title
stringlengths
7
246
abstract
stringlengths
6
3.31k
RankMap: A Platform-Aware Framework for Distributed Learning from Dense Datasets
This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and dense datasets. Our framework exploits data structure to factorize it into an ensemble of lower rank subspaces. The factorization creates sparse low-dimensional representations of the data, a property which is leveraged to devise effective mapping and scheduling of iterative learning algorithms on the distributed computing machines. We provide two APIs, one matrix-based and one graph-based, which facilitate automated adoption of the framework for performing several contemporary learning applications. To demonstrate the utility of RankMap, we solve sparse recovery and power iteration problems on various real-world datasets with up to 1.8 billion non-zeros. Our evaluations are performed on Amazon EC2 and IBM iDataPlex servers using up to 244 cores. The results demonstrate up to two orders of magnitude improvements in memory usage, execution speed, and bandwidth compared with the best reported prior work, while achieving the same level of learning accuracy.
A Variance Reduced Stochastic Newton Method
Quasi-Newton methods are widely used in practise for convex loss minimization problems. These methods exhibit good empirical performance on a wide variety of tasks and enjoy super-linear convergence to the optimal solution. For large-scale learning problems, stochastic Quasi-Newton methods have been recently proposed. However, these typically only achieve sub-linear convergence rates and have not been shown to consistently perform well in practice since noisy Hessian approximations can exacerbate the effect of high-variance stochastic gradient estimates. In this work we propose Vite, a novel stochastic Quasi-Newton algorithm that uses an existing first-order technique to reduce this variance. Without exploiting the specific form of the approximate Hessian, we show that Vite reaches the optimum at a geometric rate with a constant step-size when dealing with smooth strongly convex functions. Empirically, we demonstrate improvements over existing stochastic Quasi-Newton and variance reduced stochastic gradient methods.
Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm
We propose an extensive analysis of the behavior of majority votes in binary classification. In particular, we introduce a risk bound for majority votes, called the C-bound, that takes into account the average quality of the voters and their average disagreement. We also propose an extensive PAC-Bayesian analysis that shows how the C-bound can be estimated from various observations contained in the training data. The analysis intends to be self-contained and can be used as introductory material to PAC-Bayesian statistical learning theory. It starts from a general PAC-Bayesian perspective and ends with uncommon PAC-Bayesian bounds. Some of these bounds contain no Kullback-Leibler divergence and others allow kernel functions to be used as voters (via the sample compression setting). Finally, out of the analysis, we propose the MinCq learning algorithm that basically minimizes the C-bound. MinCq reduces to a simple quadratic program. Aside from being theoretically grounded, MinCq achieves state-of-the-art performance, as shown in our extensive empirical comparison with both AdaBoost and the Support Vector Machine.
Sparse Linear Regression With Missing Data
This paper proposes a fast and accurate method for sparse regression in the presence of missing data. The underlying statistical model encapsulates the low-dimensional structure of the incomplete data matrix and the sparsity of the regression coefficients, and the proposed algorithm jointly learns the low-dimensional structure of the data and a linear regressor with sparse coefficients. The proposed stochastic optimization method, Sparse Linear Regression with Missing Data (SLRM), performs an alternating minimization procedure and scales well with the problem size. Large deviation inequalities shed light on the impact of the various problem-dependent parameters on the expected squared loss of the learned regressor. Extensive simulations on both synthetic and real datasets show that SLRM performs better than competing algorithms in a variety of contexts.
Active Model Aggregation via Stochastic Mirror Descent
We consider the problem of learning convex aggregation of models, that is as good as the best convex aggregation, for the binary classification problem. Working in the stream based active learning setting, where the active learner has to make a decision on-the-fly, if it wants to query for the label of the point currently seen in the stream, we propose a stochastic-mirror descent algorithm, called SMD-AMA, with entropy regularization. We establish an excess risk bounds for the loss of the convex aggregate returned by SMD-AMA to be of the order of $O\left(\sqrt{\frac{\log(M)}{{T^{1-\mu}}}}\right)$, where $\mu\in [0,1)$ is an algorithm dependent parameter, that trades-off the number of labels queried, and excess risk.
Global Bandits
Multi-armed bandits (MAB) model sequential decision making problems, in which a learner sequentially chooses arms with unknown reward distributions in order to maximize its cumulative reward. Most of the prior work on MAB assumes that the reward distributions of each arm are independent. But in a wide variety of decision problems -- from drug dosage to dynamic pricing -- the expected rewards of different arms are correlated, so that selecting one arm provides information about the expected rewards of other arms as well. We propose and analyze a class of models of such decision problems, which we call {\em global bandits}. In the case in which rewards of all arms are deterministic functions of a single unknown parameter, we construct a greedy policy that achieves {\em bounded regret}, with a bound that depends on the single true parameter of the problem. Hence, this policy selects suboptimal arms only finitely many times with probability one. For this case we also obtain a bound on regret that is {\em independent of the true parameter}; this bound is sub-linear, with an exponent that depends on the informativeness of the arms. We also propose a variant of the greedy policy that achieves $\tilde{\mathcal{O}}(\sqrt{T})$ worst-case and $\mathcal{O}(1)$ parameter dependent regret. Finally, we perform experiments on dynamic pricing and show that the proposed algorithms achieve significant gains with respect to the well-known benchmarks.
Towards Easier and Faster Sequence Labeling for Natural Language Processing: A Search-based Probabilistic Online Learning Framework (SAPO)
There are two major approaches for sequence labeling. One is the probabilistic gradient-based methods such as conditional random fields (CRF) and neural networks (e.g., RNN), which have high accuracy but drawbacks: slow training, and no support of search-based optimization (which is important in many cases). The other is the search-based learning methods such as structured perceptron and margin infused relaxed algorithm (MIRA), which have fast training but also drawbacks: low accuracy, no probabilistic information, and non-convergence in real-world tasks. We propose a novel and "easy" solution, a search-based probabilistic online learning method, to address most of those issues. The method is "easy", because the optimization algorithm at the training stage is as simple as the decoding algorithm at the test stage. This method searches the output candidates, derives probabilities, and conducts efficient online learning. We show that this method with fast training and theoretical guarantee of convergence, which is easy to implement, can support search-based optimization and obtain top accuracy. Experiments on well-known tasks show that our method has better accuracy than CRF and BiLSTM\footnote{The SAPO code is released at \url{https://github.com/lancopku/SAPO}.}.
Towards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition
Symmetric positive semi-definite (SPSD) matrix approximation methods have been extensively used to speed up large-scale eigenvalue computation and kernel learning methods. The standard sketch based method, which we call the prototype model, produces relatively accurate approximations, but is inefficient on large square matrices. The Nystr\"om method is highly efficient, but can only achieve low accuracy. In this paper we propose a novel model that we call the {\it fast SPSD matrix approximation model}. The fast model is nearly as efficient as the Nystr\"om method and as accurate as the prototype model. We show that the fast model can potentially solve eigenvalue problems and kernel learning problems in linear time with respect to the matrix size $n$ to achieve $1+\epsilon$ relative-error, whereas both the prototype model and the Nystr\"om method cost at least quadratic time to attain comparable error bound. Empirical comparisons among the prototype model, the Nystr\"om method, and our fast model demonstrate the superiority of the fast model. We also contribute new understandings of the Nystr\"om method. The Nystr\"om method is a special instance of our fast model and is approximation to the prototype model. Our technique can be straightforwardly applied to make the CUR matrix decomposition more efficiently computed without much affecting the accuracy.
Cross-validation of matching correlation analysis by resampling matching weights
The strength of association between a pair of data vectors is represented by a nonnegative real number, called matching weight. For dimensionality reduction, we consider a linear transformation of data vectors, and define a matching error as the weighted sum of squared distances between transformed vectors with respect to the matching weights. Given data vectors and matching weights, the optimal linear transformation minimizing the matching error is solved by the spectral graph embedding of Yan et al. (2007). This method is a generalization of the canonical correlation analysis, and will be called as matching correlation analysis (MCA). In this paper, we consider a novel sampling scheme where the observed matching weights are randomly sampled from underlying true matching weights with small probability, whereas the data vectors are treated as constants. We then investigate a cross-validation by resampling the matching weights. Our asymptotic theory shows that the cross-validation, if rescaled properly, computes an unbiased estimate of the matching error with respect to the true matching weights. Existing ideas of cross-validation for resampling data vectors, instead of resampling matching weights, are not applicable here. MCA can be used for data vectors from multiple domains with different dimensions via an embarrassingly simple idea of coding the data vectors. This method will be called as cross-domain matching correlation analysis (CDMCA), and an interesting connection to the classical associative memory model of neural networks is also discussed.
Average Distance Queries through Weighted Samples in Graphs and Metric Spaces: High Scalability with Tight Statistical Guarantees
The average distance from a node to all other nodes in a graph, or from a query point in a metric space to a set of points, is a fundamental quantity in data analysis. The inverse of the average distance, known as the (classic) closeness centrality of a node, is a popular importance measure in the study of social networks. We develop novel structural insights on the sparsifiability of the distance relation via weighted sampling. Based on that, we present highly practical algorithms with strong statistical guarantees for fundamental problems. We show that the average distance (and hence the centrality) for all nodes in a graph can be estimated using $O(\epsilon^{-2})$ single-source distance computations. For a set $V$ of $n$ points in a metric space, we show that after preprocessing which uses $O(n)$ distance computations we can compute a weighted sample $S\subset V$ of size $O(\epsilon^{-2})$ such that the average distance from any query point $v$ to $V$ can be estimated from the distances from $v$ to $S$. Finally, we show that for a set of points $V$ in a metric space, we can estimate the average pairwise distance using $O(n+\epsilon^{-2})$ distance computations. The estimate is based on a weighted sample of $O(\epsilon^{-2})$ pairs of points, which is computed using $O(n)$ distance computations. Our estimates are unbiased with normalized mean square error (NRMSE) of at most $\epsilon$. Increasing the sample size by a $O(\log n)$ factor ensures that the probability that the relative error exceeds $\epsilon$ is polynomially small.
Infinite Author Topic Model based on Mixed Gamma-Negative Binomial Process
Incorporating the side information of text corpus, i.e., authors, time stamps, and emotional tags, into the traditional text mining models has gained significant interests in the area of information retrieval, statistical natural language processing, and machine learning. One branch of these works is the so-called Author Topic Model (ATM), which incorporates the authors's interests as side information into the classical topic model. However, the existing ATM needs to predefine the number of topics, which is difficult and inappropriate in many real-world settings. In this paper, we propose an Infinite Author Topic (IAT) model to resolve this issue. Instead of assigning a discrete probability on fixed number of topics, we use a stochastic process to determine the number of topics from the data itself. To be specific, we extend a gamma-negative binomial process to three levels in order to capture the author-document-keyword hierarchical structure. Furthermore, each document is assigned a mixed gamma process that accounts for the multi-author's contribution towards this document. An efficient Gibbs sampling inference algorithm with each conditional distribution being closed-form is developed for the IAT model. Experiments on several real-world datasets show the capabilities of our IAT model to learn the hidden topics, authors' interests on these topics and the number of topics simultaneously.
