=[last_r], point_policy='follow_mouse', ) ) imhover = HoverTool(tooltips=tooltip_format) plot.add_tools(imhover) model_dict = {} for i, (label, df) in enumerate(split): key = f'obs{i}' model_dict[key] = plot.scatter( x='mjd', y='mag', color='color', marker='circle', fill_color='color', alpha='alpha', source=ColumnDataSource(df[df['obs']]), ) imhover.renderers.append(model_dict[key]) unobs_source = df[~df['obs']].copy() unobs_source.loc[:, 'alpha'] = 0.8 key = f'unobs{i}' model_dict[key] = plot.scatter( x='mjd', y='lim_mag', color='color', marker='inverted_triangle', fill_color='white', line_color='color', alpha='alpha', source=ColumnDataSource(unobs_source), ) imhover.renderers.append(model_dict[key]) key = f'bin{i}' model_dict[key] = plot.scatter( x='mjd', y='mag', color='color', marker='circle', fill_color='color', source=ColumnDataSource( data=dict( mjd=[], flux=[], fluxerr=[], filter=[], color=[], lim_mag=[], mag=[], magerr=[], instrument=[], stacked=[], ) ), ) imhover.renderers.append(model_dict[key]) key = 'obserr' + str(i) y_err_x = [] y_err_y = [] for d, ro in df[df['obs']].iterrows(): px = ro['mjd'] py = ro['mag'] err = ro['magerr'] y_err_x.append((px, px)) y_err_y.append((py - err, py + err)) model_dict[key] = plot.multi_line( xs='xs', ys='ys', color='color', alpha='alpha', source=ColumnDataSource( data=dict( xs=y_err_x, ys=y_err_y, color=df[df['obs']]['color'], alpha=[1.0] * len(df[df['obs']]), ) ), ) key = f'binerr{i}' model_dict[key] = plot.multi_line( xs='xs', ys='ys', color='color', source=ColumnDataSource(data=dict(xs=[], ys=[], color=[])), ) key = f'unobsbin{i}' model_dict[key] = plot.scatter( x='mjd', y='lim_mag', color='color', marker='inverted_triangle', fill_color='white', line_color='color', alpha=0.8, source=ColumnDataSource( data=dict( mjd=[], flux=[], fluxerr=[], filter=[], color=[], lim_mag=[], mag=[], magerr=[], instrument=[], stacked=[], ) ), ) imhover.renderers.append(model_dict[key]) key = f'all{i}' model_dict[key] = ColumnDataSource(df) key = f'bold{i}' model_dict[key] = ColumnDataSource( df[ [ 'mjd', 'flux', 'fluxerr', 'mag', 'magerr', 'filter', 'zp', 'magsys', 'lim_mag', 'stacked', ] ] ) plot.xaxis.axis_label = 'MJD' plot.yaxis.axis_label = 'AB mag' plot.toolbar.logo = None toggle = CheckboxWithLegendGroup( labels=list(data.label.unique()), active=list(range(len(data.label.unique()))), colors=list(data.color.unique()), ) # TODO replace `eval` with Namespaces # https://github.com/bokeh/bokeh/pull/6340 toggle.callback = CustomJS( args={'toggle': toggle, **model_dict}, code=open( os.path.join(os.path.dirname(__file__), '../static/js/plotjs', 'togglem.js') ).read(), ) slider = Slider(start=0.0, end=15.0, value=0.0, step=1.0, title='Binsize (days)') button = Button(label="Export Bold Light Curve to CSV") button.callback = CustomJS( args={'slider': slider, 'toggle': toggle, **model_dict}, code=open( os.path.join( os.path.dirname(__file__), '../static/js/plotjs', "download.js" ) ) .read() .replace('objname', obj_id) .replace('default_zp', str(PHOT_ZP)), ) toplay = row(slider, button) callback = CustomJS( args={'slider': slider, 'toggle': toggle, **model_dict}, code=open( os.path.join(os.path.dirname(__file__), '../static/js/plotjs', 'stackm.js') ) .read() .replace('default_zp', str(PHOT_ZP)) .replace('detect_thresh', str(DETECT_THRESH)), ) slider.js_on_change('value', callback) layout = row(plot, toggle) layout = column(toplay, layout) p2 = Panel(child=layout, title='Mag') tabs = Tabs(tabs=[p2, p1]) return _plot_to_json(tabs) # TODO make async so that thread isn't blocked def spectroscopy_plot(obj_id, spec_id=None): """TODO normalization? should this be handled at data ingestion or plot-time?""" obj = Obj.query.get(obj_id) spectra = Obj.query.get(obj_id).spectra if spec_id is not None: spectra = [spec for spec in spectra if spec.id == int(spec_id)] if len(spectra) == 0: return None, None, None color_map = dict(zip([s.id for s in spectra], viridis(len(spectra)))) data = pd.concat( [ pd.DataFrame( { 'wavelength': s.wavelengths, 'flux': s.fluxes, 'id': s.id, 'instrument': s.instrument.telescope.nickname, } ) for i, s in enumerate(spectra) ] ) split = data.groupby('id') hover = HoverTool( tooltips=[('wavelength', '$x'), ('flux', '$y'), ('instrument', '@instrument')] ) plot = figure( plot_width=600, plot_height=300, sizing_mode='scale_both', tools='box_zoom,wheel_zoom,pan,reset', active_drag='box_zoom', ) plot.add_tools(hover) model_dict = {} for i, (key, df) in enumerate(split): model_dict['s' + str(i)] = plot.line( x='wavelength', y='flux', color=color_map[key], source=ColumnDataSource(df) ) plot.xaxis.axis_label = 'Wavelength (Å)' plot.yaxis.axis_label = 'Flux' plot.toolbar.logo = None # TODO how to choose a good default? plot.y_range = Range1d(0, 1.03 * data.flux.max()) toggle = CheckboxWithLegendGroup( labels=[s.instrument.telescope.nickname for s in spectra], active=list(range(len(spectra))), width=100, colors=[color_map[k] for k, df in split], ) toggle.callback = CustomJS( args={'toggle': toggle, **model_dict}, code=""" for (let i = 0; i < toggle.labels.length; i++) { eval("s" + i).visible = (toggle.active.includes(i)) } """, ) elements = CheckboxWithLegendGroup( labels=list(SPEC_LINES.keys()), active=[], width=80, colors=[c for w, c in SPEC_LINES.values()], ) z = TextInput(value=str(obj.redshift), title="z:") v_exp = TextInput(value='0', title="v_exp:") for i, (wavelengths, color) in enumerate(SPEC_LINES.values()): el_data = pd.DataFrame({'wavelength': wavelengths}) el_data['x'] = el_data['wavelength'] * (1 + obj.redshift) model_dict[f'el{i}'] = plot.segment( x0='x', x1='x', # TODO change limits y0=0, y1=1e-13, color=color, source=ColumnDataSource(el_data), ) model_dict[f'el{i}'].visible = False # TODO callback policy: don't require submit for text changes? elements.callback = CustomJS( args={'elements': elements, 'z': z, 'v_exp': v_exp, **model_dict}, code=""" let c = 299792.458; // speed of light in km / s for (let i = 0; i < elements.labels.length; i++) { let el = eval("el" + i); el.visible = (elements.active.includes(i)) el.data_source.data.x = el.data_source.data.wavelength.map( x_i => (x_i * (1 + parseFloat(z.value)) / (1 + parseFloat(v_exp.value) / c)) ); el.data_source.change.emit(); } """, ) z.callback = elements.callback v_exp.callback = elements.callback layout = row(plot, toggle, elements, column(z, v_exp)) return _plot_to_json(layout)
30.335561
88
0.534441
1,273
0.056097
0
0
0
0
0
0
6,719
0.296082
5b15f03a9e21ad9e630b8c38b2ac80ff1cf06549
4,625
py
Python
lib/session.py
Hiteshsuhas/err-stackstorm
7579350ac50d9324b64a73b86d57e094270cb275
[ "Apache-2.0" ]
15
2016-09-19T12:06:12.000Z
2021-11-30T12:04:44.000Z
lib/session.py
Hiteshsuhas/err-stackstorm
7579350ac50d9324b64a73b86d57e094270cb275
[ "Apache-2.0" ]
22
2017-06-19T18:13:54.000Z
2021-05-28T09:25:01.000Z
lib/session.py
Hiteshsuhas/err-stackstorm
7579350ac50d9324b64a73b86d57e094270cb275
[ "Apache-2.0" ]
7
2017-06-19T17:03:59.000Z
2021-09-27T11:06:31.000Z
# coding:utf-8 import uuid import string import hashlib import logging from lib.errors import SessionExpiredError, SessionConsumedError from datetime import datetime as dt from random import SystemRandom LOG = logging.getLogger("errbot.plugin.st2.session") def generate_password(length=8): rnd = SystemRandom() if length > 255: length = 255 return "".join([rnd.choice(string.hexdigits) for _ in range(length)]) class Session(object): def __init__(self, user_id, user_secret, session_ttl=3600): self.bot_secret = None self.user_id = user_id self._is_sealed = True self.session_id = uuid.uuid4() self.create_date = int(dt.now().timestamp()) self.modified_date = self.create_date self.ttl_in_seconds = session_ttl self._hashed_secret = self.hash_secret(user_secret) del user_secret def is_expired(self): """ Returns False if both create and modified timestamps have exceeded the ttl. """ now = int(dt.now().timestamp()) modified_expiry = self.modified_date + self.ttl_in_seconds if modified_expiry < now: raise SessionExpiredError return False def attributes(self): return { "UserID": self.user_id, "IsSealed": self._is_sealed, "SessionID": self.session_id, "CreationDate": str(dt.fromtimestamp(self.create_date)), "ModifiedDate": str(dt.fromtimestamp(self.modified_date)), "ExpiryDate": str(dt.fromtimestamp(self.modified_date + self.ttl_in_seconds)), } def __repr__(self): return " ".join( [ "UserID: {},".format(str(self.user_id)), "Is Sealed: {},".format(str(self._is_sealed)), "SessionID: {},".format(str(self.session_id)), "Creation