title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Semidefinite and Spectral Relaxations for Multi-Label Classification
In this paper, we address the problem of multi-label classification. We consider linear classifiers and propose to learn a prior over the space of labels to directly leverage the performance of such methods. This prior takes the form of a quadratic function of the labels and permits to encode both attractive and repulsive relations between labels. We cast this problem as a structured prediction one aiming at optimizing either the accuracies of the predictors or the F 1-score. This leads to an optimization problem closely related to the max-cut problem, which naturally leads to semidefinite and spectral relaxations. We show on standard datasets how such a general prior can improve the performances of multi-label techniques.
Communication Complexity of Distributed Convex Learning and Optimization
We study the fundamental limits to communication-efficient distributed methods for convex learning and optimization, under different assumptions on the information available to individual machines, and the types of functions considered. We identify cases where existing algorithms are already worst-case optimal, as well as cases where room for further improvement is still possible. Among other things, our results indicate that without similarity between the local objective functions (due to statistical data similarity or otherwise) many communication rounds may be required, even if the machines have unbounded computational power.
Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture Recognition in Video
Recent studies have demonstrated the power of recurrent neural networks for machine translation, image captioning and speech recognition. For the task of capturing temporal structure in video, however, there still remain numerous open research questions. Current research suggests using a simple temporal feature pooling strategy to take into account the temporal aspect of video. We demonstrate that this method is not sufficient for gesture recognition, where temporal information is more discriminative compared to general video classification tasks. We explore deep architectures for gesture recognition in video and propose a new end-to-end trainable neural network architecture incorporating temporal convolutions and bidirectional recurrence. Our main contributions are twofold; first, we show that recurrence is crucial for this task; second, we show that adding temporal convolutions leads to significant improvements. We evaluate the different approaches on the Montalbano gesture recognition dataset, where we achieve state-of-the-art results.
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Many classical algorithms are found until several years later to outlive the confines in which they were conceived, and continue to be relevant in unforeseen settings. In this paper, we show that SVRG is one such method: being originally designed for strongly convex objectives, it is also very robust in non-strongly convex or sum-of-non-convex settings. More precisely, we provide new analysis to improve the state-of-the-art running times in both settings by either applying SVRG or its novel variant. Since non-strongly convex objectives include important examples such as Lasso or logistic regression, and sum-of-non-convex objectives include famous examples such as stochastic PCA and is even believed to be related to training deep neural nets, our results also imply better performances in these applications.
Large-scale Simple Question Answering with Memory Networks
Training large-scale question answering systems is complicated because training sources usually cover a small portion of the range of possible questions. This paper studies the impact of multitask and transfer learning for simple question answering; a setting for which the reasoning required to answer is quite easy, as long as one can retrieve the correct evidence given a question, which can be difficult in large-scale conditions. To this end, we introduce a new dataset of 100k questions that we use in conjunction with existing benchmarks. We conduct our study within the framework of Memory Networks (Weston et al., 2015) because this perspective allows us to eventually scale up to more complex reasoning, and show that Memory Networks can be successfully trained to achieve excellent performance.
Visualizing and Understanding Recurrent Networks
Recurrent Neural Networks (RNNs), and specifically a variant with Long Short-Term Memory (LSTM), are enjoying renewed interest as a result of successful applications in a wide range of machine learning problems that involve sequential data. However, while LSTMs provide exceptional results in practice, the source of their performance and their limitations remain rather poorly understood. Using character-level language models as an interpretable testbed, we aim to bridge this gap by providing an analysis of their representations, predictions and error types. In particular, our experiments reveal the existence of interpretable cells that keep track of long-range dependencies such as line lengths, quotes and brackets. Moreover, our comparative analysis with finite horizon n-gram models traces the source of the LSTM improvements to long-range structural dependencies. Finally, we provide analysis of the remaining errors and suggests areas for further study.
Local Nonstationarity for Efficient Bayesian Optimization
Bayesian optimization has shown to be a fundamental global optimization algorithm in many applications: ranging from automatic machine learning, robotics, reinforcement learning, experimental design, simulations, etc. The most popular and effective Bayesian optimization relies on a surrogate model in the form of a Gaussian process due to its flexibility to represent a prior over function. However, many algorithms and setups relies on the stationarity assumption of the Gaussian process. In this paper, we present a novel nonstationary strategy for Bayesian optimization that is able to outperform the state of the art in Bayesian optimization both in stationary and nonstationary problems.
Gene selection for cancer classification using a hybrid of univariate and multivariate feature selection methods
Various approaches to gene selection for cancer classification based on microarray data can be found in the literature and they may be grouped into two categories: univariate methods and multivariate methods. Univariate methods look at each gene in the data in isolation from others. They measure the contribution of a particular gene to the classification without considering the presence of the other genes. In contrast, multivariate methods measure the relative contribution of a gene to the classification by taking the other genes in the data into consideration. Multivariate methods select fewer genes in general. However, the selection process of multivariate methods may be sensitive to the presence of irrelevant genes, noises in the expression and outliers in the training data. At the same time, the computational cost of multivariate methods is high. To overcome the disadvantages of the two types of approaches, we propose a hybrid method to obtain gene sets that are small and highly discriminative. We devise our hybrid method from the univariate Maximum Likelihood method (LIK) and the multivariate Recursive Feature Elimination method (RFE). We analyze the properties of these methods and systematically test the effectiveness of our proposed method on two cancer microarray datasets. Our experiments on a leukemia dataset and a small, round blue cell tumors dataset demonstrate the effectiveness of our hybrid method. It is able to discover sets consisting of fewer genes than those reported in the literature and at the same time achieve the same or better prediction accuracy.