Nonparametric Relational Topic Models through Dependent Gamma Processes
Traditional Relational Topic Models provide a way to discover the hidden topics from a document network. Many theoretical and practical tasks, such as dimensional reduction, document clustering, link prediction, benefit from this revealed knowledge. However, existing relational topic models are based on an assumption that the number of hidden topics is known in advance, and this is impractical in many real-world applications. Therefore, in order to relax this assumption, we propose a nonparametric relational topic model in this paper. Instead of using fixed-dimensional probability distributions in its generative model, we use stochastic processes. Specifically, a gamma process is assigned to each document, which represents the topic interest of this document. Although this method provides an elegant solution, it brings additional challenges when mathematically modeling the inherent network structure of typical document network, i.e., two spatially closer documents tend to have more similar topics. Furthermore, we require that the topics are shared by all the documents. In order to resolve these challenges, we use a subsampling strategy to assign each document a different gamma process from the global gamma process, and the subsampling probabilities of documents are assigned with a Markov Random Field constraint that inherits the document network structure. Through the designed posterior inference algorithm, we can discover the hidden topics and its number simultaneously. Experimental results on both synthetic and real-world network datasets demonstrate the capabilities of learning the hidden topics and, more importantly, the number of topics.
LSHTC: A Benchmark for Large-Scale Text Classification
LSHTC is a series of challenges which aims to assess the performance of classification systems in large-scale classification in a a large number of classes (up to hundreds of thousands). This paper describes the dataset that have been released along the LSHTC series. The paper details the construction of the datsets and the design of the tracks as well as the evaluation measures that we implemented and a quick overview of the results. All of these datasets are available online and runs may still be submitted on the online server of the challenges.
Sparse plus low-rank autoregressive identification in neuroimaging time series
This paper considers the problem of identifying multivariate autoregressive (AR) sparse plus low-rank graphical models. Based on the corresponding problem formulation recently presented, we use the alternating direction method of multipliers (ADMM) to efficiently solve it and scale it to sizes encountered in neuroimaging applications. We apply this decomposition on synthetic and real neuroimaging datasets with a specific focus on the information encoded in the low-rank structure of our model. In particular, we illustrate that this information captures the spatio-temporal structure of the original data, generalizing classical component analysis approaches.
Comparison of Bayesian predictive methods for model selection
The goal of this paper is to compare several widely used Bayesian model selection methods in practical model selection problems, highlight their differences and give recommendations about the preferred approaches. We focus on the variable subset selection for regression and classification and perform several numerical experiments using both simulated and real world data. The results show that the optimization of a utility estimate such as the cross-validation (CV) score is liable to finding overfitted models due to relatively high variance in the utility estimates when the data is scarce. This can also lead to substantial selection induced bias and optimism in the performance evaluation for the selected model. From a predictive viewpoint, best results are obtained by accounting for model uncertainty by forming the full encompassing model, such as the Bayesian model averaging solution over the candidate models. If the encompassing model is too complex, it can be robustly simplified by the projection method, in which the information of the full model is projected onto the submodels. This approach is substantially less prone to overfitting than selection based on CV-score. Overall, the projection method appears to outperform also the maximum a posteriori model and the selection of the most probable variables. The study also demonstrates that the model selection can greatly benefit from using cross-validation outside the searching process both for guiding the model size selection and assessing the predictive performance of the finally selected model.
Founding Digital Currency on Imprecise Commodity
Current digital currency schemes provide instantaneous exchange on precise commodity, in which "precise" means a buyer can possibly verify the function of the commodity without error. However, imprecise commodities, e.g. statistical data, with error existing are abundant in digital world. Existing digital currency schemes do not offer a mechanism to help the buyer for payment decision on precision of commodity, which may lead the buyer to a dilemma between having to buy and being unconfident. In this paper, we design a currency schemes IDCS for imprecise digital commodity. IDCS completes a trade in three stages of handshake between a buyer and providers. We present an IDCS prototype implementation that assigns weights on the trustworthy of the providers, and calculates a confidence level for the buyer to decide the quality of a imprecise commodity. In experiment, we characterize the performance of IDCS prototype under varying impact factors.
Decentralized learning for wireless communications and networking
This chapter deals with decentralized learning algorithms for in-network processing of graph-valued data. A generic learning problem is formulated and recast into a separable form, which is iteratively minimized using the alternating-direction method of multipliers (ADMM) so as to gain the desired degree of parallelization. Without exchanging elements from the distributed training sets and keeping inter-node communications at affordable levels, the local (per-node) learners consent to the desired quantity inferred globally, meaning the one obtained if the entire training data set were centrally available. Impact of the decentralized learning framework to contemporary wireless communications and networking tasks is illustrated through case studies including target tracking using wireless sensor networks, unveiling Internet traffic anomalies, power system state estimation, as well as spectrum cartography for wireless cognitive radio networks.
Fast Label Embeddings for Extremely Large Output Spaces
Many modern multiclass and multilabel problems are characterized by increasingly large output spaces. For these problems, label embeddings have been shown to be a useful primitive that can improve computational and statistical efficiency. In this work we utilize a correspondence between rank constrained estimation and low dimensional label embeddings that uncovers a fast label embedding algorithm which works in both the multiclass and multilabel settings. The result is a randomized algorithm for partial least squares, whose running time is exponentially faster than naive algorithms. We demonstrate our techniques on two large-scale public datasets, from the Large Scale Hierarchical Text Challenge and the Open Directory Project, where we obtain state of the art results.
Multi-label Classification using Labels as Hidden Nodes
Competitive methods for multi-label classification typically invest in learning labels together. To do so in a beneficial way, analysis of label dependence is often seen as a fundamental step, separate and prior to constructing a classifier. Some methods invest up to hundreds of times more computational effort in building dependency models, than training the final classifier itself. We extend some recent discussion in the literature and provide a deeper analysis, namely, developing the view that label dependence is often introduced by an inadequate base classifier, rather than being inherent to the data or underlying concept; showing how even an exhaustive analysis of label dependence may not lead to an optimal classification structure. Viewing labels as additional features (a transformation of the input), we create neural-network inspired novel methods that remove the emphasis of a prior dependency structure. Our methods have an important advantage particular to multi-label data: they leverage labels to create effective units in middle layers, rather than learning these units from scratch in an unsupervised fashion with gradient-based methods. Results are promising. The methods we propose perform competitively, and also have very important qualities of scalability.
Learning Definite Horn Formulas from Closure Queries
A definite Horn theory is a set of n-dimensional Boolean vectors whose characteristic function is expressible as a definite Horn formula, that is, as conjunction of definite Horn clauses. The class of definite Horn theories is known to be learnable under different query learning settings, such as learning from membership and equivalence queries or learning from entailment. We propose yet a different type of query: the closure query. Closure queries are a natural extension of membership queries and also a variant, appropriate in the context of definite Horn formulas, of the so-called correction queries. We present an algorithm that learns conjunctions of definite Horn clauses in polynomial time, using closure and equivalence queries, and show how it relates to the canonical Guigues-Duquenne basis for implicational systems. We also show how the different query models mentioned relate to each other by either showing full-fledged reductions by means of query simulation (where possible), or by showing their connections in the context of particular algorithms that use them for learning definite Horn formulas.
Generalized Categorization Axioms
Categorization axioms have been proposed to axiomatizing clustering results, which offers a hint of bridging the difference between human recognition system and machine learning through an intuitive observation: an object should be assigned to its most similar category. However, categorization axioms cannot be generalized into a general machine learning system as categorization axioms become trivial when the number of categories becomes one. In order to generalize categorization axioms into general cases, categorization input and categorization output are reinterpreted by inner and outer category representation. According to the categorization reinterpretation, two category representation axioms are presented. Category representation axioms and categorization axioms can be combined into a generalized categorization axiomatic framework, which accurately delimit the theoretical categorization constraints and overcome the shortcoming of categorization axioms. The proposed axiomatic framework not only discuses categorization test issue but also reinterprets many results in machine learning in a unified way, such as dimensionality reduction,density estimation, regression, clustering and classification.
Real-World Font Recognition Using Deep Network and Domain Adaptation
We address a challenging fine-grain classification problem: recognizing a font style from an image of text. In this task, it is very easy to generate lots of rendered font examples but very hard to obtain real-world labeled images. This real-to-synthetic domain gap caused poor generalization to new real data in previous methods (Chen et al. (2014)). In this paper, we refer to Convolutional Neural Networks, and use an adaptation technique based on a Stacked Convolutional Auto-Encoder that exploits unlabeled real-world images combined with synthetic data. The proposed method achieves an accuracy of higher than 80% (top-5) on a real-world dataset.
Improved Error Bounds Based on Worst Likely Assignments
Error bounds based on worst likely assignments use permutation tests to validate classifiers. Worst likely assignments can produce effective bounds even for data sets with 100 or fewer training examples. This paper introduces a statistic for use in the permutation tests of worst likely assignments that improves error bounds, especially for accurate classifiers, which are typically the classifiers of interest.
Crowdsourcing Feature Discovery via Adaptively Chosen Comparisons
We introduce an unsupervised approach to efficiently discover the underlying features in a data set via crowdsourcing. Our queries ask crowd members to articulate a feature common to two out of three displayed examples. In addition we also ask the crowd to provide binary labels to the remaining examples based on the discovered features. The triples are chosen adaptively based on the labels of the previously discovered features on the data set. In two natural models of features, hierarchical and independent, we show that a simple adaptive algorithm, using "two-out-of-three" similarity queries, recovers all features with less labor than any nonadaptive algorithm. Experimental results validate the theoretical findings.
A Theory of Feature Learning
Feature Learning aims to extract relevant information contained in data sets in an automated fashion. It is driving force behind the current deep learning trend, a set of methods that have had widespread empirical success. What is lacking is a theoretical understanding of different feature learning schemes. This work provides a theoretical framework for feature learning and then characterizes when features can be learnt in an unsupervised fashion. We also provide means to judge the quality of features via rate-distortion theory and its generalizations.