Date: {},".format(str(dt.fromtimestamp(self.create_date))), "Modified Date: {},".format(str(dt.fromtimestamp(self.modified_date))), "Expiry Date: {}".format( str(dt.fromtimestamp(self.modified_date + self.ttl_in_seconds)) ), ] ) def unseal(self): """ Mark the session as being consumed. Returns true if the session was available to be consumed or raises SessionConsumedError if the session has already been marked as consumed. """ self.is_expired() if self._is_sealed: self._is_sealed = False else: raise SessionConsumedError return True def is_sealed(self): """ Query the state of the one time use flag. Returns True if the session has not been consumed or False if the session has already been consumed. """ self.is_expired() return self._is_sealed def id(self): """ Return the UUID for the session. """ return str(self.session_id) def ttl(self, ttl=None): """ Get/Set the time to live for the session. param: ttl[int] The number of seconds the session should remain valid since creation or modification. Returns the number of seconds the ttl has been set to if no agrument is provided otherwise the ttl is set to the number of seconds provided to the ttl argument. """ self.is_expired() if ttl is None: return self.ttl_in_seconds if isinstance(ttl, int): self.ttl_in_seconds = ttl self.modified_date = int(dt.now().timestamp()) else: LOG.warning("session ttl must be an integer type, got '{}'".format(ttl)) def hash_secret(self, user_secret): """ Generate a unique token by hashing a random bot secret with the user secrets. param: user_secret[string] - The users secret provided in the chat backend. """ self.is_expired() if self.bot_secret is None: self.bot_secret = generate_password(8) h = hashlib.sha256() h.update(bytes(user_secret, "utf-8")) del user_secret h.update(bytes(self.bot_secret, "utf-8")) return h.hexdigest() def match_secret(self, user_secret): """ Compare a secret with the session's hashed secret. param: user_secret[string] the secret to compare. Return True if the user_secret hash has matches the session hash or False if it does not. """ self.is_expired() return self._hashed_secret == self.hash_secret(user_secret)
34.774436
99
0.611676
4,188
0.905514
0
0
0
0
0
0
1,598
0.345514
5b16bf8ef2577dbc0fa8123ec5c7829b61cd4d77
700
py
Python
junopy/entities/bill.py
robertons/junopy
1acc64ab99d8ea49bb0dac979cd34da43541f243
[ "MIT" ]
3
2021-07-12T15:05:13.000Z
2022-01-31T03:35:43.000Z
junopy/entities/bill.py
robertons/junopy
1acc64ab99d8ea49bb0dac979cd34da43541f243
[ "MIT" ]
2
2022-01-29T20:14:51.000Z
2022-02-07T16:16:24.000Z
junopy/entities/bill.py
robertons/junopy
1acc64ab99d8ea49bb0dac979cd34da43541f243
[ "MIT" ]
1
2022-02-01T18:36:10.000Z
2022-02-01T18:36:10.000Z
# -*- coding: utf-8 -*- from .lib import * class Bill(JunoEntity): def __init__(cls, **kw): cls.__route__ = '/bill-payments' cls.__metadata__ = {} # FIELDS cls.id = String(max=80) cls.digitalAccountId = String(max=100) cls.billType = ObjList(context=cls, key='status', name='str') cls.numericalBarCode = String(max=100) cls.paymentDescription = String(max=100) cls.beneficiaryDocument = String(max=100) cls.dueDate = DateTime(format="%Y-%m-%d") cls.paymentDate = DateTime(format="%Y-%m-%d") cls.billAmount = Float() cls.paidAmount =Float() cls.createdOn = DateTime(format="iso") cls.status = ObjList(context=cls, key='status', name='str') super().__init__(**kw)
26.923077
63
0.674286
655
0.935714
0
0
0
0
0
0
98
0.14
5b18bfb17e1557ac4b871c78c2b1715de071b1e0
881
py
Python
accounts/signals.py
julesc00/challenge
0f991d07c3fa959e254d1b97d4d393fde13844a9
[ "MIT" ]
null
null
null
accounts/signals.py
julesc00/challenge
0f991d07c3fa959e254d1b97d4d393fde13844a9
[ "MIT" ]
null
null
null
accounts/signals.py
julesc00/challenge
0f991d07c3fa959e254d1b97d4d393fde13844a9
[ "MIT" ]
null
null
null
from django.db.models.signals import post_save from django.contrib.auth.signals import user_logged_in, user_logged_out, user_login_failed from django.contrib.auth.models import User from django.contrib.auth.models import Group from django.dispatch import receiver from .models import Usuario, LoginLog def user_profile(sender, instance, created, **kwargs): if created: group = Group.objects.get(name="usuarios") instance.groups.add(group) Usuario.objects.create( user=instance, name=instance.username ) print("Profile created") post_save.connect(user_profile, sender=User) @receiver(user_logged_in) def log_user_login(sender, request, user, **kwargs): print(f"User {user.username} logged in on {user.last_login}") log = user.last_login LoginLog.objects.create( login_log=log )
24.472222
90
0.715096
0
0
0
0
229
0.259932
0
0
81
0.091941
5b190f68d89adb80d4fc9ec36ff5f159161ba327
2,166
py
Python
Python Scripting/Python - POC-3/DvdApp.py
vaibhavkrishna-bhosle/Trendnxt-Projects
6c8a31be2f05ec79cfc5086ee09adff161b836ad
[ "MIT" ]
null
null
null
Python Scripting/Python - POC-3/DvdApp.py
vaibhavkrishna-bhosle/Trendnxt-Projects
6c8a31be2f05ec79cfc5086ee09adff161b836ad
[ "MIT" ]
null
null
null
Python Scripting/Python - POC-3/DvdApp.py
vaibhavkrishna-bhosle/Trendnxt-Projects
6c8a31be2f05ec79cfc5086ee09adff161b836ad
[ "MIT" ]
null
null
null
import mysql.connector from mysql.connector.errors import ProgrammingError from mysql.connector import Error from DvdOperations import DvdStore database = "db4" def CreateDatabase(database): mydb = mysql.connector.connect( host="localhost", user="Vaibhav", passwd="Vaibhav@007", ) mycursor = mydb.cursor() mycursor.execute("CREATE DATABASE "+database) mydb.close() print("Database is created ") Function1() def Function1(): try: mydb1 = mysql.connector.connect( host="localhost", user="Vaibhav", passwd="Vaibhav@007", database=database ) except mysql.connector.errors.ProgrammingError as error1: print("error occurred because : {}".format(error1)) CreateDatabase(database=database) except mysql.connector.Error as error2: print("error occured because : {}".format(error2)) exit else: mycursor = mydb1.cursor() s1 = "CREATE TABLE IF NOT EXISTS DVDSTORE (id INT AUTO_INCREMENT PRIMARY KEY, title VARCHAR(255), star_name VARCHAR(255), year_of_release INT, genre VARCHAR(255))" mycursor.execute(s1) mydb1.commit() def Function2(): Function1() print("\nWELCOME TO DVD STORE ") print("1. Add a DVD\n2. Search\n3. Modify a DVD\n4. Delete a DVD\n5. Exit") ch = int(input("Enter your choice : ")) if ch == 1 : DvdStore.AddDvd() Function2() elif ch ==2 : DvdStore.SearchDvd() Function2() elif ch == 3: DvdStore.ModifyDvd() Function2() elif ch == 4: DvdStore.DeleteDvd() Function2() elif ch == 5: print("\nThank You !!! Visit Again") else: print("\nInvalid Choice !!! Enter Choice Again\n") Function2() def PrintTable(): mydb1 = mysql.connector.connect( host="localhost", user="Vaibhav", passwd="Vaibhav@007", database=database ) mycursor = mydb1.cursor() mycursor.execute("SELECT * FROM DVDSTORE") myresult = mycursor.fetchall() for i in myresult: print(i) Function2()
24.066667
171
0.60711
0
0
0
0
0
0
0
0
570
0.263158
5b1919573f3036459523134660e1cde252b7f5d5
8,689
py
Python
cloudshell/rest/api.py
QualiSystems/cloudshell-rest-api
70d09262c81b8dae55053aae162a7265cf67865f
[ "Apache-2.0" ]
1
2021-11-26T22:52:42.000Z
2021-11-26T22:52:42.000Z
cloudshell/rest/api.py
katzy687/cloudshell-rest-api
70d09262c81b8dae55053aae162a7265cf67865f
[ "Apache-2.0" ]
11
2019-01-08T06:37:34.000Z
2021-06-09T17:39:50.000Z
cloudshell/rest/api.py
katzy687/cloudshell-rest-api
70d09262c81b8dae55053aae162a7265cf67865f
[ "Apache-2.0" ]
7
2016-09-27T13:14:00.000Z
