|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""HumanEval-X dataset.""" |
|
|
|
|
|
import json |
|
import datasets |
|
|
|
|
|
|
|
_DESCRIPTION = """ |
|
HumanEval-X is a benchmark for the evaluation of the multilingual ability of code generative models. \ |
|
It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/THUDM/CodeGeeX" |
|
|
|
def get_url(name): |
|
url = f"data/{name}/data/humaneval.jsonl" |
|
return url |
|
|
|
def split_generator(dl_manager, name): |
|
downloaded_files = dl_manager.download(get_url(name)) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files, |
|
}, |
|
) |
|
] |
|
|
|
class HumanEvalXConfig(datasets.BuilderConfig): |
|
"""BuilderConfig """ |
|
|
|
def __init__(self, name, description, features, **kwargs): |
|
super(HumanEvalXConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.name = name |
|
self.description = description |
|
self.features = features |
|
|
|
|
|
class HumanEvalX(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
HumanEvalXConfig( |
|
name="python", |
|
description="Python HumanEval", |
|
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"] |
|
), |
|
HumanEvalXConfig( |
|
name="cpp", |
|
description="C++ HumanEval", |
|
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"] |
|
), |
|
|
|
HumanEvalXConfig( |
|
name="go", |
|
description="Go HumanEval", |
|
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"] |
|
), |
|
HumanEvalXConfig( |
|
name="java", |
|
description="Java HumanEval", |
|
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"] |
|
), |
|
|
|
HumanEvalXConfig( |
|
name="js", |
|
description="JavaScript HumanEval", |
|
features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"] |
|
), |
|
] |
|
DEFAULT_CONFIG_NAME = "python" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({"task_id": datasets.Value("string"), |
|
"prompt": datasets.Value("string"), |
|
"declaration": datasets.Value("string"), |
|
"canonical_solution": datasets.Value("string"), |
|
"test": datasets.Value("string"), |
|
"example_test": datasets.Value("string"), |
|
}), |
|
homepage=_HOMEPAGE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name == "python": |
|
return split_generator(dl_manager, self.config.name) |
|
|
|
elif self.config.name == "cpp": |
|
return split_generator(dl_manager, self.config.name) |
|
|
|
elif self.config.name == "go": |
|
return split_generator(dl_manager, self.config.name) |
|
|
|
elif self.config.name == "java": |
|
return split_generator(dl_manager, self.config.name) |
|
|
|
elif self.config.name == "js": |
|
return split_generator(dl_manager, self.config.name) |
|
|
|
def _generate_examples(self, filepath): |
|
key = 0 |
|
with open(filepath) as f: |
|
for line in f: |
|
row = json.loads(line) |
|
key += 1 |
|
yield key, { |
|
"task_id": row["task_id"], |
|
"prompt": row["prompt"], |
|
"declaration": row["declaration"], |
|
"canonical_solution": row["canonical_solution"], |
|
"test": row["test"], |
|
"example_test": row["example_test"], |
|
|
|
} |
|
key += 1 |