Learning in the Presence of Corruption
In supervised learning one wishes to identify a pattern present in a joint distribution $P$, of instances, label pairs, by providing a function $f$ from instances to labels that has low risk $\mathbb{E}_{P}\ell(y,f(x))$. To do so, the learner is given access to $n$ iid samples drawn from $P$. In many real world problems clean samples are not available. Rather, the learner is given access to samples from a corrupted distribution $\tilde{P}$ from which to learn, while the goal of predicting the clean pattern remains. There are many different types of corruption one can consider, and as of yet there is no general means to compare the relative ease of learning under these different corruption processes. In this paper we develop a general framework for tackling such problems as well as introducing upper and lower bounds on the risk for learning in the presence of corruption. Our ultimate goal is to be able to make informed economic decisions in regards to the acquisition of data sets. For a certain subclass of corruption processes (those that are \emph{reconstructible}) we achieve this goal in a particular sense. Our lower bounds are in terms of the coefficient of ergodicity, a simple to calculate property of stochastic matrices. Our upper bounds proceed via a generalization of the method of unbiased estimators appearing in recent work of Natarajan et al and implicit in the earlier work of Kearns.
The Libra Toolkit for Probabilistic Models
The Libra Toolkit is a collection of algorithms for learning and inference with discrete probabilistic models, including Bayesian networks, Markov networks, dependency networks, and sum-product networks. Compared to other toolkits, Libra places a greater emphasis on learning the structure of tractable models in which exact inference is efficient. It also includes a variety of algorithms for learning graphical models in which inference is potentially intractable, and for performing exact and approximate inference. Libra is released under a 2-clause BSD license to encourage broad use in academia and industry.
A New Vision of Collaborative Active Learning
Active learning (AL) is a learning paradigm where an active learner has to train a model (e.g., a classifier) which is in principal trained in a supervised way, but in AL it has to be done by means of a data set with initially unlabeled samples. To get labels for these samples, the active learner has to ask an oracle (e.g., a human expert) for labels. The goal is to maximize the performance of the model and to minimize the number of queries at the same time. In this article, we first briefly discuss the state of the art and own, preliminary work in the field of AL. Then, we propose the concept of collaborative active learning (CAL). With CAL, we will overcome some of the harsh limitations of current AL. In particular, we envision scenarios where an expert may be wrong for various reasons, there might be several or even many experts with different expertise, the experts may label not only samples but also knowledge at a higher level such as rules, and we consider that the labeling costs depend on many conditions. Moreover, in a CAL process human experts will profit by improving their own knowledge, too.
Bayesian Clustering of Shapes of Curves
Unsupervised clustering of curves according to their shapes is an important problem with broad scientific applications. The existing model-based clustering techniques either rely on simple probability models (e.g., Gaussian) that are not generally valid for shape analysis or assume the number of clusters. We develop an efficient Bayesian method to cluster curve data using an elastic shape metric that is based on joint registration and comparison of shapes of curves. The elastic-inner product matrix obtained from the data is modeled using a Wishart distribution whose parameters are assigned carefully chosen prior distributions to allow for automatic inference on the number of clusters. Posterior is sampled through an efficient Markov chain Monte Carlo procedure based on the Chinese restaurant process to infer (1) the posterior distribution on the number of clusters, and (2) clustering configuration of shapes. This method is demonstrated on a variety of synthetic data and real data examples on protein structure analysis, cell shape analysis in microscopy images, and clustering of shaped from MPEG7 database.
Signatures of Infinity: Nonergodicity and Resource Scaling in Prediction, Complexity, and Learning
We introduce a simple analysis of the structural complexity of infinite-memory processes built from random samples of stationary, ergodic finite-memory component processes. Such processes are familiar from the well known multi-arm Bandit problem. We contrast our analysis with computation-theoretic and statistical inference approaches to understanding their complexity. The result is an alternative view of the relationship between predictability, complexity, and learning that highlights the distinct ways in which informational and correlational divergences arise in complex ergodic and nonergodic processes. We draw out consequences for the resource divergences that delineate the structural hierarchy of ergodic processes and for processes that are themselves hierarchical.
Direct l_(2,p)-Norm Learning for Feature Selection
In this paper, we propose a novel sparse learning based feature selection method that directly optimizes a large margin linear classification model sparsity with l_(2,p)-norm (0 < p < 1)subject to data-fitting constraints, rather than using the sparsity as a regularization term. To solve the direct sparsity optimization problem that is non-smooth and non-convex when 0<p<1, we provide an efficient iterative algorithm with proved convergence by converting it to a convex and smooth optimization problem at every iteration step. The proposed algorithm has been evaluated based on publicly available datasets, and extensive comparison experiments have demonstrated that our algorithm could achieve feature selection performance competitive to state-of-the-art algorithms.
Quantum image classification using principal component analysis
We present a novel quantum algorithm for classification of images. The algorithm is constructed using principal component analysis and von Neuman quantum measurements. In order to apply the algorithm we present a new quantum representation of grayscale images.
A Probabilistic Theory of Deep Learning
A grand challenge in machine learning is the development of computational algorithms that match or outperform humans in perceptual inference tasks that are complicated by nuisance variation. For instance, visual object recognition involves the unknown object position, orientation, and scale in object recognition while speech recognition involves the unknown voice pronunciation, pitch, and speed. Recently, a new breed of deep learning algorithms have emerged for high-nuisance inference tasks that routinely yield pattern recognition systems with near- or super-human capabilities. But a fundamental question remains: Why do they work? Intuitions abound, but a coherent framework for understanding, analyzing, and synthesizing deep learning architectures has remained elusive. We answer this question by developing a new probabilistic framework for deep learning based on the Deep Rendering Model: a generative probabilistic model that explicitly captures latent nuisance variation. By relaxing the generative model to a discriminative one, we can recover two of the current leading deep learning systems, deep convolutional neural networks and random decision forests, providing insights into their successes and shortcomings, as well as a principled route to their improvement.
End-to-End Training of Deep Visuomotor Policies
Policy search methods can allow robots to learn control policies for a wide range of tasks, but practical applications of policy search often require hand-engineered components for perception, state estimation, and low-level control. In this paper, we aim to answer the following question: does training the perception and control systems jointly end-to-end provide better performance than training each component separately? To this end, we develop a method that can be used to learn policies that map raw image observations directly to torques at the robot's motors. The policies are represented by deep convolutional neural networks (CNNs) with 92,000 parameters, and are trained using a partially observed guided policy search method, which transforms policy search into supervised learning, with supervision provided by a simple trajectory-centric reinforcement learning method. We evaluate our method on a range of real-world manipulation tasks that require close coordination between vision and control, such as screwing a cap onto a bottle, and present simulated comparisons to a range of prior policy search methods.
Unsupervised Feature Selection with Adaptive Structure Learning
The problem of feature selection has raised considerable interests in the past decade. Traditional unsupervised methods select the features which can faithfully preserve the intrinsic structures of data, where the intrinsic structures are estimated using all the input features of data. However, the estimated intrinsic structures are unreliable/inaccurate when the redundant and noisy features are not removed. Therefore, we face a dilemma here: one need the true structures of data to identify the informative features, and one need the informative features to accurately estimate the true structures of data. To address this, we propose a unified learning framework which performs structure learning and feature selection simultaneously. The structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data. By leveraging the interactions between these two essential tasks, we are able to capture accurate structures and select more informative features. Experimental results on many benchmark data sets demonstrate that the proposed method outperforms many state of the art unsupervised feature selection methods.
Learning Mixed Membership Mallows Models from Pairwise Comparisons
We propose a novel parameterized family of Mixed Membership Mallows Models (M4) to account for variability in pairwise comparisons generated by a heterogeneous population of noisy and inconsistent users. M4 models individual preferences as a user-specific probabilistic mixture of shared latent Mallows components. Our key algorithmic insight for estimation is to establish a statistical connection between M4 and topic models by viewing pairwise comparisons as words, and users as documents. This key insight leads us to explore Mallows components with a separable structure and leverage recent advances in separable topic discovery. While separability appears to be overly restrictive, we nevertheless show that it is an inevitable outcome of a relatively small number of latent Mallows components in a world of large number of items. We then develop an algorithm based on robust extreme-point identification of convex polygons to learn the reference rankings, and is provably consistent with polynomial sample complexity guarantees. We demonstrate that our new model is empirically competitive with the current state-of-the-art approaches in predicting real-world preferences.
The Gram-Charlier A Series based Extended Rule-of-Thumb for Bandwidth Selection in Univariate and Multivariate Kernel Density Estimations
The article derives a novel Gram-Charlier A (GCA) Series based Extended Rule-of-Thumb (ExROT) for bandwidth selection in Kernel Density Estimation (KDE). There are existing various bandwidth selection rules achieving minimization of the Asymptotic Mean Integrated Square Error (AMISE) between the estimated probability density function (PDF) and the actual PDF. The rules differ in a way to estimate the integration of the squared second order derivative of an unknown PDF $(f(\cdot))$, identified as the roughness $R(f''(\cdot))$. The simplest Rule-of-Thumb (ROT) estimates $R(f''(\cdot))$ with an assumption that the density being estimated is Gaussian. Intuitively, better estimation of $R(f''(\cdot))$ and consequently better bandwidth selection rules can be derived, if the unknown PDF is approximated through an infinite series expansion based on a more generalized density assumption. As a demonstration and verification to this concept, the ExROT derived in the article uses an extended assumption that the density being estimated is near Gaussian. This helps use of the GCA expansion as an approximation to the unknown near Gaussian PDF. The ExROT for univariate KDE is extended to that for multivariate KDE. The required multivariate AMISE criteria is re-derived using elementary calculus of several variables, instead of Tensor calculus. The derivation uses the Kronecker product and the vector differential operator to achieve the AMISE expression in vector notations. There is also derived ExROT for kernel based density derivative estimator.
Robust Anomaly Detection Using Semidefinite Programming
This paper presents a new approach, based on polynomial optimization and the method of moments, to the problem of anomaly detection. The proposed technique only requires information about the statistical moments of the normal-state distribution of the features of interest and compares favorably with existing approaches (such as Parzen windows and 1-class SVM). In addition, it provides a succinct description of the normal state. Thus, it leads to a substantial simplification of the the anomaly detection problem when working with higher dimensional datasets.
A Unified Deep Neural Network for Speaker and Language Recognition
Learned feature representations and sub-phoneme posteriors from Deep Neural Networks (DNNs) have been used separately to produce significant performance gains for speaker and language recognition tasks. In this work we show how these gains are possible using a single DNN for both speaker and language recognition. The unified DNN approach is shown to yield substantial performance improvements on the the 2013 Domain Adaptation Challenge speaker recognition task (55% reduction in EER for the out-of-domain condition) and on the NIST 2011 Language Recognition Evaluation (48% reduction in EER for the 30s test condition).
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
Learning long term dependencies in recurrent networks is difficult due to vanishing and exploding gradients. To overcome this difficulty, researchers have developed sophisticated optimization techniques and network architectures. In this paper, we propose a simpler solution that use recurrent neural networks composed of rectified linear units. Key to our solution is the use of the identity matrix or its scaled version to initialize the recurrent weight matrix. We find that our solution is comparable to LSTM on our four benchmarks: two toy problems involving long-range temporal structures, a large language modeling problem and a benchmark speech recognition problem.