2021-11-23T14:02:06.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import os import json try: import urllib2 except: import urllib.request as urllib2 from requests import delete, get, post, put from cloudshell.rest.exceptions import ShellNotFoundException, FeatureUnavailable class PackagingRestApiClient(object): def __init__(self, ip, port, username, password, domain): """ Logs into CloudShell using REST API :param ip: CloudShell server IP or host name :param port: port, usually 9000 :param username: CloudShell username :param password: CloudShell password :param domain: CloudShell domain, usually Global """ self.ip = ip self.port = port opener = urllib2.build_opener(urllib2.HTTPHandler) url = "http://{0}:{1}/API/Auth/Login".format(ip, port) data = "username={0}&password={1}&domain={2}" \ .format(username, PackagingRestApiClient._urlencode(password), domain).encode() request = urllib2.Request(url=url, data=data) request.add_header("Content-Type", "application/x-www-form-urlencoded") backup = request.get_method request.get_method = lambda: "PUT" url = opener.open(request) self.token = url.read() if isinstance(self.token, bytes): self.token = self.token.decode() self.token = self.token.strip("\"") request.get_method = backup def add_shell(self, shell_path): """ Adds a new Shell Entity to CloudShell If the shell exists, exception will be thrown :param shell_path: :return: """ url = "http://{0}:{1}/API/Shells".format(self.ip, self.port) response = post(url, files={os.path.basename(shell_path): open(shell_path, "rb")}, headers={"Authorization": "Basic " + self.token}) if response.status_code != 201: raise Exception(response.text) def update_shell(self, shell_path, shell_name=None): """ Updates an existing Shell Entity in CloudShell :param shell_path: The path to the shell file :param shell_name: The shell name. if not supplied the shell name is derived from the shell path :return: """ filename = os.path.basename(shell_path) shell_name = shell_name or self._get_shell_name_from_filename(filename) url = "http://{0}:{1}/API/Shells/{2}".format(self.ip, self.port, shell_name) response = put(url, files={filename: open(shell_path, "rb")}, headers={"Authorization": "Basic " + self.token}) if response.status_code == 404: # Not Found raise ShellNotFoundException() if response.status_code != 200: # Ok raise Exception(response.text) def get_installed_standards(self): """ Gets all standards installed on CloudShell :return: """ url = "http://{0}:{1}/API/Standards".format(self.ip, self.port) response = get(url, headers={"Authorization": "Basic " + self.token}) if response.status_code == 404: # Feature unavailable (probably due to cloudshell version below 8.1) raise FeatureUnavailable() if response.status_code != 200: # Ok raise Exception(response.text) return response.json() def get_shell(self, shell_name): url = "http://{0}:{1}/API/Shells/{2}".format(self.ip, self.port, shell_name) response = get(url, headers={"Authorization": "Basic " + self.token}) if response.status_code == 404 or response.status_code == 405: # Feature unavailable (probably due to cloudshell version below 8.2) raise FeatureUnavailable() if response.status_code == 400: # means shell not found raise ShellNotFoundException() if response.status_code != 200: raise Exception(response.text) return response.json() def delete_shell(self, shell_name): url = "http://{0}:{1}/API/Shells/{2}".format(self.ip, self.port, shell_name) response = delete(url, headers={"Authorization": "Basic " + self.token}) if response.status_code == 404 or response.status_code == 405: # Feature unavailable (probably due to cloudshell version below 9.2) raise FeatureUnavailable() if response.status_code == 400: # means shell not found raise ShellNotFoundException() if response.status_code != 200: raise Exception(response.text) def export_package(self, topologies): """Export a package with the topologies from the CloudShell :type topologies: list[str] :rtype: str :return: package content """ url = "http://{0.ip}:{0.port}/API/Package/ExportPackage".format(self) response = post( url, headers={"Authorization": "Basic " + self.token, "Content-type": "application/json"}, json={"TopologyNames": topologies}, ) if response.status_code in (404, 405): raise FeatureUnavailable() if not response.ok: raise Exception(response.text) return response.content def import_package(self, package_path): """Import the package to the CloudShell :type package_path: str """ url = "http://{0.ip}:{0.port}/API/Package/ImportPackage".format(self) with open(package_path, "rb") as fo: response = post( url, headers={"Authorization": "Basic " + self.token}, files={"file": fo}, ) if response.status_code in (404, 405): raise FeatureUnavailable() if not response.ok: raise Exception(response.text) if not response.json().get("Success"): error_msg = response.json().get("ErrorMessage", "Problem with importing the package") raise Exception(error_msg) @staticmethod def _urlencode(s): return s.replace("+", "%2B").replace("/", "%2F").replace("=", "%3D") @staticmethod def _get_shell_name_from_filename(filename): return os.path.splitext(filename)[0] def upload_environment_zip_file(self, zipfilename): with open(zipfilename, "rb") as g: zipdata = g.read() self.upload_environment_zip_data(zipdata) def upload_environment_zip_data(self, zipdata): boundary = b'''------------------------652c70c071862fc2''' fd = b'''--''' + boundary + \ b'''\r\nContent-Disposition: form-data; name="file"; filename="my_zip.zip"''' + \ b'''\r\nContent-Type: application/octet-stream\r\n\r\n''' + zipdata + \ b'''\r\n--''' + boundary + b'''--\r\n''' class FakeReader(object): def __init__(self, k): self.k = k self.offset = 0 def read(self, blocksize): if self.offset >= len(self.k): return None if self.offset + blocksize >= len(self.k): rv = self.k[self.offset:] self.offset = len(self.k) else: rv = self.k[self.offset:self.offset+blocksize] self.offset += blocksize return rv fdreader = FakeReader(fd) request = urllib2.Request("http://{}:{}/API/Package/ImportPackage".format(self.ip, str(self.port)), data=fdreader) backup = request.get_method request.get_method = lambda: "POST" request.add_header("Authorization", "Basic " + self.token) request.add_header("Content-Type", "multipart/form-data; boundary=" + boundary) request.add_header("Accept", "*/*") request.add_header("Content-Length", str(len(fd))) request.get_method = backup opener = urllib2.build_opener(urllib2.HTTPHandler) url = opener.open(request) try: s = url.read() if isinstance(s, bytes): s = s.decode() o = json.loads(s) if "Success" not in o: raise Exception("'Success' value not found in Quali API response: " + str(o)) except Exception as ue: raise Exception("Error extracting Quali API zip import result: " + str(ue)) if not o["Success"]: raise Exception("Error uploading Quali API zip package: "+o["ErrorMessage"])
36.662447
140
0.579008
8,425
0.969617
0
0
220
0.025319
0
0
2,563
0.294971
5b19d3c83fe2ac0f121d05692ca3db02ba4ea908
1,848
py
Python
data/scripts/classes/team_row.py
matt-waite/lol-reference
1042fc0a63f7911ed9434b5bb6ba8f866fc0a9c2
[ "MIT" ]
1
2020-08-26T17:29:58.000Z
2020-08-26T17:29:58.000Z
data/scripts/classes/team_row.py
matt-waite/lol-reference
1042fc0a63f7911ed9434b5bb6ba8f866fc0a9c2
[ "MIT" ]
null
null
null
data/scripts/classes/team_row.py
matt-waite/lol-reference
1042fc0a63f7911ed9434b5bb6ba8f866fc0a9c2
[ "MIT" ]
null
null
null
from classes import oracles_headers class TeamRow: COLUMNS = oracles_headers.oracles_columns def __init__(self, row): self.ROW = row def GetCell(self, name): return self.ROW[self.COLUMNS[name]] def GetDatabaseObject(self): game = { "gameId": self.GameId(), "isComplete": self.IsComplete(), "league": self.League(), "year": self.Year(), "split": self.Split(), "date": self.Date(), "patch": self.Patch(), "side": self.Side(), "team": self.Team(), "bans": self.Bans(), "gameLength": self.GameLength(), "result": self.Result(), "kills": self.Kills(), "deaths": self.Deaths(), "assists": self.Assists() } return game def GameId(self): return self.GetCell('GameId') def IsComplete(self): return self.GetCell('IsComplete') def League(self): return self.GetCell('League') def Year(self): return int(self.GetCell('Year')) def Split(self): return self.GetCell('Split') def Date(self): return self.GetCell('Date') def Patch(self): return self.GetCell('Patch') def Side(self): return self.GetCell('Side') def Team(self): return self.GetCell('Team') def Bans(self): return [self.GetCell(f"Ban{i}") for i in range(1, 6)] def GameLength(self): return self.GetCell('GameLength') def Result(self): return False if self.GetCell('Result') == "0" else True def Kills(self): return int(self.GetCell('Kills')) def Deaths(self): return int(self.GetCell('Deaths')) def Assists(self): return int(self.GetCell('Assists'))
24
63
0.540584
1,806
0.977273
0
0
0
0
0
0
238
0.128788
5b1a34dd97d2ac3c30c9847cc931832f35fa692e
7,854
py
Python
startup/97-standard-plans.py
MikeHart85/SIX_profile_collection
f4b34add0c464006a1310375b084c63597b6baf0
[ "BSD-3-Clause" ]
null
null
null
startup/97-standard-plans.py
MikeHart85/SIX_profile_collection
f4b34add0c464006a1310375b084c63597b6baf0
[ "BSD-3-Clause" ]
null
null
null
startup/97-standard-plans.py
MikeHart85/SIX_profile_collection
f4b34add0c464006a1310375b084c63597b6baf0
[ "BSD-3-Clause" ]
null
null
null