Global Gene Expression Analysis Using Machine Learning Methods
Microarray is a technology to quantitatively monitor the expression of large number of genes in parallel. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this technology makes the study of certain complex biological problems possible and machine learning methods are playing a crucial role in the analysis process. At present, many machine learning methods have been or have the potential to be applied to major areas of gene expression analysis. These areas include clustering, classification, dynamic modeling and reverse engineering. In this thesis, we focus our work on using machine learning methods to solve the classification problems arising from microarray data. We first identify the major types of the classification problems; then apply several machine learning methods to solve the problems and perform systematic tests on real and artificial datasets. We propose improvement to existing methods. Specifically, we develop a multivariate and a hybrid feature selection method to obtain high classification performance for high dimension classification problems. Using the hybrid feature selection method, we are able to identify small sets of features that give predictive accuracy that is as good as that from other methods which require many more features.
Data-Driven Learning of the Number of States in Multi-State Autoregressive Models
In this work, we consider the class of multi-state autoregressive processes that can be used to model non-stationary time-series of interest. In order to capture different autoregressive (AR) states underlying an observed time series, it is crucial to select the appropriate number of states. We propose a new model selection technique based on the Gap statistics, which uses a null reference distribution on the stable AR filters to check whether adding a new AR state significantly improves the performance of the model. To that end, we define a new distance measure between AR filters based on mean squared prediction error (MSPE), and propose an efficient method to generate random stable filters that are uniformly distributed in the coefficient space. Numerical results are provided to evaluate the performance of the proposed approach.
Deeply Learning the Messages in Message Passing Inference
Deep structured output learning shows great promise in tasks like semantic image segmentation. We proffer a new, efficient deep structured model learning scheme, in which we show how deep Convolutional Neural Networks (CNNs) can be used to estimate the messages in message passing inference for structured prediction with Conditional Random Fields (CRFs). With such CNN message estimators, we obviate the need to learn or evaluate potential functions for message calculation. This confers significant efficiency for learning, since otherwise when performing structured learning for a CRF with CNN potentials it is necessary to undertake expensive inference for every stochastic gradient iteration. The network output dimension for message estimation is the same as the number of classes, in contrast to the network output for general CNN potential functions in CRFs, which is exponential in the order of the potentials. Hence CNN message learning has fewer network parameters and is more scalable for cases that a large number of classes are involved. We apply our method to semantic image segmentation on the PASCAL VOC 2012 dataset. We achieve an intersection-over-union score of 73.4 on its test set, which is the best reported result for methods using the VOC training images alone. This impressive performance demonstrates the effectiveness and usefulness of our CNN message learning method.
Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks Using a Polynomial Number of Score Evaluations
We introduce Selective Greedy Equivalence Search (SGES), a restricted version of Greedy Equivalence Search (GES). SGES retains the asymptotic correctness of GES but, unlike GES, has polynomial performance guarantees. In particular, we show that when data are sampled independently from a distribution that is perfect with respect to a DAG ${\cal G}$ defined over the observable variables then, in the limit of large data, SGES will identify ${\cal G}$'s equivalence class after a number of score evaluations that is (1) polynomial in the number of nodes and (2) exponential in various complexity measures including maximum-number-of-parents, maximum-clique-size, and a new measure called {\em v-width} that is at least as small as---and potentially much smaller than---the other two. More generally, we show that for any hereditary and equivalence-invariant property $\Pi$ known to hold in ${\cal G}$, we retain the large-sample optimality guarantees of GES even if we ignore any GES deletion operator during the backward phase that results in a state for which $\Pi$ does not hold in the common-descendants subgraph.
Learning Multiple Tasks with Multilinear Relationship Networks
Deep networks trained on large-scale data can learn transferable features to promote learning multiple tasks. Since deep features eventually transition from general to specific along deep networks, a fundamental problem of multi-task learning is how to exploit the task relatedness underlying parameter tensors and improve feature transferability in the multiple task-specific layers. This paper presents Multilinear Relationship Networks (MRN) that discover the task relationships based on novel tensor normal priors over parameter tensors of multiple task-specific layers in deep convolutional networks. By jointly learning transferable features and multilinear relationships of tasks and features, MRN is able to alleviate the dilemma of negative-transfer in the feature layers and under-transfer in the classifier layer. Experiments show that MRN yields state-of-the-art results on three multi-task learning datasets.