The Child is Father of the Man: Foresee the Success at the Early Stage
Understanding the dynamic mechanisms that drive the high-impact scientific work (e.g., research papers, patents) is a long-debated research topic and has many important implications, ranging from personal career development and recruitment search, to the jurisdiction of research resources. Recent advances in characterizing and modeling scientific success have made it possible to forecast the long-term impact of scientific work, where data mining techniques, supervised learning in particular, play an essential role. Despite much progress, several key algorithmic challenges in relation to predicting long-term scientific impact have largely remained open. In this paper, we propose a joint predictive model to forecast the long-term scientific impact at the early stage, which simultaneously addresses a number of these open challenges, including the scholarly feature design, the non-linearity, the domain-heterogeneity and dynamics. In particular, we formulate it as a regularized optimization problem and propose effective and scalable algorithms to solve it. We perform extensive empirical evaluations on large, real scholarly data sets to validate the effectiveness and the efficiency of our method.
ELM-Based Distributed Cooperative Learning Over Networks
This paper investigates distributed cooperative learning algorithms for data processing in a network setting. Specifically, the extreme learning machine (ELM) is introduced to train a set of data distributed across several components, and each component runs a program on a subset of the entire data. In this scheme, there is no requirement for a fusion center in the network due to e.g., practical limitations, security, or privacy reasons. We first reformulate the centralized ELM training problem into a separable form among nodes with consensus constraints. Then, we solve the equivalent problem using distributed optimization tools. A new distributed cooperative learning algorithm based on ELM, called DC-ELM, is proposed. The architecture of this algorithm differs from that of some existing parallel/distributed ELMs based on MapReduce or cloud computing. We also present an online version of the proposed algorithm that can learn data sequentially in a one-by-one or chunk-by-chunk mode. The novel algorithm is well suited for potential applications such as artificial intelligence, computational biology, finance, wireless sensor networks, and so on, involving datasets that are often extremely large, high-dimensional and located on distributed data sources. We show simulation results on both synthetic and real-world data sets.
Watch and Learn: Optimizing from Revealed Preferences Feedback
A Stackelberg game is played between a leader and a follower. The leader first chooses an action, then the follower plays his best response. The goal of the leader is to pick the action that will maximize his payoff given the follower's best response. In this paper we present an approach to solving for the leader's optimal strategy in certain Stackelberg games where the follower's utility function (and thus the subsequent best response of the follower) is unknown. Stackelberg games capture, for example, the following interaction between a producer and a consumer. The producer chooses the prices of the goods he produces, and then a consumer chooses to buy a utility maximizing bundle of goods. The goal of the seller here is to set prices to maximize his profit---his revenue, minus the production cost of the purchased bundle. It is quite natural that the seller in this example should not know the buyer's utility function. However, he does have access to revealed preference feedback---he can set prices, and then observe the purchased bundle and his own profit. We give algorithms for efficiently solving, in terms of both computational and query complexity, a broad class of Stackelberg games in which the follower's utility function is unknown, using only "revealed preference" access to it. This class includes in particular the profit maximization problem, as well as the optimal tolling problem in nonatomic congestion games, when the latency functions are unknown. Surprisingly, we are able to solve these problems even though the optimization problems are non-convex in the leader's actions.
Concept Drift Detection for Streaming Data
Common statistical prediction models often require and assume stationarity in the data. However, in many practical applications, changes in the relationship of the response and predictor variables are regularly observed over time, resulting in the deterioration of the predictive performance of these models. This paper presents Linear Four Rates (LFR), a framework for detecting these concept drifts and subsequently identifying the data points that belong to the new concept (for relearning the model). Unlike conventional concept drift detection approaches, LFR can be applied to both batch and stream data; is not limited by the distribution properties of the response variable (e.g., datasets with imbalanced labels); is independent of the underlying statistical-model; and uses user-specified parameters that are intuitively comprehensible. The performance of LFR is compared to benchmark approaches using both simulated and commonly used public datasets that span the gamut of concept drift types. The results show LFR significantly outperforms benchmark approaches in terms of recall, accuracy and delay in detection of concept drifts across datasets.
Graph Connectivity in Noisy Sparse Subspace Clustering
Subspace clustering is the problem of clustering data points into a union of low-dimensional linear/affine subspaces. It is the mathematical abstraction of many important problems in computer vision, image processing and machine learning. A line of recent work (4, 19, 24, 20) provided strong theoretical guarantee for sparse subspace clustering (4), the state-of-the-art algorithm for subspace clustering, on both noiseless and noisy data sets. It was shown that under mild conditions, with high probability no two points from different subspaces are clustered together. Such guarantee, however, is not sufficient for the clustering to be correct, due to the notorious "graph connectivity problem" (15). In this paper, we investigate the graph connectivity problem for noisy sparse subspace clustering and show that a simple post-processing procedure is capable of delivering consistent clustering under certain "general position" or "restricted eigenvalue" assumptions. We also show that our condition is almost tight with adversarial noise perturbation by constructing a counter-example. These results provide the first exact clustering guarantee of noisy SSC for subspaces of dimension greater then 3.
An Online Approach to Dynamic Channel Access and Transmission Scheduling
Making judicious channel access and transmission scheduling decisions is essential for improving performance as well as energy and spectral efficiency in multichannel wireless systems. This problem has been a subject of extensive study in the past decade, and the resulting dynamic and opportunistic channel access schemes can bring potentially significant improvement over traditional schemes. However, a common and severe limitation of these dynamic schemes is that they almost always require some form of a priori knowledge of the channel statistics. A natural remedy is a learning framework, which has also been extensively studied in the same context, but a typical learning algorithm in this literature seeks only the best static policy, with performance measured by weak regret, rather than learning a good dynamic channel access policy. There is thus a clear disconnect between what an optimal channel access policy can achieve with known channel statistics that actively exploits temporal, spatial and spectral diversity, and what a typical existing learning algorithm aims for, which is the static use of a single channel devoid of diversity gain. In this paper we bridge this gap by designing learning algorithms that track known optimal or sub-optimal dynamic channel access and transmission scheduling policies, thereby yielding performance measured by a form of strong regret, the accumulated difference between the reward returned by an optimal solution when a priori information is available and that by our online algorithm. We do so in the context of two specific algorithms that appeared in [1] and [2], respectively, the former for a multiuser single-channel setting and the latter for a single-user multichannel setting. In both cases we show that our algorithms achieve sub-linear regret uniform in time and outperforms the standard weak-regret learning algorithms.
Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and Semidefinite Programming Synchronization
We consider the classic problem of establishing a statistical ranking of a set of n items given a set of inconsistent and incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis (e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose usefulness has been demonstrated in numerous applications in recent years. Its least squares solution can be approximated by either a spectral or a semidefinite programming (SDP) relaxation, followed by a rounding procedure. We perform extensive numerical simulations on both synthetic and real-world data sets, showing that our proposed method compares favorably to other algorithms from the recent literature. Existing theoretical guarantees on the group synchronization problem imply lower bounds on the largest amount of noise permissible in the ranking data while still achieving exact recovery. We propose a similar synchronization-based algorithm for the rank-aggregation problem, which integrates in a globally consistent ranking pairwise comparisons given by different rating systems on the same set of items. We also discuss the problem of semi-supervised ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP which recovers the ranks of the remaining players. Finally, synchronization-based ranking, combined with a spectral technique for the densest subgraph problem, allows one to extract locally-consistent partial rankings, in other words, to identify the rank of a small subset of players whose pairwise comparisons are less noisy than the rest of the data, which other methods are not able to identify.
EM-Based Channel Estimation from Crowd-Sourced RSSI Samples Corrupted by Noise and Interference
We propose a method for estimating channel parameters from RSSI measurements and the lost packet count, which can work in the presence of losses due to both interference and signal attenuation below the noise floor. This is especially important in the wireless networks, such as vehicular, where propagation model changes with the density of nodes. The method is based on Stochastic Expectation Maximization, where the received data is modeled as a mixture of distributions (no/low interference and strong interference), incomplete (censored) due to packet losses. The PDFs in the mixture are Gamma, according to the commonly accepted model for wireless signal and interference power. This approach leverages the loss count as additional information, hence outperforming maximum likelihood estimation, which does not use this information (ML-), for a small number of received RSSI samples. Hence, it allows inexpensive on-line channel estimation from ad-hoc collected data. The method also outperforms ML- on uncensored data mixtures, as ML- assumes that samples are from a single-mode PDF.
Discriminative Neural Sentence Modeling by Tree-Based Convolution
This paper proposes a tree-based convolutional neural network (TBCNN) for discriminative sentence modeling. Our models leverage either constituency trees or dependency trees of sentences. The tree-based convolution process extracts sentences' structural features, and these features are aggregated by max pooling. Such architecture allows short propagation paths between the output layer and underlying feature detectors, which enables effective structural feature learning and extraction. We evaluate our models on two tasks: sentiment analysis and question classification. In both experiments, TBCNN outperforms previous state-of-the-art results, including existing neural networks and dedicated feature/rule engineering. We also make efforts to visualize the tree-based convolution process, shedding light on how our models work.
Ultra-large alignments using Phylogeny-aware Profiles
Many biological questions, including the estimation of deep evolutionary histories and the detection of remote homology between protein sequences, rely upon multiple sequence alignments (MSAs) and phylogenetic trees of large datasets. However, accurate large-scale multiple sequence alignment is very difficult, especially when the dataset contains fragmentary sequences. We present UPP, an MSA method that uses a new machine learning technique - the Ensemble of Hidden Markov Models - that we propose here. UPP produces highly accurate alignments for both nucleotide and amino acid sequences, even on ultra-large datasets or datasets containing fragmentary sequences. UPP is available at https://github.com/smirarab/sepp.
Efficient Dictionary Learning via Very Sparse Random Projections
Performing signal processing tasks on compressive measurements of data has received great attention in recent years. In this paper, we extend previous work on compressive dictionary learning by showing that more general random projections may be used, including sparse ones. More precisely, we examine compressive K-means clustering as a special case of compressive dictionary learning and give theoretical guarantees for its performance for a very general class of random projections. We then propose a memory and computation efficient dictionary learning algorithm, specifically designed for analyzing large volumes of high-dimensional data, which learns the dictionary from very sparse random projections. Experimental results demonstrate that our approach allows for reduction of computational complexity and memory/data access, with controllable loss in accuracy.
Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding
This paper presents a new semi-supervised framework with convolutional neural networks (CNNs) for text categorization. Unlike the previous approaches that rely on word embeddings, our method learns embeddings of small text regions from unlabeled data for integration into a supervised CNN. The proposed scheme for embedding learning is based on the idea of two-view semi-supervised learning, which is intended to be useful for the task of interest even though the training is done on unlabeled data. Our models achieve better results than previous approaches on sentiment classification and topic classification tasks.
A Probabilistic $\ell_1$ Method for Clustering High Dimensional Data
In general, the clustering problem is NP-hard, and global optimality cannot be established for non-trivial instances. For high-dimensional data, distance-based methods for clustering or classification face an additional difficulty, the unreliability of distances in very high-dimensional spaces. We propose a distance-based iterative method for clustering data in very high-dimensional space, using the $\ell_1$-metric that is less sensitive to high dimensionality than the Euclidean distance. For $K$ clusters in $\mathbb{R}^n$, the problem decomposes to $K$ problems coupled by probabilities, and an iteration reduces to finding $Kn$ weighted medians of points on a line. The complexity of the algorithm is linear in the dimension of the data space, and its performance was observed to improve significantly as the dimension increases.
Early Stopping is Nonparametric Variational Inference
We show that unconverged stochastic gradient descent can be interpreted as a procedure that samples from a nonparametric variational approximate posterior distribution. This distribution is implicitly defined as the transformation of an initial distribution by a sequence of optimization updates. By tracking the change in entropy over this sequence of transformations during optimization, we form a scalable, unbiased estimate of the variational lower bound on the log marginal likelihood. We can use this bound to optimize hyperparameters instead of using cross-validation. This Bayesian interpretation of SGD suggests improved, overfitting-resistant optimization procedures, and gives a theoretical foundation for popular tricks such as early stopping and ensembling. We investigate the properties of this marginal likelihood estimator on neural network models.
PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent
Stochastic Dual Coordinate Descent (SDCD) has become one of the most efficient ways to solve the family of $\ell_2$-regularized empirical risk minimization problems, including linear SVM, logistic regression, and many others. The vanilla implementation of DCD is quite slow; however, by maintaining primal variables while updating dual variables, the time complexity of SDCD can be significantly reduced. Such a strategy forms the core algorithm in the widely-used LIBLINEAR package. In this paper, we parallelize the SDCD algorithms in LIBLINEAR. In recent research, several synchronized parallel SDCD algorithms have been proposed, however, they fail to achieve good speedup in the shared memory multi-core setting. In this paper, we propose a family of asynchronous stochastic dual coordinate descent algorithms (ASDCD). Each thread repeatedly selects a random dual variable and conducts coordinate updates using the primal variables that are stored in the shared memory. We analyze the convergence properties when different locking/atomic mechanisms are applied. For implementation with atomic operations, we show linear convergence under mild conditions. For implementation without any atomic operations or locking, we present the first {\it backward error analysis} for ASDCD under the multi-core environment, showing that the converged solution is the exact solution for a primal problem with perturbed regularizer. Experimental results show that our methods are much faster than previous parallel coordinate descent solvers.
Information Recovery from Pairwise Measurements
This paper is concerned with jointly recovering $n$ node-variables $\left\{ x_{i}\right\}_{1\leq i\leq n}$ from a collection of pairwise difference measurements. Imagine we acquire a few observations taking the form of $x_{i}-x_{j}$; the observation pattern is represented by a measurement graph $\mathcal{G}$ with an edge set $\mathcal{E}$ such that $x_{i}-x_{j}$ is observed if and only if $(i,j)\in\mathcal{E}$. To account for noisy measurements in a general manner, we model the data acquisition process by a set of channels with given input/output transition measures. Employing information-theoretic tools applied to channel decoding problems, we develop a \emph{unified} framework to characterize the fundamental recovery criterion, which accommodates general graph structures, alphabet sizes, and channel transition measures. In particular, our results isolate a family of \emph{minimum} \emph{channel divergence measures} to characterize the degree of measurement corruption, which together with the size of the minimum cut of $\mathcal{G}$ dictates the feasibility of exact information recovery. For various homogeneous graphs, the recovery condition depends almost only on the edge sparsity of the measurement graph irrespective of other graphical metrics; alternatively, the minimum sample complexity required for these graphs scales like \[ \text{minimum sample complexity }\asymp\frac{n\log n}{\mathsf{Hel}_{1/2}^{\min}} \] for certain information metric $\mathsf{Hel}_{1/2}^{\min}$ defined in the main text, as long as the alphabet size is not super-polynomial in $n$. We apply our general theory to three concrete applications, including the stochastic block model, the outlier model, and the haplotype assembly problem. Our theory leads to order-wise tight recovery conditions for all these scenarios.
Totally Corrective Boosting with Cardinality Penalization
We propose a totally corrective boosting algorithm with explicit cardinality regularization. The resulting combinatorial optimization problems are not known to be efficiently solvable with existing classical methods, but emerging quantum optimization technology gives hope for achieving sparser models in practice. In order to demonstrate the utility of our algorithm, we use a distributed classical heuristic optimizer as a stand-in for quantum hardware. Even though this evaluation methodology incurs large time and resource costs on classical computing machinery, it allows us to gauge the potential gains in generalization performance and sparsity of the resulting boosted ensembles. Our experimental results on public data sets commonly used for benchmarking of boosting algorithms decidedly demonstrate the existence of such advantages. If actual quantum optimization were to be used with this algorithm in the future, we would expect equivalent or superior results at much smaller time and energy costs during training. Moreover, studying cardinality-penalized boosting also sheds light on why unregularized boosting algorithms with early stopping often yield better results than their counterparts with explicit convex regularization: Early stopping performs suboptimal cardinality regularization. The results that we present here indicate it is beneficial to explicitly solve the combinatorial problem still left open at early termination.
Deep Recurrent Neural Networks for Acoustic Modelling
We present a novel deep Recurrent Neural Network (RNN) model for acoustic modelling in Automatic Speech Recognition (ASR). We term our contribution as a TC-DNN-BLSTM-DNN model, the model combines a Deep Neural Network (DNN) with Time Convolution (TC), followed by a Bidirectional Long Short-Term Memory (BLSTM), and a final DNN. The first DNN acts as a feature processor to our model, the BLSTM then generates a context from the sequence acoustic signal, and the final DNN takes the context and models the posterior probabilities of the acoustic states. We achieve a 3.47 WER on the Wall Street Journal (WSJ) eval92 task or more than 8% relative improvement over the baseline DNN models.
Transferring Knowledge from a RNN to a DNN
Deep Neural Network (DNN) acoustic models have yielded many state-of-the-art results in Automatic Speech Recognition (ASR) tasks. More recently, Recurrent Neural Network (RNN) models have been shown to outperform DNNs counterparts. However, state-of-the-art DNN and RNN models tend to be impractical to deploy on embedded systems with limited computational capacity. Traditionally, the approach for embedded platforms is to either train a small DNN directly, or to train a small DNN that learns the output distribution of a large DNN. In this paper, we utilize a state-of-the-art RNN to transfer knowledge to small DNN. We use the RNN model to generate soft alignments and minimize the Kullback-Leibler divergence against the small DNN. The small DNN trained on the soft RNN alignments achieved a 3.93 WER on the Wall Street Journal (WSJ) eval92 task compared to a baseline 4.54 WER or more than 13% relative improvement.
Efficient SDP Inference for Fully-connected CRFs Based on Low-rank Decomposition
Conditional Random Fields (CRF) have been widely used in a variety of computer vision tasks. Conventional CRFs typically define edges on neighboring image pixels, resulting in a sparse graph such that efficient inference can be performed. However, these CRFs fail to model long-range contextual relationships. Fully-connected CRFs have thus been proposed. While there are efficient approximate inference methods for such CRFs, usually they are sensitive to initialization and make strong assumptions. In this work, we develop an efficient, yet general algorithm for inference on fully-connected CRFs. The algorithm is based on a scalable SDP algorithm and the low- rank approximation of the similarity/kernel matrix. The core of the proposed algorithm is a tailored quasi-Newton method that takes advantage of the low-rank matrix approximation when solving the specialized SDP dual problem. Experiments demonstrate that our method can be applied on fully-connected CRFs that cannot be solved previously, such as pixel-level image co-segmentation.
Bidirectional Recurrent Neural Networks as Generative Models - Reconstructing Gaps in Time Series
Bidirectional recurrent neural networks (RNN) are trained to predict both in the positive and negative time directions simultaneously. They have not been used commonly in unsupervised tasks, because a probabilistic interpretation of the model has been difficult. Recently, two different frameworks, GSN and NADE, provide a connection between reconstruction and probabilistic modeling, which makes the interpretation possible. As far as we know, neither GSN or NADE have been studied in the context of time series before. As an example of an unsupervised task, we study the problem of filling in gaps in high-dimensional time series with complex dynamics. Although unidirectional RNNs have recently been trained successfully to model such time series, inference in the negative time direction is non-trivial. We propose two probabilistic interpretations of bidirectional RNNs that can be used to reconstruct missing gaps efficiently. Our experiments on text data show that both proposed methods are much more accurate than unidirectional reconstructions, although a bit less accurate than a computationally complex bidirectional Bayesian inference on the unidirectional RNN. We also provide results on music data for which the Bayesian inference is computationally infeasible, demonstrating the scalability of the proposed methods.
Tensor machines for learning target-specific polynomial features
Recent years have demonstrated that using random feature maps can significantly decrease the training and testing times of kernel-based algorithms without significantly lowering their accuracy. Regrettably, because random features are target-agnostic, typically thousands of such features are necessary to achieve acceptable accuracies. In this work, we consider the problem of learning a small number of explicit polynomial features. Our approach, named Tensor Machines, finds a parsimonious set of features by optimizing over the hypothesis class introduced by Kar and Karnick for random feature maps in a target-specific manner. Exploiting a natural connection between polynomials and tensors, we provide bounds on the generalization error of Tensor Machines. Empirically, Tensor Machines behave favorably on several real-world datasets compared to other state-of-the-art techniques for learning polynomial features, and deliver significantly more parsimonious models.
Autonomous CRM Control via CLV Approximation with Deep Reinforcement Learning in Discrete and Continuous Action Space
The paper outlines a framework for autonomous control of a CRM (customer relationship management) system. First, it explores how a modified version of the widely accepted Recency-Frequency-Monetary Value system of metrics can be used to define the state space of clients or donors. Second, it describes a procedure to determine the optimal direct marketing action in discrete and continuous action space for the given individual, based on his position in the state space. The procedure involves the use of model-free Q-learning to train a deep neural network that relates a client's position in the state space to rewards associated with possible marketing actions. The estimated value function over the client state space can be interpreted as customer lifetime value, and thus allows for a quick plug-in estimation of CLV for a given client. Experimental results are presented, based on KDD Cup 1998 mailing dataset of donation solicitations.