def pol_V(offset=None): yield from mv(m1_simple_fbk,0) cur_mono_e = pgm.en.user_readback.value yield from mv(epu1.table,6) # 4 = 3rd harmonic; 6 = "testing V" 1st harmonic if offset is not None: yield from mv(epu1.offset,offset) yield from mv(epu1.phase,28.5) yield from mv(pgm.en,cur_mono_e+1) #TODO this is dirty trick. figure out how to process epu.table.input yield from mv(pgm.en,cur_mono_e) yield from mv(m1_simple_fbk,1) print('\nFinished moving the polarization to vertical.\n\tNote that the offset for epu calibration is {}eV.\n\n'.format(offset)) def pol_H(offset=None): yield from mv(m1_simple_fbk,0) cur_mono_e = pgm.en.user_readback.value yield from mv(epu1.table,5) # 2 = 3rd harmonic; 5 = "testing H" 1st harmonic if offset is not None: yield from mv(epu1.offset,offset) yield from mv(epu1.phase,0) yield from mv(pgm.en,cur_mono_e+1) #TODO this is dirty trick. figure out how to process epu.table.input yield from mv(pgm.en,cur_mono_e) yield from mv(m1_simple_fbk,1) print('\nFinished moving the polarization to horizontal.\n\tNote that the offset for epu calibration is {}eV.\n\n'.format(offset)) def m3_check(): yield from mv(m3_simple_fbk,0) sclr_enable() if pzshutter.value == 0: print('Piezo Shutter is disabled') flag = 0 if pzshutter.value == 2: print('Piezo Shutter is enabled: going to be disabled') yield from pzshutter_disable() flag = 1 temp_extslt_vg=extslt.vg.user_readback.value temp_extslt_hg=extslt.hg.user_readback.value temp_gcdiag = gcdiag.y.user_readback.value #yield from mv(qem07.averaging_time, 1) yield from mv(sclr.preset_time, 1) yield from mv(extslt.hg,10) yield from mv(extslt.vg,30) #yield from gcdiag.grid # RE-COMMENT THIS LINE 5/7/2019 #yield from rel_scan([qem07],m3.pit,-0.0005,0.0005,31, md = {'reason':'checking m3 before cff'}) yield from rel_scan([sclr],m3.pit,-0.0005,0.0005,31, md = {'reason':'checking m3'}) #yield from mv(m3.pit,peaks['cen']['gc_diag_grid']) yield from mv(m3.pit,peaks['cen']['sclr_channels_chan8']) #yield from mv(m3.pit,peaks['cen']['sclr_channels_chan2']) yield from mv(extslt.hg,temp_extslt_hg) yield from mv(extslt.vg,temp_extslt_vg) yield from mv(gcdiag.y,temp_gcdiag) yield from sleep(20) #yield from mv(m1_fbk_sp,extslt_cam.stats1.centroid.x.value) yield from mv(m3_simple_fbk_target,extslt_cam.stats1.centroid.x.value)#m3_simple_fbk_cen.value) yield from mv(m3_simple_fbk,1) if flag == 0: print('Piezo Shutter remains disabled') if flag == 1: print('Piezo Shutter is going to renabled') yield from pzshutter_enable() def m1_align_fine2(): m1x_init=m1.x.user_readback.value m1pit_init=m1.pit.user_readback.value m1pit_step=50 m1pit_start=m1pit_init-1*m1pit_step for i in range(0,5): yield from mv(m1.pit,m1pit_start+i*m1pit_step) yield from scan([qem05],m1.x,-3,3.8,35) yield from mv(m1.pit,m1pit_init) yield from mv(m1.x,m1x_init) def alignM3x(): # get the exit slit positions to return to at the end vg_init = extslt.vg.user_setpoint.value hg_init = extslt.hg.user_setpoint.value hc_init = extslt.hc.user_setpoint.value print('Saving exit slit positions for later') # get things out of the way yield from m3diag.out # read gas cell diode yield from gcdiag.grid # set detector e.g. gas cell diagnostics qem detList=[qem07] #[sclr] # set V exit slit value to get enough signal yield from mv(extslt.vg, 30) # open H slit full open yield from mv(extslt.hg, 9000) #move extslt.hs appropriately and scan m3.x yield from mv(extslt.hc,-9) yield from relative_scan(detList,m3.x,-6,6,61) yield from mv(extslt.hc,-3) yield from relative_scan(detList,m3.x,-6,6,61) yield from mv(extslt.hc,3) yield from relative_scan(detList,m3.x,-6,6,61) print('Returning exit slit positions to the inital values') yield from mv(extslt.hc,hc_init) yield from mv(extslt.vg, vg_init, extslt.hg, hg_init) def beamline_align(): yield from mv(m1_fbk,0) yield from align.m1pit yield from sleep(5) yield from m3_check() #yield from mv(m1_fbk_cam_time,0.002) #yield from mv(m1_fbk_th,1500) yield from sleep(5) yield from mv(m1_fbk_sp,extslt_cam.stats1.centroid.x.value) yield from mv(m1_fbk,1) def beamline_align_v2(): yield from mv(m1_simple_fbk,0) yield from mv(m3_simple_fbk,0) yield from mv(m1_fbk,0) yield from align.m1pit yield from sleep(5) yield from mv(m1_simple_fbk_target_ratio,m1_simple_fbk_ratio.value) yield from mv(m1_simple_fbk,1) yield from sleep(5) yield from m3_check() def xas(dets,motor,start_en,stop_en,num_points,sec_per_point): sclr_enable() sclr_set_time=sclr.preset_time.value if pzshutter.value == 0: print('Piezo Shutter is disabled') flag = 0 if pzshutter.value == 2: print('Piezo Shutter is enabled: going to be disabled') yield from pzshutter_disable() flag = 1 yield from mv(sclr.preset_time,sec_per_point) yield from scan(dets,pgm.en,start_en,stop_en,num_points) E_max = peaks['max']['sclr_channels_chan2'][0] E_com = peaks['com']['sclr_channels_chan2'] if flag == 0: print('Piezo Shutter remains disabled') if flag == 1: print('Piezo Shutter is going to renabled') yield from pzshutter_enable() yield from mv(sclr.preset_time,sclr_set_time) return E_com, E_max #TODO put this inside of rixscam def rixscam_get_threshold(Ei = None): '''Calculate the minimum and maximum threshold for RIXSCAM single photon counting (LS mode) Ei\t:\t float - incident energy (default is beamline current energy) ''' if Ei is None: Ei = pgm.en.user_readback.value t_min = 0.7987 * Ei - 97.964 t_max = 1.4907 * Ei + 38.249 print('\n\n\tMinimum value for RIXSCAM threshold (LS mode):\t{}'.format(t_min)) print('\tMaximum value for RIXSCAM threshold (LS mode):\t{}'.format(t_max)) print('\tFor Beamline Energy:\t\t\t\t{}'.format(Ei)) return t_min, t_max #TODO put this insdie of rixscam def rixscam_set_threshold(Ei=None): '''Setup the RIXSCAM.XIP plugin values for a specific energy for single photon counting and centroiding in LS mode. Ei\t:\t float - incident energy (default is beamline current energy) ''' if Ei is None: Ei = pgm.en.user_readback.value thold_min, thold_max = rixscam_get_threshold(Ei) yield from mv(rixscam.xip.beamline_energy, Ei, rixscam.xip.sum_3x3_threshold_min, thold_min, rixscam.xip.sum_3x3_threshold_max, thold_max) #TODO make official so that there is a m1_fbk device like m1fbk.setpoint m1_fbk = EpicsSignal('XF:02IDA-OP{FBck}Sts:FB-Sel', name = 'm1_fbk') m1_fbk_sp = EpicsSignal('XF:02IDA-OP{FBck}PID-SP', name = 'm1_fbk_sp') m1_fbk_th = extslt_cam.stats1.centroid_threshold #m1_fbk_pix_x = extslt_cam.stats1.centroid.x.value m1_fbk_cam_time = extslt_cam.cam.acquire_time #(mv(m1_fbk_th,1500) m1_simple_fbk = EpicsSignal('XF:02IDA-OP{M1_simp_feed}FB-Ena', name = 'm1_simple_fbk') m1_simple_fbk_target_ratio = EpicsSignal('XF:02IDA-OP{M1_simp_feed}FB-TarRat', name = 'm1_simple_fbk_target_ratio') m1_simple_fbk_ratio = EpicsSignal('XF:02IDA-OP{M1_simp_feed}FB-Ratio', name = 'm1_simple_fbk_ratio') m3_simple_fbk = EpicsSignal('XF:02IDA-OP{M3_simp_feed}FB-Ena', name = 'm3_simple_fbk') m3_simple_fbk_target = EpicsSignal('XF:02IDA-OP{M3_simp_feed}FB-Targ', name = 'm3_simple_fbk_target') m3_simple_fbk_cen = EpicsSignal('XF:02IDA-OP{M3_simp_feed}FB_inpbuf', name = 'm3_simple_fbk_cen')
37.222749
134
0.697734
0
0
6,192
0.788388
0
0
0
0
2,768
0.352432
5b1a7c8341406690f20aa12accdb9fc9001deadc
238
py
Python
speechpro/cloud/speech/synthesis/rest/cloud_client/api/__init__.py
speechpro/cloud-python
dfcfc19a1f008b55c5290599c594fe8de777018b
[ "MIT" ]
15
2020-05-27T09:35:32.000Z
2022-03-29T18:35:36.000Z
speechpro/cloud/speech/synthesis/rest/cloud_client/api/__init__.py
speechpro/cloud-python
dfcfc19a1f008b55c5290599c594fe8de777018b
[ "MIT" ]
null
null
null
speechpro/cloud/speech/synthesis/rest/cloud_client/api/__init__.py
speechpro/cloud-python
dfcfc19a1f008b55c5290599c594fe8de777018b
[ "MIT" ]
1
2021-04-06T21:39:29.000Z
2021-04-06T21:39:29.000Z
from __future__ import absolute_import # flake8: noqa # import apis into api package import speechpro.cloud.speech.synthesis.rest.cloud_client.api.session_api import speechpro.cloud.speech.synthesis.rest.cloud_client.api.synthesize_api
29.75
76
0.848739
0
0
0
0
0
0
0
0
44
0.184874
5b1aad312b8c27483bc4147a2754724cb8c715fb
1,039
py
Python
learn_pyqt5/checkable_bar.py
liusong-cn/python
f67933f0879021a595258e09c4cde5ca1f9f6aed
[ "Apache-2.0" ]
1
2019-11-12T13:38:54.000Z
2019-11-12T13:38:54.000Z
learn_pyqt5/checkable_bar.py
liusong-cn/python
f67933f0879021a595258e09c4cde5ca1f9f6aed
[ "Apache-2.0" ]
null
null
null
learn_pyqt5/checkable_bar.py
liusong-cn/python
f67933f0879021a595258e09c4cde5ca1f9f6aed
[ "Apache-2.0" ]
null
null
null