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Deep learning tools have gained tremendous attention in applied machine learning. However such tools for regression and classification do not capture model uncertainty. In comparison, Bayesian models offer a mathematically grounded framework to reason about model uncertainty, but usually come with a prohibitive computational cost. In this paper we develop a new theoretical framework casting dropout training in deep neural networks (NNs) as approximate Bayesian inference in deep Gaussian processes. A direct result of this theory gives us tools to model uncertainty with dropout NNs -- extracting information from existing models that has been thrown away so far. This mitigates the problem of representing uncertainty in deep learning without sacrificing either computational complexity or test accuracy. We perform an extensive study of the properties of dropout's uncertainty. Various network architectures and non-linearities are assessed on tasks of regression and classification, using MNIST as an example. We show a considerable improvement in predictive log-likelihood and RMSE compared to existing state-of-the-art methods, and finish by using dropout's uncertainty in deep reinforcement learning.
Optimal Rates for Random Fourier Features
Kernel methods represent one of the most powerful tools in machine learning to tackle problems expressed in terms of function values and derivatives due to their capability to represent and model complex relations. While these methods show good versatility, they are computationally intensive and have poor scalability to large data as they require operations on Gram matrices. In order to mitigate this serious computational limitation, recently randomized constructions have been proposed in the literature, which allow the application of fast linear algorithms. Random Fourier features (RFF) are among the most popular and widely applied constructions: they provide an easily computable, low-dimensional feature representation for shift-invariant kernels. Despite the popularity of RFFs, very little is understood theoretically about their approximation quality. In this paper, we provide a detailed finite-sample theoretical analysis about the approximation quality of RFFs by (i) establishing optimal (in terms of the RFF dimension, and growing set size) performance guarantees in uniform norm, and (ii) presenting guarantees in $L^r$ ($1\le r<\infty$) norms. We also propose an RFF approximation to derivatives of a kernel with a theoretical study on its approximation quality.
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Convolutional neural networks (CNNs) work well on large datasets. But labelled data is hard to collect, and in some applications larger amounts of data are not available. The problem then is how to use CNNs with small data -- as CNNs overfit quickly. We present an efficient Bayesian CNN, offering better robustness to over-fitting on small data than traditional approaches. This is by placing a probability distribution over the CNN's kernels. We approximate our model's intractable posterior with Bernoulli variational distributions, requiring no additional model parameters. On the theoretical side, we cast dropout network training as approximate inference in Bayesian neural networks. This allows us to implement our model using existing tools in deep learning with no increase in time complexity, while highlighting a negative result in the field. We show a considerable improvement in classification accuracy compared to standard techniques and improve on published state-of-the-art results for CIFAR-10.
Riemannian preconditioning for tensor completion
We propose a novel Riemannian preconditioning approach for the tensor completion problem with rank constraint. A Riemannian metric or inner product is proposed that exploits the least-squares structure of the cost function and takes into account the structured symmetry in Tucker decomposition. The specific metric allows to use the versatile framework of Riemannian optimization on quotient manifolds to develop a preconditioned nonlinear conjugate gradient algorithm for the problem. To this end, concrete matrix representations of various optimization-related ingredients are listed. Numerical comparisons suggest that our proposed algorithm robustly outperforms state-of-the-art algorithms across different problem instances encompassing various synthetic and real-world datasets.
Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs
We define and study the problem of predicting the solution to a linear program (LP) given only partial information about its objective and constraints. This generalizes the problem of learning to predict the purchasing behavior of a rational agent who has an unknown objective function, that has been studied under the name "Learning from Revealed Preferences". We give mistake bound learning algorithms in two settings: in the first, the objective of the LP is known to the learner but there is an arbitrary, fixed set of constraints which are unknown. Each example is defined by an additional known constraint and the goal of the learner is to predict the optimal solution of the LP given the union of the known and unknown constraints. This models the problem of predicting the behavior of a rational agent whose goals are known, but whose resources are unknown. In the second setting, the objective of the LP is unknown, and changing in a controlled way. The constraints of the LP may also change every day, but are known. An example is given by a set of constraints and partial information about the objective, and the task of the learner is again to predict the optimal solution of the partially known LP.
Thresholding for Top-k Recommendation with Temporal Dynamics
This work focuses on top-k recommendation in domains where underlying data distribution shifts overtime. We propose to learn a time-dependent bias for each item over whatever existing recommendation engine. Such a bias learning process alleviates data sparsity in constructing the engine, and at the same time captures recent trend shift observed in data. We present an alternating optimization framework to resolve the bias learning problem, and develop methods to handle a variety of commonly used recommendation evaluation criteria, as well as large number of items and users in practice. The proposed algorithm is examined, both offline and online, using real world data sets collected from the largest retailer worldwide. Empirical results demonstrate that the bias learning can almost always boost recommendation performance. We encourage other practitioners to adopt it as a standard component in recommender systems where temporal dynamics is a norm.
A Recurrent Latent Variable Model for Sequential Data
In this paper, we explore the inclusion of latent random variables into the dynamic hidden state of a recurrent neural network (RNN) by combining elements of the variational autoencoder. We argue that through the use of high-level latent random variables, the variational RNN (VRNN)1 can model the kind of variability observed in highly structured sequential data such as natural speech. We empirically evaluate the proposed model against related sequential models on four speech datasets and one handwriting dataset. Our results show the important roles that latent random variables can play in the RNN dynamic hidden state.
