yuukicammy commited on
Commit
d50478c
·
1 Parent(s): 78a7c9c

Added description.

Browse files
Files changed (1) hide show
  1. README.md +91 -3
README.md CHANGED
@@ -1,3 +1,91 @@
1
- ---
2
- license: other
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT-Adobe FiveK Dataset
2
+
3
+ The MIT-Adobe FiveK Dataset [[1]]( #references ) is a publicly available dataset providing the following items.
4
+ 1. 5,000 RAW images in DNG format
5
+ 2. retouched images of each RAW image by five experts in TIFF format (25,000 images, 16 bits per channel, ProPhoto RGB color space, and lossless compression)
6
+ 3. semantic information about each image
7
+ The dataset was created by MIT and Adobe Systems, Inc., and is intended to provide a diverse and challenging set of images for testing image processing algorithms. The images were selected to represent a wide range of scenes, including landscapes, portraits, still lifes, and architecture. The images also vary in terms of lighting conditions, color balance, and exposure.
8
+ In practice, this dataset is often used after RAW images have undergone various processing steps. For example, RAW images are developed by adding noise, overexposure, and underexposure to emulate camera errors.
9
+ However, the officially provided dataset has a complex structure and is difficult to handle. This repository provides tools to easily download and use the datasets.
10
+
11
+ ## Official Website
12
+
13
+ [MIT-Adobe FiveK Dataset](https://data.csail.mit.edu/graphics/fivek/)
14
+
15
+ ## License
16
+
17
+ - [LicenseAdobe.txt](https://data.csail.mit.edu/graphics/fivek/legal/LicenseAdobe.txt) covers files listed in [filesAdobe.txt](https://data.csail.mit.edu/graphics/fivek/legal/filesAdobe.txt)
18
+ - [LicenseAdobeMIT.txt](https://data.csail.mit.edu/graphics/fivek/legal/LicenseAdobeMIT.txt) covers files listed in [filesAdobeMIT.txt](https://data.csail.mit.edu/graphics/fivek/legal/filesAdobeMIT.txt)
19
+
20
+ ## Data Samples
21
+
22
+ |Raw (DNG)|Expert A|Expert B|Expert C|Expert D|Expert E|Categories|Camera Model|
23
+ |---|---|---|---|---|---|---|---|
24
+ |[a0001-jmac_</br >DSC1459.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a0001-jmac_DSC1459.dng)|![tiff16_a/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_A.jpg)|![tiff16_b/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_B.jpg)|![tiff16_c/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_C.jpg)|![tiff16_d/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_D.jpg)|![tiff16_e/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_E.jpg)|{"location":"outdoor","time": "day","light": "sun_sky","subject": "nature"}|Nikon D70|
25
+ |[a1384-dvf_095.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a1384-dvf_095.dng)|![tiff16_a/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_A.jpg)|![tiff16_b/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_B.jpg)|![tiff16_c/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_C.jpg)|![tiff16_d/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_D.jpg)|![tiff16_e/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_E.jpg)|{ "location": "outdoor", "time": "day", "light": "sun_sky", "subject": "nature" }|Leica M8|
26
+ |[a4607-050801_</br >080948__</br >I2E5512.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a4607-050801_080948__I2E5512.dng)|![tiff16_a/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_A.jpg)|![tiff16_b/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_B.jpg)|![tiff16_c/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_C.jpg)|![tiff16_d/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_D.jpg)|![tiff16_e/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_E.jpg)|{ "location": "indoor", "time": "day", "light": "artificial", "subject": "people" }|Canon EOS-1D Mark II|
27
+
28
+ # References
29
+
30
+ ```
31
+ @inproceedings{fivek,
32
+ author = "Vladimir Bychkovsky and Sylvain Paris and Eric Chan and Fr{\'e}do Durand",
33
+ title = "Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs",
34
+ booktitle = "The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition",
35
+ year = "2011"
36
+ }
37
+ ```
38
+
39
+ # Code
40
+
41
+ [GitHub repository](https://github.com/yuukicammy/mit-adobe-fivek-dataset) provides tools to download and use MIT-Adobe FiveK Dataset in a machine learning friendly manner.
42
+ You can download the dataset with a single line of Python code. Also, you can use Pytorch's DetaLoader to iteratively retrieve data for your own use.
43
+ The processing can be easily accomplished with multiprocessing with Pytorch's DataLoader!
44
+
45
+ ## Requirements
46
+ - Python 3.7 or greater
47
+ - Pytorch 2.X
48
+ - tqdm
49
+ - urllib3
50
+
51
+ ## Usage
52
+
53
+ You can use as follows.
54
+
55
+ <span style="color:red">
56
+ NOTE: For DataLoader, MUST set `batch_size` to `None` to disable automatic batching.
57
+ </span>
58
+
59
+ ```python
60
+ from torch.utils.data.dataloader import DataLoader
61
+ from dataset.fivek import MITAboveFiveK
62
+
63
+ metadata_loader = DataLoader(
64
+ MITAboveFiveK(root="path-to-dataset-root", split="train", download=True, experts=["a"]),
65
+ batch_size=None, num_workers=2)
66
+
67
+ for item in metadata_loader:
68
+ # Processing as you want.
69
+ # Add noise, overexpose, underexpose, etc.
70
+ print(item["files"]["dng"])
71
+ ```
72
+
73
+ ## Example
74
+
75
+ Please see [sample code](https://github.com/yuukicammy/mit-adobe-fivek-dataset/blob/master/sample_process.py) .
76
+
77
+ ## API
78
+
79
+ CLASS MITAboveFiveK(torch.utils.data.dataset.Dataset)
80
+ - - -
81
+ MITAboveFiveK(root: str, split: str, download: bool = False, experts: List[str] = None) -> None
82
+
83
+ - root (str):
84
+ The root directory where the MITAboveFiveK directory exists or to be created.
85
+ - split (str):
86
+ One of {'train', 'val', 'test', 'debug'}. 'debug' uses only 9 data contained in 'train'.
87
+ - download (bool):
88
+ If True, downloads the dataset from the official urls. Files that already exist locally will skip the download. Defaults to False.
89
+ - experts (List[str]):
90
+ List of {'a', 'b', 'c', 'd', 'e'}. 'a' means 'Expert A' in the [website](https://data.csail.mit.edu/graphics/fivek/ ). If None or empty list, no expert data is used. Defaults to None.
91
+