# _*_ coding:utf-8 _*_ # author:ls # time:2020/3/19 0019 import sys from PyQt5.QtWidgets import QApplication,QAction,QMainWindow from PyQt5.QtGui import QIcon class Example(QMainWindow): def __init__(self): super().__init__() self.setui() def setui(self): self.statusbar = self.statusBar() self.statusbar.showMessage('default show') act = QAction('check',self,checkable=True) act.setCheckable(True) act.setStatusTip('view changed') #不是太明白triggered如何使toggle函数执行 act.triggered.connect(self.toggle) menubar = self.menuBar() menu = menubar.addMenu('checkable') menu.addAction(act) self.setGeometry(300,300,400,150) self.setWindowTitle('this is a checkable menu') self.show() def toggle(self,state): if state: self.statusbar.show() else: self.statusbar.hide() if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_())
25.341463
60
0.627526
797
0.749765
0
0
0
0
0
0
188
0.176858
5b1aca9be8fbadae0d16bcaf4d8c545808d7368a
3,451
py
Python
service/test.py
ksiomelo/cubix
cd9e6dda6696b302a7c0d383259a9d60b15b0d55
[ "Apache-2.0" ]
3
2015-09-07T00:16:16.000Z
2019-01-11T20:27:56.000Z
service/test.py
ksiomelo/cubix
cd9e6dda6696b302a7c0d383259a9d60b15b0d55
[ "Apache-2.0" ]
null
null
null
service/test.py
ksiomelo/cubix
cd9e6dda6696b302a7c0d383259a9d60b15b0d55
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import pika import time import json import StringIO #from fca.concept import Concept from casa import Casa #from fca.readwrite import cxt def read_cxt_string(data): input_file = StringIO.StringIO(data) assert input_file.readline().strip() == "B",\ "File is not valid cxt" input_file.readline() # Empty line number_of_objects = int(input_file.readline().strip()) number_of_attributes = int(input_file.readline().strip()) input_file.readline() # Empty line objects = [input_file.readline().strip() for i in xrange(number_of_objects)] attributes = [input_file.readline().strip() for i in xrange(number_of_attributes)] table = [] for i in xrange(number_of_objects): line = map(lambda c: c=="X", input_file.readline().strip()) table.append(line) input_file.close() return Casa("sample", objects, attributes, table) def get_a_context(): title = "sample context" objects = [1, 2, 3, 4] attributes = ['a', 'b', 'c', 'd'] rels = [[True, False, False, True],\ [True, False, True, False],\ [False, True, True, False],\ [False, True, True, True]] return Casa(title,objects,attributes,rels) def on_queue_declared(queue): channel.queue_bind(queue='test', exchange='', routing_key='order.test.customer') connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.queue_declare(queue='task_queue', durable=True, exclusive=False) channel.queue_declare(queue='msg_queue', durable=True, exclusive=False) #channel.exchange_declare(exchange='', # type="topic", # durable=True, # auto_delete=False) #channel.queue_declare(queue="task_queue", # durable=True, # exclusive=False, # auto_delete=False, # callback=on_queue_declared) print ' [*] Waiting for messages. To exit press CTRL+C' def msg_callback(ch, method, props, body): print " [x] Received %r" % (body,) response = body + " MODIFIED" #response = get_a_concept() print " [x] Done" ch.basic_publish(exchange='', routing_key=props.reply_to, properties=pika.BasicProperties(correlation_id = \ props.correlation_id), body= str(response)) ch.basic_ack(delivery_tag = method.delivery_tag) def callback(ch, method, props, body): print " [x] Received %r" % (body,) response = body + " MODIFIED" context = read_cxt_string(body) print context.to_dict(False) #response = get_a_concept() print " [x] Done" ch.basic_publish(exchange='', routing_key=props.reply_to, properties=pika.BasicProperties(correlation_id = \ props.correlation_id), body= json.dumps(context.to_dict(False)))#str(response)) ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(callback, queue='task_queue') channel.basic_consume(msg_callback, queue='msg_queue') channel.start_consuming()
30.8125
86
0.597508
0
0
0
0
0
0
0
0
835
0.241959
5b1cda3e00260587ee1daafde0d87ed8f1313a59
310
py
Python
src/nia/selections/rank.py
salar-shdk/nia
bb0f1b941240b627291dd8212b8840cbe77b0398
[ "MIT" ]
8
2021-09-06T07:20:23.000Z
2022-02-23T23:18:22.000Z
src/nia/selections/rank.py
salar-shdk/nia
bb0f1b941240b627291dd8212b8840cbe77b0398
[ "MIT" ]
null
null
null
src/nia/selections/rank.py
salar-shdk/nia
bb0f1b941240b627291dd8212b8840cbe77b0398
[ "MIT" ]
null
null
null
from .selection import Selection import numpy as np class Rank(Selection): @Selection.initializer def __init__(self, size=20): pass def select(self, population, fitness): indexes = fitness.argsort() return (population[indexes])[:self.size], (fitness[indexes])[:self.size]
25.833333
80
0.677419
256
0.825806
0
0
68
0.219355
0
0
0
0
5b1ed26356ab2b3641b50b827cab69738be819bd
15,878
py
Python
datasets/imppres/imppres.py
ddhruvkr/datasets-1
66f2a7eece98d2778bd22bb5034cb7c2376032d4
[ "Apache-2.0" ]
7
2021-01-04T22:18:26.000Z
2021-07-10T09:13:29.000Z
datasets/imppres/imppres.py
ddhruvkr/datasets-1
66f2a7eece98d2778bd22bb5034cb7c2376032d4
[ "Apache-2.0" ]
null
null
null
datasets/imppres/imppres.py
ddhruvkr/datasets-1
66f2a7eece98d2778bd22bb5034cb7c2376032d4
[ "Apache-2.0" ]
3
2021-01-03T22:08:20.000Z
2021-08-12T20:09:39.000Z
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Over 25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.""" from __future__ import absolute_import, division, print_function import json import os import datasets # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @inproceedings{jeretic-etal-2020-natural, title = "Are Natural Language Inference Models {IMPPRESsive}? {L}earning {IMPlicature} and {PRESupposition}", author = "Jereti\v{c}, Paloma and Warstadt, Alex and Bhooshan, Suvrat and Williams, Adina", booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.acl-main.768", doi = "10.18653/v1/2020.acl-main.768", pages = "8690--8705", abstract = "Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of 32K semi-automatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by {``}some{''} as entailments. For some presupposition triggers like {``}only{''}, BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.", } """ # You can copy an official description _DESCRIPTION = """Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.""" _HOMEPAGE = "https://github.com/facebookresearch/Imppres" _LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License" # The HuggingFace dataset library don't host the datasets but only point to the original files # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLs = {"default": "https://github.com/facebookresearch/Imppres/blob/master/dataset/IMPPRES.zip?raw=true"} class Imppres(datasets.GeneratorBasedBuilder): """Each sentence type in IMPPRES is generated according to a template that specifies the linear order of the constituents in the sentence. The constituents are sampled from a vocabulary of over 3000 lexical items annotated with grammatical features needed to ensure wellformedness. We semiautomatically generate IMPPRES using a codebase developed by Warstadt et al. (2019a) and significantly expanded for the BLiMP dataset (Warstadt et al., 2019b).""" VERSION = datasets.Version("1.1.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ datasets.BuilderConfig( name="presupposition_all_n_presupposition", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="presupposition_both_presupposition", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="presupposition_change_of_state", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="presupposition_cleft_existence", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="presupposition_cleft_uniqueness", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="presupposition_only_presupposition", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="presupposition_possessed_definites_existence", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="presupposition_possessed_definites_uniqueness", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="presupposition_question_presupposition", version=VERSION, description="Presuppositions are facts that the speaker takes for granted when uttering a sentence.", ), datasets.BuilderConfig( name="implicature_connectives", version=VERSION, description="Scalar implicatures are inferences which can be drawn when one member of a memorized lexical scale is uttered.", ), datasets.BuilderConfig( name="implicature_gradable_adjective", version=VERSION, description="Scalar implicatures are inferences which can be drawn when one member of a memorized lexical scale is uttered.", ), datasets.BuilderConfig( name="implicature_gradable_verb", version=VERSION, description="Scalar implicatures are inferences which can be drawn when one member of a memorized lexical scale is