No penalty no tears: Least squares in high-dimensional linear models
Ordinary least squares (OLS) is the default method for fitting linear models, but is not applicable for problems with dimensionality larger than the sample size. For these problems, we advocate the use of a generalized version of OLS motivated by ridge regression, and propose two novel three-step algorithms involving least squares fitting and hard thresholding. The algorithms are methodologically simple to understand intuitively, computationally easy to implement efficiently, and theoretically appealing for choosing models consistently. Numerical exercises comparing our methods with penalization-based approaches in simulations and data analyses illustrate the great potential of the proposed algorithms.
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
In this work we develop a new algorithm for regularized empirical risk minimization. Our method extends recent techniques of Shalev-Shwartz [02/2015], which enable a dual-free analysis of SDCA, to arbitrary mini-batching schemes. Moreover, our method is able to better utilize the information in the data defining the ERM problem. For convex loss functions, our complexity results match those of QUARTZ, which is a primal-dual method also allowing for arbitrary mini-batching schemes. The advantage of a dual-free analysis comes from the fact that it guarantees convergence even for non-convex loss functions, as long as the average loss is convex. We illustrate through experiments the utility of being able to design arbitrary mini-batching schemes.
Knowledge Transfer Pre-training
Pre-training is crucial for learning deep neural networks. Most of existing pre-training methods train simple models (e.g., restricted Boltzmann machines) and then stack them layer by layer to form the deep structure. This layer-wise pre-training has found strong theoretical foundation and broad empirical support. However, it is not easy to employ such method to pre-train models without a clear multi-layer structure,e.g., recurrent neural networks (RNNs). This paper presents a new pre-training approach based on knowledge transfer learning. In contrast to the layer-wise approach which trains model components incrementally, the new approach trains the entire model as a whole but with an easier objective function. This is achieved by utilizing soft targets produced by a prior trained model (teacher model). Compared to the conventional layer-wise methods, this new method does not care about the model structure, so can be used to pre-train very complex models. Experiments on a speech recognition task demonstrated that with this approach, complex RNNs can be well trained with a weaker deep neural network (DNN) model. Furthermore, the new method can be combined with conventional layer-wise pre-training to deliver additional gains.
Visual Learning of Arithmetic Operations
A simple Neural Network model is presented for end-to-end visual learning of arithmetic operations from pictures of numbers. The input consists of two pictures, each showing a 7-digit number. The output, also a picture, displays the number showing the result of an arithmetic operation (e.g., addition or subtraction) on the two input numbers. The concepts of a number, or of an operator, are not explicitly introduced. This indicates that addition is a simple cognitive task, which can be learned visually using a very small number of neurons. Other operations, e.g., multiplication, were not learnable using this architecture. Some tasks were not learnable end-to-end (e.g., addition with Roman numerals), but were easily learnable once broken into two separate sub-tasks: a perceptual \textit{Character Recognition} and cognitive \textit{Arithmetic} sub-tasks. This indicates that while some tasks may be easily learnable end-to-end, other may need to be broken into sub-tasks.
A Framework for Constrained and Adaptive Behavior-Based Agents
Behavior Trees are commonly used to model agents for robotics and games, where constrained behaviors must be designed by human experts in order to guarantee that these agents will execute a specific chain of actions given a specific set of perceptions. In such application areas, learning is a desirable feature to provide agents with the ability to adapt and improve interactions with humans and environment, but often discarded due to its unreliability. In this paper, we propose a framework that uses Reinforcement Learning nodes as part of Behavior Trees to address the problem of adding learning capabilities in constrained agents. We show how this framework relates to Options in Hierarchical Reinforcement Learning, ensuring convergence of nested learning nodes, and we empirically show that the learning nodes do not affect the execution of other nodes in the tree.
A Multi-layered Acoustic Tokenizing Deep Neural Network (MAT-DNN) for Unsupervised Discovery of Linguistic Units and Generation of High Quality Features
This paper summarizes the work done by the authors for the Zero Resource Speech Challenge organized in the technical program of Interspeech 2015. The goal of the challenge is to discover linguistic units directly from unlabeled speech data. The Multi-layered Acoustic Tokenizer (MAT) proposed in this work automatically discovers multiple sets of acoustic tokens from the given corpus. Each acoustic token set is specified by a set of hyperparameters that describe the model configuration. These sets of acoustic tokens carry different characteristics of the given corpus and the language behind thus can be mutually reinforced. The multiple sets of token labels are then used as the targets of a Multi-target DNN (MDNN) trained on low-level acoustic features. Bottleneck features extracted from the MDNN are used as feedback for the MAT and the MDNN itself. We call this iterative system the Multi-layered Acoustic Tokenizing Deep Neural Network (MAT-DNN) which generates high quality features for track 1 of the challenge and acoustic tokens for track 2 of the challenge.