Data Mining for Prediction of Human Performance Capability in the Software-Industry
The recruitment of new personnel is one of the most essential business processes which affect the quality of human capital within any company. It is highly essential for the companies to ensure the recruitment of right talent to maintain a competitive edge over the others in the market. However IT companies often face a problem while recruiting new people for their ongoing projects due to lack of a proper framework that defines a criteria for the selection process. In this paper we aim to develop a framework that would allow any project manager to take the right decision for selecting new talent by correlating performance parameters with the other domain-specific attributes of the candidates. Also, another important motivation behind this project is to check the validity of the selection procedure often followed by various big companies in both public and private sectors which focus only on academic scores, GPA/grades of students from colleges and other academic backgrounds. We test if such a decision will produce optimal results in the industry or is there a need for change that offers a more holistic approach to recruitment of new talent in the software companies. The scope of this work extends beyond the IT domain and a similar procedure can be adopted to develop a recruitment framework in other fields as well. Data-mining techniques provide useful information from the historical projects depending on which the hiring-manager can make decisions for recruiting high-quality workforce. This study aims to bridge this hiatus by developing a data-mining framework based on an ensemble-learning technique to refocus on the criteria for personnel selection. The results from this research clearly demonstrated that there is a need to refocus on the selection-criteria for quality objectives.
Adaptive Diffusion Schemes for Heterogeneous Networks
In this paper, we deal with distributed estimation problems in diffusion networks with heterogeneous nodes, i.e., nodes that either implement different adaptive rules or differ in some other aspect such as the filter structure or length, or step size. Although such heterogeneous networks have been considered from the first works on diffusion networks, obtaining practical and robust schemes to adaptively adjust the combiners in different scenarios is still an open problem. In this paper, we study a diffusion strategy specially designed and suited to heterogeneous networks. Our approach is based on two key ingredients: 1) the adaptation and combination phases are completely decoupled, so that network nodes keep purely local estimations at all times; and 2) combiners are adapted to minimize estimates of the network mean-square-error. Our scheme is compared with the standard Adapt-then-Combine scheme and theoretically analyzed using energy conservation arguments. Several experiments involving networks with heterogeneous nodes show that the proposed decoupled Adapt-then-Combine approach with adaptive combiners outperforms other state-of-the-art techniques, becoming a competitive approach in these scenarios.
Pixel-wise Deep Learning for Contour Detection
We address the problem of contour detection via per-pixel classifications of edge point. To facilitate the process, the proposed approach leverages with DenseNet, an efficient implementation of multiscale convolutional neural networks (CNNs), to extract an informative feature vector for each pixel and uses an SVM classifier to accomplish contour detection. In the experiment of contour detection, we look into the effectiveness of combining per-pixel features from different CNN layers and verify their performance on BSDS500.
A Chaotic Dynamical System that Paints
Can a dynamical system paint masterpieces such as Da Vinci's Mona Lisa or Monet's Water Lilies? Moreover, can this dynamical system be chaotic in the sense that although the trajectories are sensitive to initial conditions, the same painting is created every time? Setting aside the creative aspect of painting a picture, in this work, we develop a novel algorithm to reproduce paintings and photographs. Combining ideas from ergodic theory and control theory, we construct a chaotic dynamical system with predetermined statistical properties. If one makes the spatial distribution of colors in the picture the target distribution, akin to a human, the algorithm first captures large scale features and then goes on to refine small scale features. Beyond reproducing paintings, this approach is expected to have a wide variety of applications such as uncertainty quantification, sampling for efficient inference in scalable machine learning for big data, and developing effective strategies for search and rescue. In particular, our preliminary studies demonstrate that this algorithm provides significant acceleration and higher accuracy than competing methods for Markov Chain Monte Carlo (MCMC).
The Computational Power of Optimization in Online Learning
We consider the fundamental problem of prediction with expert advice where the experts are "optimizable": there is a black-box optimization oracle that can be used to compute, in constant time, the leading expert in retrospect at any point in time. In this setting, we give a novel online algorithm that attains vanishing regret with respect to $N$ experts in total $\widetilde{O}(\sqrt{N})$ computation time. We also give a lower bound showing that this running time cannot be improved (up to log factors) in the oracle model, thereby exhibiting a quadratic speedup as compared to the standard, oracle-free setting where the required time for vanishing regret is $\widetilde{\Theta}(N)$. These results demonstrate an exponential gap between the power of optimization in online learning and its power in statistical learning: in the latter, an optimization oracle---i.e., an efficient empirical risk minimizer---allows to learn a finite hypothesis class of size $N$ in time $O(\log{N})$. We also study the implications of our results to learning in repeated zero-sum games, in a setting where the players have access to oracles that compute, in constant time, their best-response to any mixed strategy of their opponent. We show that the runtime required for approximating the minimax value of the game in this setting is $\widetilde{\Theta}(\sqrt{N})$, yielding again a quadratic improvement upon the oracle-free setting, where $\widetilde{\Theta}(N)$ is known to be tight.
Residential Demand Response Applications Using Batch Reinforcement Learning
Driven by recent advances in batch Reinforcement Learning (RL), this paper contributes to the application of batch RL to demand response. In contrast to conventional model-based approaches, batch RL techniques do not require a system identification step, which makes them more suitable for a large-scale implementation. This paper extends fitted Q-iteration, a standard batch RL technique, to the situation where a forecast of the exogenous data is provided. In general, batch RL techniques do not rely on expert knowledge on the system dynamics or the solution. However, if some expert knowledge is provided, it can be incorporated by using our novel policy adjustment method. Finally, we tackle the challenge of finding an open-loop schedule required to participate in the day-ahead market. We propose a model-free Monte-Carlo estimator method that uses a metric to construct artificial trajectories and we illustrate this method by finding the day-ahead schedule of a heat-pump thermostat. Our experiments show that batch RL techniques provide a valuable alternative to model-based controllers and that they can be used to construct both closed-loop and open-loop policies.
Detecting Falls with X-Factor Hidden Markov Models
Identification of falls while performing normal activities of daily living (ADL) is important to ensure personal safety and well-being. However, falling is a short term activity that occurs infrequently. This poses a challenge to traditional classification algorithms, because there may be very little training data for falls (or none at all). This paper proposes an approach for the identification of falls using a wearable device in the absence of training data for falls but with plentiful data for normal ADL. We propose three `X-Factor' Hidden Markov Model (XHMMs) approaches. The XHMMs model unseen falls using "inflated" output covariances (observation models). To estimate the inflated covariances, we propose a novel cross validation method to remove "outliers" from the normal ADL that serve as proxies for the unseen falls and allow learning the XHMMs using only normal activities. We tested the proposed XHMM approaches on two activity recognition datasets and show high detection rates for falls in the absence of fall-specific training data. We show that the traditional method of choosing a threshold based on maximum of negative of log-likelihood to identify unseen falls is ill-posed for this problem. We also show that supervised classification methods perform poorly when very limited fall data are available during the training phase.
Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction
Recent approaches to distributed model fitting rely heavily on consensus ADMM, where each node solves small sub-problems using only local data. We propose iterative methods that solve {\em global} sub-problems over an entire distributed dataset. This is possible using transpose reduction strategies that allow a single node to solve least-squares over massive datasets without putting all the data in one place. This results in simple iterative methods that avoid the expensive inner loops required for consensus methods. To demonstrate the efficiency of this approach, we fit linear classifiers and sparse linear models to datasets over 5 Tb in size using a distributed implementation with over 7000 cores in far less time than previous approaches.
Projective simulation with generalization
The ability to generalize is an important feature of any intelligent agent. Not only because it may allow the agent to cope with large amounts of data, but also because in some environments, an agent with no generalization capabilities cannot learn. In this work we outline several criteria for generalization, and present a dynamic and autonomous machinery that enables projective simulation agents to meaningfully generalize. Projective simulation, a novel, physical approach to artificial intelligence, was recently shown to perform well in standard reinforcement learning problems, with applications in advanced robotics as well as quantum experiments. Both the basic projective simulation model and the presented generalization machinery are based on very simple principles. This allows us to provide a full analytical analysis of the agent's performance and to illustrate the benefit the agent gains by generalizing. Specifically, we show that already in basic (but extreme) environments, learning without generalization may be impossible, and demonstrate how the presented generalization machinery enables the projective simulation agent to learn.
Kernel Manifold Alignment
We introduce a kernel method for manifold alignment (KEMA) and domain adaptation that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a sort of manifold unfolding plus alignment, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible which allows transfer across-domains and data synthesis. We also present a reduced-rank version for computational efficiency and discuss the generalization performance of KEMA under Rademacher principles of stability. KEMA exhibits very good performance over competing methods in synthetic examples, visual object recognition and recognition of facial expressions tasks.
When Face Recognition Meets with Deep Learning: an Evaluation of Convolutional Neural Networks for Face Recognition
Deep learning, in particular Convolutional Neural Network (CNN), has achieved promising results in face recognition recently. However, it remains an open question: why CNNs work well and how to design a 'good' architecture. The existing works tend to focus on reporting CNN architectures that work well for face recognition rather than investigate the reason. In this work, we conduct an extensive evaluation of CNN-based face recognition systems (CNN-FRS) on a common ground to make our work easily reproducible. Specifically, we use public database LFW (Labeled Faces in the Wild) to train CNNs, unlike most existing CNNs trained on private databases. We propose three CNN architectures which are the first reported architectures trained using LFW data. This paper quantitatively compares the architectures of CNNs and evaluate the effect of different implementation choices. We identify several useful properties of CNN-FRS. For instance, the dimensionality of the learned features can be significantly reduced without adverse effect on face recognition accuracy. In addition, traditional metric learning method exploiting CNN-learned features is evaluated. Experiments show two crucial factors to good CNN-FRS performance are the fusion of multiple CNNs and metric learning. To make our work reproducible, source code and models will be made publicly available.
Deciding when to stop: Efficient stopping of active learning guided drug-target prediction
Active learning has shown to reduce the number of experiments needed to obtain high-confidence drug-target predictions. However, in order to actually save experiments using active learning, it is crucial to have a method to evaluate the quality of the current prediction and decide when to stop the experimentation process. Only by applying reliable stoping criteria to active learning, time and costs in the experimental process can be actually saved. We compute active learning traces on simulated drug-target matrices in order to learn a regression model for the accuracy of the active learner. By analyzing the performance of the regression model on simulated data, we design stopping criteria for previously unseen experimental matrices. We demonstrate on four previously characterized drug effect data sets that applying the stopping criteria can result in upto 40% savings of the total experiments for highly accurate predictions.