uttered.", ), datasets.BuilderConfig( name="implicature_modals", version=VERSION, description="Scalar implicatures are inferences which can be drawn when one member of a memorized lexical scale is uttered.", ), datasets.BuilderConfig( name="implicature_numerals_10_100", version=VERSION, description="Scalar implicatures are inferences which can be drawn when one member of a memorized lexical scale is uttered.", ), datasets.BuilderConfig( name="implicature_numerals_2_3", version=VERSION, description="Scalar implicatures are inferences which can be drawn when one member of a memorized lexical scale is uttered.", ), datasets.BuilderConfig( name="implicature_quantifiers", version=VERSION, description="Scalar implicatures are inferences which can be drawn when one member of a memorized lexical scale is uttered.", ), ] def _info(self): if ( "presupposition" in self.config.name ): # This is the name of the configuration selected in BUILDER_CONFIGS above features = datasets.Features( { "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "trigger": datasets.Value("string"), "trigger1": datasets.Value("string"), "trigger2": datasets.Value("string"), "presupposition": datasets.Value("string"), "gold_label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]), "UID": datasets.Value("string"), "pairID": datasets.Value("string"), "paradigmID": datasets.Value("int16") # These are the features of your dataset like images, labels ... } ) else: # This is an example to show how to have different features for "first_domain" and "second_domain" features = datasets.Features( { "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "gold_label_log": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]), "gold_label_prag": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]), "spec_relation": datasets.Value("string"), "item_type": datasets.Value("string"), "trigger": datasets.Value("string"), "lexemes": datasets.Value("string"), # These are the features of your dataset like images, labels ... } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive my_urls = _URLs["default"] base_config = self.config.name.split("_")[0] secondary_config = self.config.name.split(base_config + "_")[1] data_dir = os.path.join(dl_manager.download_and_extract(my_urls), "IMPPRES", base_config) return [ datasets.SplitGenerator( name=secondary_config, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, secondary_config + ".jsonl"), "split": "test", }, ) ] def _generate_examples(self, filepath, split): """ Yields examples. """ # TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method. # It is in charge of opening the given file and yielding (key, example) tuples from the dataset # The key is not important, it's more here for legacy reason (legacy from tfds) with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) if "presupposition" in self.config.name: # for k, v in data.items(): # print('{}({}): {}'.format(k, type(v), v)) # print('-'*55) if "trigger1" not in list(data.keys()): yield id_, { "premise": data["sentence1"], "hypothesis": data["sentence2"], "trigger": data["trigger"], "trigger1": "Not_In_Example", "trigger2": "Not_In_Example", "presupposition": data["presupposition"], "gold_label": data["gold_label"], "UID": data["UID"], "pairID": data["pairID"], "paradigmID": data["paradigmID"], } else: yield id_, { "premise": data["sentence1"], "hypothesis": data["sentence2"], "trigger": "Not_In_Example", "trigger1": data["trigger1"], "trigger2": data["trigger2"], "presupposition": "Not_In_Example", "gold_label": data["gold_label"], "UID": data["UID"], "pairID": data["pairID"], "paradigmID": data["paradigmID"], } else: yield id_, { "premise": data["sentence1"], "hypothesis": data["sentence2"], "gold_label_log": data["gold_label_log"], "gold_label_prag": data["gold_label_prag"], "spec_relation": data["spec_relation"], "item_type": data["item_type"], "trigger": data["trigger"], "lexemes": data["lexemes"], }
56.910394
1,197
0.634463
11,917
0.750535
2,666
0.167905
0
0
0
0
9,985
0.628858
5b201dedf7625f49673a17f90219f4d165f06f5d
1,322
py
Python
app.py
juergenpointinger/status-dashboard
439c7e9b6966ff10ada4062c6b97d5088083f442
[ "MIT" ]
null
null
null
app.py
juergenpointinger/status-dashboard
439c7e9b6966ff10ada4062c6b97d5088083f442
[ "MIT" ]
null
null
null
app.py
juergenpointinger/status-dashboard
439c7e9b6966ff10ada4062c6b97d5088083f442
[ "MIT" ]
null
null
null
# Standard library imports import logging import os # Third party imports import dash import dash_bootstrap_components as dbc from flask_caching import Cache import plotly.io as pio # Local application imports from modules.gitlab import GitLab import settings # Initialize logging mechanism logging.basicConfig(level=settings.LOGLEVEL, format=settings.LOGFORMAT) logger = logging.getLogger(__name__) gl = GitLab() logger.info("Current GitLab version: {}".format(GitLab.version)) # App instance app = dash.Dash(__name__, suppress_callback_exceptions=True, external_stylesheets=[dbc.themes.BOOTSTRAP]) app.title = settings.APP_NAME # App caching # CACHE_CONFIG = { # # Note that filesystem cache doesn't work on systems with ephemeral # # filesystems like Heroku. # 'CACHE_TYPE': 'filesystem', # 'CACHE_DIR': 'cache-directory', # # should be equal to maximum number of users on the app at a single time # # higher numbers will store more data in the filesystem / redis cache # 'CACHE_THRESHOLD': 200 # } CACHE_CONFIG = { # try 'filesystem' if you don't want to setup redis 'CACHE_TYPE': 'redis', 'CACHE_REDIS_URL': settings.REDIS_URL } cache = Cache() cache.init_app(app.server, config=CACHE_CONFIG) pio.templates.default = "plotly_dark"
28.12766
77
0.729955
0
0
0
0
0
0
0
0
638
0.482602
5b20baf76a7bc453b189c49cad4f4c0139f19706
5,154
py
Python
tests/scanner/test_data/fake_retention_scanner_data.py
ogreface/forseti-security
a7a3573183fa1416c605dad683587717795fe13b
[ "Apache-2.0" ]
null
null
null
tests/scanner/test_data/fake_retention_scanner_data.py
ogreface/forseti-security
a7a3573183fa1416c605dad683587717795fe13b
[ "Apache-2.0" ]
null
null
null
tests/scanner/test_data/fake_retention_scanner_data.py
ogreface/forseti-security
a7a3573183fa1416c605dad683587717795fe13b
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fake Retention scanner data.""" import json from datetime import datetime, timedelta import collections from google.cloud.forseti.common.gcp_type import organization from google.cloud.forseti.common.gcp_type import project from google.cloud.forseti.common.gcp_type import bucket from google.cloud.forseti.scanner.audit import retention_rules_engine as rre ORGANIZATION = organization.Organization( '123456', display_name='Default Organization', full_name='organization/123456/', data='fake_org_data_123456', ) PROJECT1 = project.Project( 'def-project-1', project_number=11223344, display_name='default project 1', parent=ORGANIZATION, full_name='organization/123456/project/def-project-1/', data='fake_project_data_11223344', ) PROJECT2 = project.Project( 'def-project-2', project_number=55667788, display_name='default project 2', parent=ORGANIZATION, full_name='organization/123456/project/def-project-2/', data='fake_project_data_55667788', ) PROJECT3 = project.Project( 'def-project-3', project_number=12121212, display_name='default project 3', parent=ORGANIZATION, full_name='organization/123456/project/def-project-3/', data='fake_project_data_12121212', ) PROJECT4 = project.Project( 'def-project-4', project_number=34343434, display_name='default project 4', parent=ORGANIZATION, full_name='organization/123456/project/def-project-4/', data='fake_project_data_34343434', ) def build_bucket_violations(bucket, rule_name): data_lifecycle = bucket.get_lifecycle_rule() data_lifecycle_str = json.dumps(data_lifecycle, sort_keys=True) return [rre.RuleViolation( resource_name='buckets/'+bucket.id, resource_id=bucket.id, resource_type=bucket.type, full_name=bucket.full_name, rule_index=0, rule_name=rule_name, violation_type='RETENTION_VIOLATION', violation_data=data_lifecycle_str, resource_data=bucket.data, )] class FakeBucketDataCreater(): def __init__(self, id, project): self._id = id self._parent = project self._data_lifecycle = None def SetLifecycleDict(self): self._data_lifecycle = {"rule": []} def AddLifecycleDict( self, action=None, age=None, created_before=None, matches_storage_class=None, num_newer_versions=None, is_live=None): if not self._data_lifecycle: self.SetLifecycleDict() result = {'action':{}, 'condition':{}} result['action']['type'] = action