Stay on path: PCA along graph paths
We introduce a variant of (sparse) PCA in which the set of feasible support sets is determined by a graph. In particular, we consider the following setting: given a directed acyclic graph $G$ on $p$ vertices corresponding to variables, the non-zero entries of the extracted principal component must coincide with vertices lying along a path in $G$. From a statistical perspective, information on the underlying network may potentially reduce the number of observations required to recover the population principal component. We consider the canonical estimator which optimally exploits the prior knowledge by solving a non-convex quadratic maximization on the empirical covariance. We introduce a simple network and analyze the estimator under the spiked covariance model. We show that side information potentially improves the statistical complexity. We propose two algorithms to approximate the solution of the constrained quadratic maximization, and recover a component with the desired properties. We empirically evaluate our schemes on synthetic and real datasets.
Convergence Rates of Active Learning for Maximum Likelihood Estimation
An active learner is given a class of models, a large set of unlabeled examples, and the ability to interactively query labels of a subset of these examples; the goal of the learner is to learn a model in the class that fits the data well. Previous theoretical work has rigorously characterized label complexity of active learning, but most of this work has focused on the PAC or the agnostic PAC model. In this paper, we shift our attention to a more general setting -- maximum likelihood estimation. Provided certain conditions hold on the model class, we provide a two-stage active learning algorithm for this problem. The conditions we require are fairly general, and cover the widely popular class of Generalized Linear Models, which in turn, include models for binary and multi-class classification, regression, and conditional random fields. We provide an upper bound on the label requirement of our algorithm, and a lower bound that matches it up to lower order terms. Our analysis shows that unlike binary classification in the realizable case, just a single extra round of interaction is sufficient to achieve near-optimal performance in maximum likelihood estimation. On the empirical side, the recent work in ~\cite{Zhang12} and~\cite{Zhang14} (on active linear and logistic regression) shows the promise of this approach.
Stacked What-Where Auto-encoders
We present a novel architecture, the "stacked what-where auto-encoders" (SWWAE), which integrates discriminative and generative pathways and provides a unified approach to supervised, semi-supervised and unsupervised learning without relying on sampling during training. An instantiation of SWWAE uses a convolutional net (Convnet) (LeCun et al. (1998)) to encode the input, and employs a deconvolutional net (Deconvnet) (Zeiler et al. (2010)) to produce the reconstruction. The objective function includes reconstruction terms that induce the hidden states in the Deconvnet to be similar to those of the Convnet. Each pooling layer produces two sets of variables: the "what" which are fed to the next layer, and its complementary variable "where" that are fed to the corresponding layer in the generative decoder.
Robust Regression via Hard Thresholding
We study the problem of Robust Least Squares Regression (RLSR) where several response variables can be adversarially corrupted. More specifically, for a data matrix X \in R^{p x n} and an underlying model w*, the response vector is generated as y = X'w* + b where b \in R^n is the corruption vector supported over at most C.n coordinates. Existing exact recovery results for RLSR focus solely on L1-penalty based convex formulations and impose relatively strict model assumptions such as requiring the corruptions b to be selected independently of X. In this work, we study a simple hard-thresholding algorithm called TORRENT which, under mild conditions on X, can recover w* exactly even if b corrupts the response variables in an adversarial manner, i.e. both the support and entries of b are selected adversarially after observing X and w*. Our results hold under deterministic assumptions which are satisfied if X is sampled from any sub-Gaussian distribution. Finally unlike existing results that apply only to a fixed w*, generated independently of X, our results are universal and hold for any w* \in R^p. Next, we propose gradient descent-based extensions of TORRENT that can scale efficiently to large scale problems, such as high dimensional sparse recovery and prove similar recovery guarantees for these extensions. Empirically we find TORRENT, and more so its extensions, offering significantly faster recovery than the state-of-the-art L1 solvers. For instance, even on moderate-sized datasets (with p = 50K) with around 40% corrupted responses, a variant of our proposed method called TORRENT-HYB is more than 20x faster than the best L1 solver.
High-Dimensional Continuous Control Using Generalized Advantage Estimation
Policy gradient methods are an appealing approach in reinforcement learning because they directly optimize the cumulative reward and can straightforwardly be used with nonlinear function approximators such as neural networks. The two main challenges are the large number of samples typically required, and the difficulty of obtaining stable and steady improvement despite the nonstationarity of the incoming data. We address the first challenge by using value functions to substantially reduce the variance of policy gradient estimates at the cost of some bias, with an exponentially-weighted estimator of the advantage function that is analogous to TD(lambda). We address the second challenge by using trust region optimization procedure for both the policy and the value function, which are represented by neural networks. Our approach yields strong empirical results on highly challenging 3D locomotion tasks, learning running gaits for bipedal and quadrupedal simulated robots, and learning a policy for getting the biped to stand up from starting out lying on the ground. In contrast to a body of prior work that uses hand-crafted policy representations, our neural network policies map directly from raw kinematics to joint torques. Our algorithm is fully model-free, and the amount of simulated experience required for the learning tasks on 3D bipeds corresponds to 1-2 weeks of real time.
ASlib: A Benchmark Library for Algorithm Selection
The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.