A Group Theoretic Perspective on Unsupervised Deep Learning
Why does Deep Learning work? What representations does it capture? How do higher-order representations emerge? We study these questions from the perspective of group theory, thereby opening a new approach towards a theory of Deep learning. One factor behind the recent resurgence of the subject is a key algorithmic step called {\em pretraining}: first search for a good generative model for the input samples, and repeat the process one layer at a time. We show deeper implications of this simple principle, by establishing a connection with the interplay of orbits and stabilizers of group actions. Although the neural networks themselves may not form groups, we show the existence of {\em shadow} groups whose elements serve as close approximations. Over the shadow groups, the pre-training step, originally introduced as a mechanism to better initialize a network, becomes equivalent to a search for features with minimal orbits. Intuitively, these features are in a way the {\em simplest}. Which explains why a deep learning network learns simple features first. Next, we show how the same principle, when repeated in the deeper layers, can capture higher order representations, and why representation complexity increases as the layers get deeper.
Unsupervised Feature Learning from Temporal Data
Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.
Learning Arbitrary Statistical Mixtures of Discrete Distributions
We study the problem of learning from unlabeled samples very general statistical mixture models on large finite sets. Specifically, the model to be learned, $\vartheta$, is a probability distribution over probability distributions $p$, where each such $p$ is a probability distribution over $[n] = \{1,2,\dots,n\}$. When we sample from $\vartheta$, we do not observe $p$ directly, but only indirectly and in very noisy fashion, by sampling from $[n]$ repeatedly, independently $K$ times from the distribution $p$. The problem is to infer $\vartheta$ to high accuracy in transportation (earthmover) distance. We give the first efficient algorithms for learning this mixture model without making any restricting assumptions on the structure of the distribution $\vartheta$. We bound the quality of the solution as a function of the size of the samples $K$ and the number of samples used. Our model and results have applications to a variety of unsupervised learning scenarios, including learning topic models and collaborative filtering.
Maximum Entropy Linear Manifold for Learning Discriminative Low-dimensional Representation
Representation learning is currently a very hot topic in modern machine learning, mostly due to the great success of the deep learning methods. In particular low-dimensional representation which discriminates classes can not only enhance the classification procedure, but also make it faster, while contrary to the high-dimensional embeddings can be efficiently used for visual based exploratory data analysis. In this paper we propose Maximum Entropy Linear Manifold (MELM), a multidimensional generalization of Multithreshold Entropy Linear Classifier model which is able to find a low-dimensional linear data projection maximizing discriminativeness of projected classes. As a result we obtain a linear embedding which can be used for classification, class aware dimensionality reduction and data visualization. MELM provides highly discriminative 2D projections of the data which can be used as a method for constructing robust classifiers. We provide both empirical evaluation as well as some interesting theoretical properties of our objective function such us scale and affine transformation invariance, connections with PCA and bounding of the expected balanced accuracy error.
Gradient of Probability Density Functions based Contrasts for Blind Source Separation (BSS)
The article derives some novel independence measures and contrast functions for Blind Source Separation (BSS) application. For the $k^{th}$ order differentiable multivariate functions with equal hyper-volumes (region bounded by hyper-surfaces) and with a constraint of bounded support for $k>1$, it proves that equality of any $k^{th}$ order derivatives implies equality of the functions. The difference between product of marginal Probability Density Functions (PDFs) and joint PDF of a random vector is defined as Function Difference (FD) of a random vector. Assuming the PDFs are $k^{th}$ order differentiable, the results on generalized functions are applied to the independence condition. This brings new sets of independence measures and BSS contrasts based on the $L^p$-Norm, $ p \geq 1$ of - FD, gradient of FD (GFD) and Hessian of FD (HFD). Instead of a conventional two stage indirect estimation method for joint PDF based BSS contrast estimation, a single stage direct estimation of the contrasts is desired. The article targets both the efficient estimation of the proposed contrasts and extension of the potential theory for an information field. The potential theory has a concept of reference potential and it is used to derive closed form expression for the relative analysis of potential field. Analogous to it, there are introduced concepts of Reference Information Potential (RIP) and Cross Reference Information Potential (CRIP) based on the potential due to kernel functions placed at selected sample points as basis in kernel methods. The quantities are used to derive closed form expressions for information field analysis using least squares. The expressions are used to estimate $L^2$-Norm of FD and $L^2$-Norm of GFD based contrasts.
Diffusion Component Analysis: Unraveling Functional Topology in Biological Networks
Complex biological systems have been successfully modeled by biochemical and genetic interaction networks, typically gathered from high-throughput (HTP) data. These networks can be used to infer functional relationships between genes or proteins. Using the intuition that the topological role of a gene in a network relates to its biological function, local or diffusion based "guilt-by-association" and graph-theoretic methods have had success in inferring gene functions. Here we seek to improve function prediction by integrating diffusion-based methods with a novel dimensionality reduction technique to overcome the incomplete and noisy nature of network data. In this paper, we introduce diffusion component analysis (DCA), a framework that plugs in a diffusion model and learns a low-dimensional vector representation of each node to encode the topological properties of a network. As a proof of concept, we demonstrate DCA's substantial improvement over state-of-the-art diffusion-based approaches in predicting protein function from molecular interaction networks. Moreover, our DCA framework can integrate multiple networks from heterogeneous sources, consisting of genomic information, biochemical experiments and other resources, to even further improve function prediction. Yet another layer of performance gain is achieved by integrating the DCA framework with support vector machines that take our node vector representations as features. Overall, our DCA framework provides a novel representation of nodes in a network that can be used as a plug-in architecture to other machine learning algorithms to decipher topological properties of and obtain novel insights into interactomes.
Performance measures for classification systems with rejection
Classifiers with rejection are essential in real-world applications where misclassifications and their effects are critical. However, if no problem specific cost function is defined, there are no established measures to assess the performance of such classifiers. We introduce a set of desired properties for performance measures for classifiers with rejection, based on which we propose a set of three performance measures for the evaluation of the performance of classifiers with rejection that satisfy the desired properties. The nonrejected accuracy measures the ability of the classifier to accurately classify nonrejected samples; the classification quality measures the correct decision making of the classifier with rejector; and the rejection quality measures the ability to concentrate all misclassified samples onto the set of rejected samples. From the measures, we derive the concept of relative optimality that allows us to connect the measures to a family of cost functions that take into account the trade-off between rejection and misclassification. We illustrate the use of the proposed performance measures on classifiers with rejection applied to synthetic and real-world data.
A Deep Embedding Model for Co-occurrence Learning
Co-occurrence Data is a common and important information source in many areas, such as the word co-occurrence in the sentences, friends co-occurrence in social networks and products co-occurrence in commercial transaction data, etc, which contains rich correlation and clustering information about the items. In this paper, we study co-occurrence data using a general energy-based probabilistic model, and we analyze three different categories of energy-based model, namely, the $L_1$, $L_2$ and $L_k$ models, which are able to capture different levels of dependency in the co-occurrence data. We also discuss how several typical existing models are related to these three types of energy models, including the Fully Visible Boltzmann Machine (FVBM) ($L_2$), Matrix Factorization ($L_2$), Log-BiLinear (LBL) models ($L_2$), and the Restricted Boltzmann Machine (RBM) model ($L_k$). Then, we propose a Deep Embedding Model (DEM) (an $L_k$ model) from the energy model in a \emph{principled} manner. Furthermore, motivated by the observation that the partition function in the energy model is intractable and the fact that the major objective of modeling the co-occurrence data is to predict using the conditional probability, we apply the \emph{maximum pseudo-likelihood} method to learn DEM. In consequence, the developed model and its learning method naturally avoid the above difficulties and can be easily used to compute the conditional probability in prediction. Interestingly, our method is equivalent to learning a special structured deep neural network using back-propagation and a special sampling strategy, which makes it scalable on large-scale datasets. Finally, in the experiments, we show that the DEM can achieve comparable or better results than state-of-the-art methods on datasets across several application domains.
Quick sensitivity analysis for incremental data modification and its application to leave-one-out CV in linear classification problems
We introduce a novel sensitivity analysis framework for large scale classification problems that can be used when a small number of instances are incrementally added or removed. For quickly updating the classifier in such a situation, incremental learning algorithms have been intensively studied in the literature. Although they are much more efficient than solving the optimization problem from scratch, their computational complexity yet depends on the entire training set size. It means that, if the original training set is large, completely solving an incremental learning problem might be still rather expensive. To circumvent this computational issue, we propose a novel framework that allows us to make an inference about the updated classifier without actually re-optimizing it. Specifically, the proposed framework can quickly provide a lower and an upper bounds of a quantity on the unknown updated classifier. The main advantage of the proposed framework is that the computational cost of computing these bounds depends only on the number of updated instances. This property is quite advantageous in a typical sensitivity analysis task where only a small number of instances are updated. In this paper we demonstrate that the proposed framework is applicable to various practical sensitivity analysis tasks, and the bounds provided by the framework are often sufficiently tight for making desired inferences.
Gradual Training Method for Denoising Auto Encoders
Stacked denoising auto encoders (DAEs) are well known to learn useful deep representations, which can be used to improve supervised training by initializing a deep network. We investigate a training scheme of a deep DAE, where DAE layers are gradually added and keep adapting as additional layers are added. We show that in the regime of mid-sized datasets, this gradual training provides a small but consistent improvement over stacked training in both reconstruction quality and classification error over stacked training on MNIST and CIFAR datasets.
Deep Transform: Cocktail Party Source Separation via Complex Convolution in a Deep Neural Network
Convolutional deep neural networks (DNN) are state of the art in many engineering problems but have not yet addressed the issue of how to deal with complex spectrograms. Here, we use circular statistics to provide a convenient probabilistic estimate of spectrogram phase in a complex convolutional DNN. In a typical cocktail party source separation scenario, we trained a convolutional DNN to re-synthesize the complex spectrograms of two source speech signals given a complex spectrogram of the monaural mixture - a discriminative deep transform (DT). We then used this complex convolutional DT to obtain probabilistic estimates of the magnitude and phase components of the source spectrograms. Our separation results are on a par with equivalent binary-mask based non-complex separation approaches.
Classification with Extreme Learning Machine and Ensemble Algorithms Over Randomly Partitioned Data
In this age of Big Data, machine learning based data mining methods are extensively used to inspect large scale data sets. Deriving applicable predictive modeling from these type of data sets is a challenging obstacle because of their high complexity. Opportunity with high data availability levels, automated classification of data sets has become a critical and complicated function. In this paper, the power of applying MapReduce based Distributed AdaBoosting of Extreme Learning Machine (ELM) are explored to build reliable predictive bag of classification models. Thus, (i) dataset ensembles are build; (ii) ELM algorithm is used to build weak classification models; and (iii) build a strong classification model from a set of weak classification models. This training model is applied to the publicly available knowledge discovery and data mining datasets.
