from huggingface_hub import create_repo, HfFolder, model_info, dataset_info from datasets import load_dataset import os from datasets import concatenate_datasets # Optionally specify your username or organization under which to create the repo namespace = "yushengsu" # Replace with your Hugging Face username or organization # Your desired repository name repo_name = "fineweb_edu_cleaned_modified" full_repo_name = f"{namespace}/{repo_name}" # Log in programmatically (if not logged in through CLI) # token = "your_hf_token" # HfFolder.save_token(token) # Create the dataset repository try: repo_details = dataset_info(full_repo_name) print(f"Repository already exists at: {repo_details.id}") except Exception as e: # If the repository does not exist, create it repo_url = create_repo(full_repo_name, repo_type="dataset", private=False) print(f"Repository created at: {repo_url}") concatenated_datasets_dict = {} for idx in range(20): dataset = load_dataset("ruliad/fineweb_edu_100BT_chunk_0", cache_dir="/lustre/scratch/shared-folders/llm_project/yusheng/preprocessing_pre-trainig_data/.cache") if concatenated_datasets_dict == {}: for split in dataset.keys(): concatenated_datasets_dict[split] = dataset[split] else: for split in dataset.keys(): if split in concatenated_datasets_dict: concatenated_datasets_dict[split] = concatenate_datasets([concatenated_datasets_dict[split], dataset[split]]) dataset.push_to_hub(full_repo_name, private=False)