SVM and ELM: Who Wins? Object Recognition with Deep Convolutional Features from ImageNet
Deep learning with a convolutional neural network (CNN) has been proved to be very effective in feature extraction and representation of images. For image classification problems, this work aim at finding which classifier is more competitive based on high-level deep features of images. In this report, we have discussed the nearest neighbor, support vector machines and extreme learning machines for image classification under deep convolutional activation feature representation. Specifically, we adopt the benchmark object recognition dataset from multiple sources with domain bias for evaluating different classifiers. The deep features of the object dataset are obtained by a well-trained CNN with five convolutional layers and three fully-connected layers on the challenging ImageNet. Experiments demonstrate that the ELMs outperform SVMs in cross-domain recognition tasks. In particular, state-of-the-art results are obtained by kernel ELM which outperforms SVMs with about 4% of the average accuracy. The features and codes are available in http://www.escience.cn/people/lei/index.html
Learning Mixtures of Ising Models using Pseudolikelihood
Maximum pseudolikelihood method has been among the most important methods for learning parameters of statistical physics models, such as Ising models. In this paper, we study how pseudolikelihood can be derived for learning parameters of a mixture of Ising models. The performance of the proposed approach is demonstrated for Ising and Potts models on both synthetic and real data.
Learning to Transduce with Unbounded Memory
Recently, strong results have been demonstrated by Deep Recurrent Neural Networks on natural language transduction problems. In this paper we explore the representational power of these models using synthetic grammars designed to exhibit phenomena similar to those found in real transduction problems such as machine translation. These experiments lead us to propose new memory-based recurrent networks that implement continuously differentiable analogues of traditional data structures such as Stacks, Queues, and DeQues. We show that these architectures exhibit superior generalisation performance to Deep RNNs and are often able to learn the underlying generating algorithms in our transduction experiments.
Linear Convergence of the Randomized Feasible Descent Method Under the Weak Strong Convexity Assumption
In this paper we generalize the framework of the feasible descent method (FDM) to a randomized (R-FDM) and a coordinate-wise random feasible descent method (RC-FDM) framework. We show that the famous SDCA algorithm for optimizing the SVM dual problem, or the stochastic coordinate descent method for the LASSO problem, fits into the framework of RC-FDM. We prove linear convergence for both R-FDM and RC-FDM under the weak strong convexity assumption. Moreover, we show that the duality gap converges linearly for RC-FDM, which implies that the duality gap also converges linearly for SDCA applied to the SVM dual problem.
Efficient Learning of Ensembles with QuadBoost
We first present a general risk bound for ensembles that depends on the Lp norm of the weighted combination of voters which can be selected from a continuous set. We then propose a boosting method, called QuadBoost, which is strongly supported by the general risk bound and has very simple rules for assigning the voters' weights. Moreover, QuadBoost exhibits a rate of decrease of its empirical error which is slightly faster than the one achieved by AdaBoost. The experimental results confirm the expectation of the theory that QuadBoost is a very efficient method for learning ensembles.
Learning with Group Invariant Features: A Kernel Perspective
We analyze in this paper a random feature map based on a theory of invariance I-theory introduced recently. More specifically, a group invariant signal signature is obtained through cumulative distributions of group transformed random projections. Our analysis bridges invariant feature learning with kernel methods, as we show that this feature map defines an expected Haar integration kernel that is invariant to the specified group action. We show how this non-linear random feature map approximates this group invariant kernel uniformly on a set of $N$ points. Moreover, we show that it defines a function space that is dense in the equivalent Invariant Reproducing Kernel Hilbert Space. Finally, we quantify error rates of the convergence of the empirical risk minimization, as well as the reduction in the sample complexity of a learning algorithm using such an invariant representation for signal classification, in a classical supervised learning setting.
Regret Lower Bound and Optimal Algorithm in Dueling Bandit Problem
We study the $K$-armed dueling bandit problem, a variation of the standard stochastic bandit problem where the feedback is limited to relative comparisons of a pair of arms. We introduce a tight asymptotic regret lower bound that is based on the information divergence. An algorithm that is inspired by the Deterministic Minimum Empirical Divergence algorithm (Honda and Takemura, 2010) is proposed, and its regret is analyzed. The proposed algorithm is found to be the first one with a regret upper bound that matches the lower bound. Experimental comparisons of dueling bandit algorithms show that the proposed algorithm significantly outperforms existing ones.
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
We present DUAL-LOCO, a communication-efficient algorithm for distributed statistical estimation. DUAL-LOCO assumes that the data is distributed according to the features rather than the samples. It requires only a single round of communication where low-dimensional random projections are used to approximate the dependences between features available to different workers. We show that DUAL-LOCO has bounded approximation error which only depends weakly on the number of workers. We compare DUAL-LOCO against a state-of-the-art distributed optimization method on a variety of real world datasets and show that it obtains better speedups while retaining good accuracy.
Variational Dropout and the Local Reparameterization Trick
We investigate a local reparameterizaton technique for greatly reducing the variance of stochastic gradients for variational Bayesian inference (SGVB) of a posterior over model parameters, while retaining parallelizability. This local reparameterization translates uncertainty about global parameters into local noise that is independent across datapoints in the minibatch. Such parameterizations can be trivially parallelized and have variance that is inversely proportional to the minibatch size, generally leading to much faster convergence. Additionally, we explore a connection with dropout: Gaussian dropout objectives correspond to SGVB with local reparameterization, a scale-invariant prior and proportionally fixed posterior variance. Our method allows inference of more flexibly parameterized posteriors; specifically, we propose variational dropout, a generalization of Gaussian dropout where the dropout rates are learned, often leading to better models. The method is demonstrated through several experiments.