if age != None: result['condition']['age'] = age if created_before != None: result['condition']['createdBefore'] = created_before if matches_storage_class != None: result['condition']['matchesStorageClass'] = matches_storage_class if num_newer_versions != None: result['condition']['numNewerVersions'] = num_newer_versions if is_live != None: result['condition']['isLive'] = is_live self._data_lifecycle['rule'].append(result) return result def get_resource(self): data_dict = {'id':self._id, 'location':'earth'} if self._data_lifecycle is not None: data_dict['lifecycle'] = self._data_lifecycle data = json.dumps(data_dict) return bucket.Bucket(bucket_id=self._id, parent=self._parent, full_name=self._parent.full_name+'bucket/'+self._id+'/', data=data) FakeBucketDataInput = collections.namedtuple( 'FakeBucketDataInput', ['id', 'project', 'lifecycles']) LifecycleInput = collections.namedtuple( 'LifecycleInput', ['action', 'conditions']) def get_fake_bucket_resource(fake_bucket_data_input): data_creater = FakeBucketDataCreater( fake_bucket_data_input.id, fake_bucket_data_input.project) for lifecycle in fake_bucket_data_input.lifecycles: data_creater.AddLifecycleDict( action=lifecycle.action, age=lifecycle.conditions.get('age'), created_before=lifecycle.conditions.get('created_before'), matches_storage_class=lifecycle.conditions.get('matches_storage_class'), num_newer_versions=lifecycle.conditions.get('num_newer_versions'), is_live=lifecycle.conditions.get('is_live')) return data_creater.get_resource()
34.13245
85
0.684517
1,634
0.317035
0
0
0
0
0
0
1,529
0.296663
5b22463c2df2d021f347bc17bcb98562b99edb54
4,298
py
Python
libsonyapi/camera.py
BugsForDays/libsonyapi
c6482b4ad90f199b7fb4e344f8e61d4ed0f9466f
[ "MIT" ]
13
2019-04-19T16:44:58.000Z
2021-09-20T05:33:10.000Z
libsonyapi/camera.py
BugsForDays/libsonyapi
c6482b4ad90f199b7fb4e344f8e61d4ed0f9466f
[ "MIT" ]
3
2021-04-23T17:21:50.000Z
2022-01-06T17:21:28.000Z
libsonyapi/camera.py
BugsForDays/libsonyapi
c6482b4ad90f199b7fb4e344f8e61d4ed0f9466f
[ "MIT" ]
5
2019-04-11T20:24:47.000Z
2021-10-17T22:02:56.000Z
import socket import requests import json import xml.etree.ElementTree as ET class Camera(object): def __init__(self): """ create camera object """ self.xml_url = self.discover() self.name, self.api_version, self.services = self.connect(self.xml_url) self.camera_endpoint_url = self.services["camera"] + "/camera" self.available_apis = self.do("getAvailableApiList")["result"] # prepare camera for rec mode if "startRecMode" in self.available_apis[0]: self.do("startRecMode") self.available_apis = self.do("getAvailableApiList")["result"] self.connected = False def discover(self): """ discover camera using upnp ssdp method, return url for device xml """ msg = ( "M-SEARCH * HTTP/1.1\r\n" "HOST: 239.255.255.250:1900\r\n" 'MAN: "ssdp:discover" \r\n' "MX: 2\r\n" "ST: urn:schemas-sony-com:service:ScalarWebAPI:1\r\n" "\r\n" ).encode() # Set up UDP socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) s.settimeout(2) s.sendto(msg, ("239.255.255.250", 1900)) try: while True: data, addr = s.recvfrom(65507) decoded_data = data.decode() # get xml url from ssdp response for item in decoded_data.split("\n"): if "LOCATION" in item: return item.strip().split(" ")[ 1 ] # get location url from ssdp response self.connected = True except socket.timeout: raise ConnectionError("you are not connected to the camera's wifi") def connect(self, xml_url): """ returns name, api_version, api_service_urls on success """ device_xml_request = requests.get(xml_url) xml_file = str(device_xml_request.content.decode()) xml = ET.fromstring(xml_file) name = xml.find( "{urn:schemas-upnp-org:device-1-0}device/{urn:schemas-upnp-org:device-1-0}friendlyName" ).text api_version = xml.find( "{urn:schemas-upnp-org:device-1-0}device/{urn:schemas-sony-com:av}X_ScalarWebAPI_DeviceInfo/{urn:schemas-sony-com:av}X_ScalarWebAPI_Version" ).text service_list = xml.find( "{urn:schemas-upnp-org:device-1-0}device/{urn:schemas-sony-com:av}X_ScalarWebAPI_DeviceInfo/{urn:schemas-sony-com:av}X_ScalarWebAPI_ServiceList" ) api_service_urls = {} for service in service_list: service_type = service.find( "{urn:schemas-sony-com:av}X_ScalarWebAPI_ServiceType" ).text action_url = service.find( "{urn:schemas-sony-com:av}X_ScalarWebAPI_ActionList_URL" ).text api_service_urls[service_type] = action_url return name, api_version, api_service_urls def info(self): """ returns camera info(name, api version, supported services, available apis) in a dictionary """ return { "name": self.name, "api version": self.api_version, "supported services": list(self.services.keys()), "available apis": self.available_apis, } def post_request(self, url, method, param=[]): """ sends post request to url with method and param as json """ if type(param) is not list: param = [param] json_request = {"method": method, "params": param, "id": 1, "version": "1.0"} request = requests.post(url, json.dumps(json_request)) response = json.loads(request.content) if "error" in list(response.keys()): print("Error: ") print(response) else: return response def do(self, method, param=[]): """ this calls to camera service api, require method and param args """ # TODO: response handler, return result of do, etc response = self.post_request(self.camera_endpoint_url, method, param) return response class ConnectionError(Exception): pass
37.051724
156
0.578176
4,215
0.980689
0
0
0
0
0
0
1,578
0.367148
5b231e5f06d51cf2896d5d0d0db4095473d26007
11,961
py
Python
utility_functions_flu.py
neherlab/treetime_validation
c9760194712396ea5f5c33a9215eddbd3d13bfc1
[ "MIT" ]
4
2019-01-28T06:47:48.000Z
2021-04-22T16:31:37.000Z
utility_functions_flu.py
neherlab/treetime_validation
c9760194712396ea5f5c33a9215eddbd3d13bfc1
[ "MIT" ]
1
2020-04-03T14:42:11.000Z
2020-04-03T14:42:11.000Z
utility_functions_flu.py
neherlab/treetime_validation
c9760194712396ea5f5c33a9215eddbd3d13bfc1
[ "MIT" ]
1
2020-03-25T06:58:45.000Z
2020-03-25T06:58:45.000Z
#!/usr/bin/env python """ This module defines functions to facilitate operations with data specific to Flu trees and alignments. """ import numpy as np from Bio import AlignIO, Phylo from Bio.Align import MultipleSeqAlignment import random import subprocess import datetime import os, copy import matplotlib.pyplot as plt from scipy.stats import linregress from collections import Counter import StringIO import treetime from utility_functions_general import remove_polytomies from utility_functions_beast import run_beast, create_beast_xml, read_beast_log import xml.etree.ElementTree as XML from external_binaries import BEAST_BIN def date_from_seq_name(name): """ Parse flu sequence name to the date in numeric format (YYYY.F) Args: - name(str): name of the flu sequence. Returns: - sequence sampling date if succeeded to parse. None otherwise. """ def str2date_time(instr): """ Convert input string to datetime object. Args: - instr (str): input string. Accepts one of the formats: {MM.DD.YYYY, MM.YYYY, MM/DD/YYYY, MM/YYYY, YYYY}. Returns: - date (datetime.datetime): parsed date object. If the parsing failed, None is returned """ instr = instr.replace('/', '.') # import ipdb; ipdb.set_trace() try: date = datetime.datetime.strptime(instr, "%m.%d.%Y") except ValueError: date = None if date is not None: return date try: date = datetime.datetime.strptime(instr, "%m.