Robobarista: Object Part based Transfer of Manipulation Trajectories from Crowd-sourcing in 3D Pointclouds
There is a large variety of objects and appliances in human environments, such as stoves, coffee dispensers, juice extractors, and so on. It is challenging for a roboticist to program a robot for each of these object types and for each of their instantiations. In this work, we present a novel approach to manipulation planning based on the idea that many household objects share similarly-operated object parts. We formulate the manipulation planning as a structured prediction problem and design a deep learning model that can handle large noise in the manipulation demonstrations and learns features from three different modalities: point-clouds, language and trajectory. In order to collect a large number of manipulation demonstrations for different objects, we developed a new crowd-sourcing platform called Robobarista. We test our model on our dataset consisting of 116 objects with 249 parts along with 250 language instructions, for which there are 1225 crowd-sourced manipulation demonstrations. We further show that our robot can even manipulate objects it has never seen before.
Convex Learning of Multiple Tasks and their Structure
Reducing the amount of human supervision is a key problem in machine learning and a natural approach is that of exploiting the relations (structure) among different tasks. This is the idea at the core of multi-task learning. In this context a fundamental question is how to incorporate the tasks structure in the learning problem.We tackle this question by studying a general computational framework that allows to encode a-priori knowledge of the tasks structure in the form of a convex penalty; in this setting a variety of previously proposed methods can be recovered as special cases, including linear and non-linear approaches. Within this framework, we show that tasks and their structure can be efficiently learned considering a convex optimization problem that can be approached by means of block coordinate methods such as alternating minimization and for which we prove convergence to the global minimum.
Learning Multiple Visual Tasks while Discovering their Structure
Multi-task learning is a natural approach for computer vision applications that require the simultaneous solution of several distinct but related problems, e.g. object detection, classification, tracking of multiple agents, or denoising, to name a few. The key idea is that exploring task relatedness (structure) can lead to improved performances. In this paper, we propose and study a novel sparse, non-parametric approach exploiting the theory of Reproducing Kernel Hilbert Spaces for vector-valued functions. We develop a suitable regularization framework which can be formulated as a convex optimization problem, and is provably solvable using an alternating minimization approach. Empirical tests show that the proposed method compares favorably to state of the art techniques and further allows to recover interpretable structures, a problem of interest in its own right.
Real-world Object Recognition with Off-the-shelf Deep Conv Nets: How Many Objects can iCub Learn?
The ability to visually recognize objects is a fundamental skill for robotics systems. Indeed, a large variety of tasks involving manipulation, navigation or interaction with other agents, deeply depends on the accurate understanding of the visual scene. Yet, at the time being, robots are lacking good visual perceptual systems, which often become the main bottleneck preventing the use of autonomous agents for real-world applications. Lately in computer vision, systems that learn suitable visual representations and based on multi-layer deep convolutional networks are showing remarkable performance in tasks such as large-scale visual recognition and image retrieval. To this regard, it is natural to ask whether such remarkable performance would generalize also to the robotic setting. In this paper we investigate such possibility, while taking further steps in developing a computational vision system to be embedded on a robotic platform, the iCub humanoid robot. In particular, we release a new dataset ({\sc iCubWorld28}) that we use as a benchmark to address the question: {\it how many objects can iCub recognize?} Our study is developed in a learning framework which reflects the typical visual experience of a humanoid robot like the iCub. Experiments shed interesting insights on the strength and weaknesses of current computer vision approaches applied in real robotic settings.
Tight Bounds on Low-degree Spectral Concentration of Submodular and XOS functions
Submodular and fractionally subadditive (or equivalently XOS) functions play a fundamental role in combinatorial optimization, algorithmic game theory and machine learning. Motivated by learnability of these classes of functions from random examples, we consider the question of how well such functions can be approximated by low-degree polynomials in $\ell_2$ norm over the uniform distribution. This question is equivalent to understanding of the concentration of Fourier weight on low-degree coefficients, a central concept in Fourier analysis. We show that 1. For any submodular function $f:\{0,1\}^n \rightarrow [0,1]$, there is a polynomial of degree $O(\log (1/\epsilon) / \epsilon^{4/5})$ approximating $f$ within $\epsilon$ in $\ell_2$, and there is a submodular function that requires degree $\Omega(1/\epsilon^{4/5})$. 2. For any XOS function $f:\{0,1\}^n \rightarrow [0,1]$, there is a polynomial of degree $O(1/\epsilon)$ and there exists an XOS function that requires degree $\Omega(1/\epsilon)$. This improves on previous approaches that all showed an upper bound of $O(1/\epsilon^2)$ for submodular and XOS functions. The best previous lower bound was $\Omega(1/\epsilon^{2/3})$ for monotone submodular functions. Our techniques reveal new structural properties of submodular and XOS functions and the upper bounds lead to nearly optimal PAC learning algorithms for these classes of functions.
HHCART: An Oblique Decision Tree
Decision trees are a popular technique in statistical data classification. They recursively partition the feature space into disjoint sub-regions until each sub-region becomes homogeneous with respect to a particular class. The basic Classification and Regression Tree (CART) algorithm partitions the feature space using axis parallel splits. When the true decision boundaries are not aligned with the feature axes, this approach can produce a complicated boundary structure. Oblique decision trees use oblique decision boundaries to potentially simplify the boundary structure. The major limitation of this approach is that the tree induction algorithm is computationally expensive. In this article we present a new decision tree algorithm, called HHCART. The method utilizes a series of Householder matrices to reflect the training data at each node during the tree construction. Each reflection is based on the directions of the eigenvectors from each classes' covariance matrix. Considering axis parallel splits in the reflected training data provides an efficient way of finding oblique splits in the unreflected training data. Experimental results show that the accuracy and size of the HHCART trees are comparable with some benchmark methods in the literature. The appealing feature of HHCART is that it can handle both qualitative and quantitative features in the same oblique split.
Regret vs. Communication: Distributed Stochastic Multi-Armed Bandits and Beyond
In this paper, we consider the distributed stochastic multi-armed bandit problem, where a global arm set can be accessed by multiple players independently. The players are allowed to exchange their history of observations with each other at specific points in time. We study the relationship between regret and communication. When the time horizon is known, we propose the Over-Exploration strategy, which only requires one-round communication and whose regret does not scale with the number of players. When the time horizon is unknown, we measure the frequency of communication through a new notion called the density of the communication set, and give an exact characterization of the interplay between regret and communication. Specifically, a lower bound is established and stable strategies that match the lower bound are developed. The results and analyses in this paper are specific but can be translated into more general settings.
Learning to Compare Image Patches via Convolutional Neural Networks
In this paper we show how to learn directly from image data (i.e., without resorting to manually-designed features) a general similarity function for comparing image patches, which is a task of fundamental importance for many computer vision problems. To encode such a function, we opt for a CNN-based model that is trained to account for a wide variety of changes in image appearance. To that end, we explore and study multiple neural network architectures, which are specifically adapted to this task. We show that such an approach can significantly outperform the state-of-the-art on several problems and benchmark datasets.
Scale Up Nonlinear Component Analysis with Doubly Stochastic Gradients
Nonlinear component analysis such as kernel Principle Component Analysis (KPCA) and kernel Canonical Correlation Analysis (KCCA) are widely used in machine learning, statistics and data analysis, but they can not scale up to big datasets. Recent attempts have employed random feature approximations to convert the problem to the primal form for linear computational complexity. However, to obtain high quality solutions, the number of random features should be the same order of magnitude as the number of data points, making such approach not directly applicable to the regime with millions of data points. We propose a simple, computationally efficient, and memory friendly algorithm based on the "doubly stochastic gradients" to scale up a range of kernel nonlinear component analysis, such as kernel PCA, CCA and SVD. Despite the \emph{non-convex} nature of these problems, our method enjoys theoretical guarantees that it converges at the rate $\tilde{O}(1/t)$ to the global optimum, even for the top $k$ eigen subspace. Unlike many alternatives, our algorithm does not require explicit orthogonalization, which is infeasible on big datasets. We demonstrate the effectiveness and scalability of our algorithm on large scale synthetic and real world datasets.
Probabilistic Clustering of Time-Evolving Distance Data
We present a novel probabilistic clustering model for objects that are represented via pairwise distances and observed at different time points. The proposed method utilizes the information given by adjacent time points to find the underlying cluster structure and obtain a smooth cluster evolution. This approach allows the number of objects and clusters to differ at every time point, and no identification on the identities of the objects is needed. Further, the model does not require the number of clusters being specified in advance -- they are instead determined automatically using a Dirichlet process prior. We validate our model on synthetic data showing that the proposed method is more accurate than state-of-the-art clustering methods. Finally, we use our dynamic clustering model to analyze and illustrate the evolution of brain cancer patients over time.
Bridging belief function theory to modern machine learning
Machine learning is a quickly evolving field which now looks really different from what it was 15 years ago, when classification and clustering were major issues. This document proposes several trends to explore the new questions of modern machine learning, with the strong afterthought that the belief function framework has a major role to play.
Linear Maximum Margin Classifier for Learning from Uncertain Data
In this paper, we propose a maximum margin classifier that deals with uncertainty in data input. More specifically, we reformulate the SVM framework such that each training example can be modeled by a multi-dimensional Gaussian distribution described by its mean vector and its covariance matrix -- the latter modeling the uncertainty. We address the classification problem and define a cost function that is the expected value of the classical SVM cost when data samples are drawn from the multi-dimensional Gaussian distributions that form the set of the training examples. Our formulation approximates the classical SVM formulation when the training examples are isotropic Gaussians with variance tending to zero. We arrive at a convex optimization problem, which we solve efficiently in the primal form using a stochastic gradient descent approach. The resulting classifier, which we name SVM with Gaussian Sample Uncertainty (SVM-GSU), is tested on synthetic data and five publicly available and popular datasets; namely, the MNIST, WDBC, DEAP, TV News Channel Commercial Detection, and TRECVID MED datasets. Experimental results verify the effectiveness of the proposed method.
Theory of Dual-sparse Regularized Randomized Reduction
In this paper, we study randomized reduction methods, which reduce high-dimensional features into low-dimensional space by randomized methods (e.g., random projection, random hashing), for large-scale high-dimensional classification. Previous theoretical results on randomized reduction methods hinge on strong assumptions about the data, e.g., low rank of the data matrix or a large separable margin of classification, which hinder their applications in broad domains. To address these limitations, we propose dual-sparse regularized randomized reduction methods that introduce a sparse regularizer into the reduced dual problem. Under a mild condition that the original dual solution is a (nearly) sparse vector, we show that the resulting dual solution is close to the original dual solution and concentrates on its support set. In numerical experiments, we present an empirical study to support the analysis and we also present a novel application of the dual-sparse regularized randomized reduction methods to reducing the communication cost of distributed learning from large-scale high-dimensional data.