Learning to Select Pre-Trained Deep Representations with Bayesian Evidence Framework
We propose a Bayesian evidence framework to facilitate transfer learning from pre-trained deep convolutional neural networks (CNNs). Our framework is formulated on top of a least squares SVM (LS-SVM) classifier, which is simple and fast in both training and testing, and achieves competitive performance in practice. The regularization parameters in LS-SVM is estimated automatically without grid search and cross-validation by maximizing evidence, which is a useful measure to select the best performing CNN out of multiple candidates for transfer learning; the evidence is optimized efficiently by employing Aitken's delta-squared process, which accelerates convergence of fixed point update. The proposed Bayesian evidence framework also provides a good solution to identify the best ensemble of heterogeneous CNNs through a greedy algorithm. Our Bayesian evidence framework for transfer learning is tested on 12 visual recognition datasets and illustrates the state-of-the-art performance consistently in terms of prediction accuracy and modeling efficiency.
On Convergence of Emphatic Temporal-Difference Learning
We consider emphatic temporal-difference learning algorithms for policy evaluation in discounted Markov decision processes with finite spaces. Such algorithms were recently proposed by Sutton, Mahmood, and White (2015) as an improved solution to the problem of divergence of off-policy temporal-difference learning with linear function approximation. We present in this paper the first convergence proofs for two emphatic algorithms, ETD($\lambda$) and ELSTD($\lambda$). We prove, under general off-policy conditions, the convergence in $L^1$ for ELSTD($\lambda$) iterates, and the almost sure convergence of the approximate value functions calculated by both algorithms using a single infinitely long trajectory. Our analysis involves new techniques with applications beyond emphatic algorithms leading, for example, to the first proof that standard TD($\lambda$) also converges under off-policy training for $\lambda$ sufficiently large.
Optimal Sparse Kernel Learning for Hyperspectral Anomaly Detection
In this paper, a novel framework of sparse kernel learning for Support Vector Data Description (SVDD) based anomaly detection is presented. In this work, optimal sparse feature selection for anomaly detection is first modeled as a Mixed Integer Programming (MIP) problem. Due to the prohibitively high computational complexity of the MIP, it is relaxed into a Quadratically Constrained Linear Programming (QCLP) problem. The QCLP problem can then be practically solved by using an iterative optimization method, in which multiple subsets of features are iteratively found as opposed to a single subset. The QCLP-based iterative optimization problem is solved in a finite space called the \emph{Empirical Kernel Feature Space} (EKFS) instead of in the input space or \emph{Reproducing Kernel Hilbert Space} (RKHS). This is possible because of the fact that the geometrical properties of the EKFS and the corresponding RKHS remain the same. Now, an explicit nonlinear exploitation of the data in a finite EKFS is achievable, which results in optimal feature ranking. Experimental results based on a hyperspectral image show that the proposed method can provide improved performance over the current state-of-the-art techniques.
Path-SGD: Path-Normalized Optimization in Deep Neural Networks
We revisit the choice of SGD for training deep neural networks by reconsidering the appropriate geometry in which to optimize the weights. We argue for a geometry invariant to rescaling of weights that does not affect the output of the network, and suggest Path-SGD, which is an approximate steepest descent method with respect to a path-wise regularizer related to max-norm regularization. Path-SGD is easy and efficient to implement and leads to empirical gains over SGD and AdaGrad.
Distributed Training of Structured SVM
Training structured prediction models is time-consuming. However, most existing approaches only use a single machine, thus, the advantage of computing power and the capacity for larger data sets of multiple machines have not been exploited. In this work, we propose an efficient algorithm for distributedly training structured support vector machines based on a distributed block-coordinate descent method. Both theoretical and experimental results indicate that our method is efficient.
Learning both Weights and Connections for Efficient Neural Networks
Neural networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems. Also, conventional networks fix the architecture before training starts; as a result, training cannot improve the architecture. To address these limitations, we describe a method to reduce the storage and computation required by neural networks by an order of magnitude without affecting their accuracy by learning only the important connections. Our method prunes redundant connections using a three-step method. First, we train the network to learn which connections are important. Next, we prune the unimportant connections. Finally, we retrain the network to fine tune the weights of the remaining connections. On the ImageNet dataset, our method reduced the number of parameters of AlexNet by a factor of 9x, from 61 million to 6.7 million, without incurring accuracy loss. Similar experiments with VGG-16 found that the number of parameters can be reduced by 13x, from 138 million to 10.3 million, again with no loss of accuracy.