%Y") except ValueError: date = None if date is not None: return date try: date = datetime.datetime.strptime(instr, "%Y") except ValueError: date = None return date try: date = str2date_time(name.split('|')[3].strip()) return date.year + (date - datetime.datetime(date.year, 1, 1)).days / 365.25 except: return None def dates_from_flu_tree(tree): """ Iterate over the Flu tree, parse each leaf name and return dates for the leaves as dictionary. Args: - tree(str or Biopython tree): Flu tree Returns: - dates(dict): dictionary of dates in format {seq_name: numdate}. Only the entries which were parsed successfully are included. """ if isinstance(tree, str): tree = Phylo.read(tree, 'newick') dates = {k.name:date_from_seq_name(k.name) for k in tree.get_terminals() if date_from_seq_name(k.name) is not None} return dates def subtree_with_same_root(tree, Nleaves, outfile, optimize=True): """ Sample subtree of the given tree so that the root of the subtree is that of the original tree. Args: - tree(str or Biopython tree): initial tree - Nleaves(int): number of leaves in the target subtree - outfile(str): path to save the resulting subtree optimize(bool): perform branch length optimization for the subtree? Returns: - tree(Biopython tree): the subtree """ if isinstance(tree, str): treecopy = Phylo.read(tree, 'newick') else: treecopy = copy.deepcopy(tree) remove_polytomies(treecopy) assert(len(treecopy.root.clades) == 2) tot_terminals = treecopy.count_terminals() # sample to the left of the root left = treecopy.root.clades[0] n_left = left.count_terminals() right = treecopy.root.clades[1] n_right = right.count_terminals() n_left_sampled = np.min((n_left, Nleaves * n_left / (n_left + n_right))) n_left_sampled = np.max((n_left_sampled, 5)) # make sure we have at least one left_terminals = left.get_terminals() left_sample_idx = np.random.choice(np.arange(len(left_terminals)), size=n_left_sampled, replace=False) left_sample = [left_terminals[i] for i in left_sample_idx] # sample to the right of the root n_right_sampled = np.min((n_right, Nleaves * n_right / (n_left + n_right))) n_right_sampled = np.max((n_right_sampled, 5)) # make sure we have at least one right_terminals = right.get_terminals() right_sample_idx = np.random.choice(np.arange(len(right_terminals)), size=n_right_sampled, replace=False) right_sample = [right_terminals[i] for i in right_sample_idx] for leaf in treecopy.get_terminals(): if leaf not in right_sample and leaf not in left_sample: treecopy.prune(leaf) else: pass #print ("leaving leaf {} in the tree".format(leaf.name)) if optimize: import treetime dates = dates_from_flu_tree(treecopy) aln = './resources/flu_H3N2/H3N2_HA_2011_2013.fasta' tt = treetime.TreeAnc(tree=treecopy, aln=aln,gtr='Jukes-Cantor') tt.optimize_seq_and_branch_len(prune_short=False) Phylo.write(tt.tree, outfile, 'newick') return tt.tree else: Phylo.write(treecopy, outfile, 'newick') return treecopy def subtree_year_vol(tree, N_per_year, outfile): """ Sample subtree of the given tree with equal number of samples per year. Note: - if there are not enough leaves sampled at a given year, all leaves for this year will be included in the subtree. Args: - tree(str or Biopython object): Initial tree - N_per_year(int): number of samples per year. - outfile (str): path to save the subtree Returns: - tree(Biopython tree): the subtree """ if isinstance(tree, str): treecopy = Phylo.read(tree, 'newick') else: treecopy = copy.deepcopy(tree) remove_polytomies(treecopy) dates = dates_from_flu_tree(treecopy) sample = [] cntr = Counter(map (int, dates.values())) years = cntr.keys() min_year = np.min(years) for year in years: all_names = [k for k in dates if int(dates[k]) == year] if len(all_names) <= N_per_year or year == min_year: sample += all_names else: sample += list(np.random.choice(all_names, size=N_per_year, replace=False)) for leaf in treecopy.get_terminals(): if leaf.name not in sample: treecopy.prune(leaf) else: pass #print ("leaving leaf {} in the tree".format(leaf.name)) Phylo.write(treecopy, outfile, 'newick') return treecopy def create_LSD_dates_file_from_flu_tree(tree, outfile): """ Parse dates from the flu tree and write to the file in the LSD format. Args: - tree(str or Biopython object): Initial tree - outfile(str): path to save the LSD dates file. Returns: - dates(dict): dates parsed from the tree as dictionary. """ dates = dates_from_flu_tree(tree) with open(outfile, 'w') as df: df.write(str(len(dates)) + "\n") df.write("\n".join([str(k) + "\t" + str(dates[k]) for k in dates])) return dates def make_known_dates_dict(alnfile, dates_known_fraction=1.0): """ Read all the dates of the given flu sequences, and make the dates dictionary for only a fraction of them. The sequences in the resulting dict are chosen randomly. """ aln = AlignIO.read(alnfile, 'fasta') dates = {k.name: date_from_seq_name(k.name) for k in aln} # randomly choose the dates so that only the known_ratio number of dates is known if dates_known_fraction != 1.0: assert(dates_known_fraction > 0 and dates_known_fraction < 1.0) knonw_keys = np.random.choice(dates.keys(), size=int (len(dates) * dates_known_fraction), replace=False) dates = {k : dates[k] for k in knonw_keys} return dates def create_treetime_with_missing_dates(alnfile, treefile, dates_known_fraction=1.0): """dates = {k.name: date_from_seq_name(k.name) for k in aln} Create TreeTime object with fraction of leaves having no sampling dates. The leaves to earse sampling dates are chosen randomly. Args: - alnfile(str): path to the flu alignment - treefiule(str): path to the Flu newixk tree - dates_known_fraction(float): fraction of leaves, which should have sampling date information. """ aln = AlignIO.read(alnfile, 'fasta') tt = Phylo.read(treefile, 'newick') dates = make_known_dates_dict(alnfile, dates_known_fraction) myTree = treetime.TreeTime(gtr='Jukes-Cantor', tree = treefile, aln = alnfile, verbose = 4, dates = dates, debug=False) myTree.optimize_seq_and_branch_len(reuse_branch_len=True, prune_short=True, max_iter=5, infer_gtr=False) return myTree def create_subtree(tree, n_seqs, out_file, st_type='equal_sampling'): """ Args: - tree(filename or Biopython tree): original tree - n_seqs: number of leaves in the resulting subtree - out_file: output locaton to store the resulting subtree - st_type: type of the subtree generation algorithm. Available types: - random: just choose n_leaves randomly - equal_sampling: choose equal leaves each year (if possible) - preserve_root: sample from right and left subtrees of the tree root. The root of the resulting subtree is therefore the same as of the original tree """ if isinstance(tree, str): tree = Phylo.read(tree, 'newick') pass def correct_beast_xml_for_missing_dates(config_xml): def create_leafHeight(strain): xml_leafHeightParam = XML.Element('parameter') xml_leafHeightParam.attrib={'id': strain+".height"} xml_leafHeight = XML.Element('leafHeight') xml_leafHeight.attrib={"taxon": strain} xml_leafHeight.append(xml_leafHeightParam) return xml_leafHeight def create_leafHeight_operator(strain, weight): #<parameter idref="A/Yurimaguas/FLU4785/2006.height"/> xml_param = XML.Element('parameter') xml_param.attrib = {'idref': strain+'.height'} #<uniformOperator weight="0.024154589371980676"> xml_operator = XML.Element('uniformOperator') xml_operator.attrib = {'weight': str(weight)} xml_operator.append(xml_param) return xml_operator def create_taxon_date(): xml_date = XML.Element('date') xml_date.attrib={'value': '2011', 'direction':"forwards", 'units':"years", 'precision':'4.0'} return xml_date xml_treeModel = config_xml.find('treeModel') xml_operators = config_xml.find('operators') xml_taxa = config_xml.find('taxa').findall('taxon') xml_filelog = config_xml.findall('mcmc')[0].findall('log')[np.argmax([k.attrib['id']=='filelog' for k in config_xml .findall('mcmc')[0].findall('log')])] operator_weight = 1. / np.sum([k.find('date') is None for k in xml_taxa]) #import ipdb; ipdb.set_trace() for t in xml_taxa: if t.find('date') is None: strain = t.attrib['id'] t.append(create_taxon_date()) xml_treeModel.append(create_leafHeight(strain)) xml_operators.append(create_leafHeight_operator(strain, operator_weight)) parameter = XML.Element("parameter") parameter.attrib = {"idref" : strain+".height"} xml_filelog.append(parameter) return config_xml def run_beast(tree_name, aln_name, dates, beast_prefix, log_post_process=None, template_file="./resources/beast/template_bedford_et_al_2015.xml"): config_filename = beast_prefix + ".config.xml" config_xml = create_beast_xml(tree_name, aln_name, dates, beast_prefix, template_file) config_xml = correct_beast_xml_for_missing_dates(config_xml) config_xml.write(config_filename) #print (config_filename) #return config_xml call = ["java", "-jar", BEAST_BIN, "-beagle_off", "-overwrite", config_filename] subprocess.call(call) if log_post_process is not None: log_file = beast_prefix + ".log.txt" log_post_process(log_file) if __name__ == '__main__': pass
32.239892
157
0.664995
0
0
0
0
0
0
0
0
4,463
0.373129
5b2402300dbab63aa021dccf15d38bf7417d131e
90
py
Python
python/632.smallest-range-covering-elements-from-k-lists.py
stavanmehta/leetcode
1224e43ce29430c840e65daae3b343182e24709c
[ "Apache-2.0" ]
null
null
null
python/632.smallest-range-covering-elements-from-k-lists.py
stavanmehta/leetcode
1224e43ce29430c840e65daae3b343182e24709c
[ "Apache-2.0" ]
null
null
null
python/632.smallest-range-covering-elements-from-k-lists.py
stavanmehta/leetcode
1224e43ce29430c840e65daae3b343182e24709c
[ "Apache-2.0" ]
null
null
null
class Solution: def smallestRange(self, nums: List[List[int]]) -> List[int]:
22.5
64
0.611111
80
0.888889
0
0
0
0
0
0
0
0