Generalization in Adaptive Data Analysis and Holdout Reuse
Overfitting is the bane of data analysts, even when data are plentiful. Formal approaches to understanding this problem focus on statistical inference and generalization of individual analysis procedures. Yet the practice of data analysis is an inherently interactive and adaptive process: new analyses and hypotheses are proposed after seeing the results of previous ones, parameters are tuned on the basis of obtained results, and datasets are shared and reused. An investigation of this gap has recently been initiated by the authors in (Dwork et al., 2014), where we focused on the problem of estimating expectations of adaptively chosen functions. In this paper, we give a simple and practical method for reusing a holdout (or testing) set to validate the accuracy of hypotheses produced by a learning algorithm operating on a training set. Reusing a holdout set adaptively multiple times can easily lead to overfitting to the holdout set itself. We give an algorithm that enables the validation of a large number of adaptively chosen hypotheses, while provably avoiding overfitting. We illustrate the advantages of our algorithm over the standard use of the holdout set via a simple synthetic experiment. We also formalize and address the general problem of data reuse in adaptive data analysis. We show how the differential-privacy based approach given in (Dwork et al., 2014) is applicable much more broadly to adaptive data analysis. We then show that a simple approach based on description length can also be used to give guarantees of statistical validity in adaptive settings. Finally, we demonstrate that these incomparable approaches can be unified via the notion of approximate max-information that we introduce.
Cumulative Prospect Theory Meets Reinforcement Learning: Prediction and Control
Cumulative prospect theory (CPT) is known to model human decisions well, with substantial empirical evidence supporting this claim. CPT works by distorting probabilities and is more general than the classic expected utility and coherent risk measures. We bring this idea to a risk-sensitive reinforcement learning (RL) setting and design algorithms for both estimation and control. The RL setting presents two particular challenges when CPT is applied: estimating the CPT objective requires estimations of the entire distribution of the value function and finding a randomized optimal policy. The estimation scheme that we propose uses the empirical distribution to estimate the CPT-value of a random variable. We then use this scheme in the inner loop of a CPT-value optimization procedure that is based on the well-known simulation optimization idea of simultaneous perturbation stochastic approximation (SPSA). We provide theoretical convergence guarantees for all the proposed algorithms and also illustrate the usefulness of CPT-based criteria in a traffic signal control application.
A Topological Approach to Spectral Clustering
We propose two related unsupervised clustering algorithms which, for input, take data assumed to be sampled from a uniform distribution supported on a metric space $X$, and output a clustering of the data based on the selection of a topological model for the connected components of $X$. Both algorithms work by selecting a graph on the samples from a natural one-parameter family of graphs, using a geometric criterion in the first case and an information theoretic criterion in the second. The estimated connected components of $X$ are identified with the kernel of the associated graph Laplacian, which allows the algorithm to work without requiring the number of expected clusters or other auxiliary data as input.
Faster SGD Using Sketched Conditioning
We propose a novel method for speeding up stochastic optimization algorithms via sketching methods, which recently became a powerful tool for accelerating algorithms for numerical linear algebra. We revisit the method of conditioning for accelerating first-order methods and suggest the use of sketching methods for constructing a cheap conditioner that attains a significant speedup with respect to the Stochastic Gradient Descent (SGD) algorithm. While our theoretical guarantees assume convexity, we discuss the applicability of our method to deep neural networks, and experimentally demonstrate its merits.
The LICORS Cabinet: Nonparametric Algorithms for Spatio-temporal Prediction
Spatio-temporal data is intrinsically high dimensional, so unsupervised modeling is only feasible if we can exploit structure in the process. When the dynamics are local in both space and time, this structure can be exploited by splitting the global field into many lower-dimensional "light cones". We review light cone decompositions for predictive state reconstruction, introducing three simple light cone algorithms. These methods allow for tractable inference of spatio-temporal data, such as full-frame video. The algorithms make few assumptions on the underlying process yet have good predictive performance and can provide distributions over spatio-temporal data, enabling sophisticated probabilistic inference.
Adaptive Normalized Risk-Averting Training For Deep Neural Networks
This paper proposes a set of new error criteria and learning approaches, Adaptive Normalized Risk-Averting Training (ANRAT), to attack the non-convex optimization problem in training deep neural networks (DNNs). Theoretically, we demonstrate its effectiveness on global and local convexity lower-bounded by the standard $L_p$-norm error. By analyzing the gradient on the convexity index $\lambda$, we explain the reason why to learn $\lambda$ adaptively using gradient descent works. In practice, we show how this method improves training of deep neural networks to solve visual recognition tasks on the MNIST and CIFAR-10 datasets. Without using pretraining or other tricks, we obtain results comparable or superior to those reported in recent literature on the same tasks using standard ConvNets + MSE/cross entropy. Performance on deep/shallow multilayer perceptrons and Denoised Auto-encoders is also explored. ANRAT can be combined with other quasi-Newton training methods, innovative network variants, regularization techniques and other specific tricks in DNNs. Other than unsupervised pretraining, it provides a new perspective to address the non-convex optimization problem in DNNs.
An Improved BKW Algorithm for LWE with Applications to Cryptography and Lattices
In this paper, we study the Learning With Errors problem and its binary variant, where secrets and errors are binary or taken in a small interval. We introduce a new variant of the Blum, Kalai and Wasserman algorithm, relying on a quantization step that generalizes and fine-tunes modulus switching. In general this new technique yields a significant gain in the constant in front of the exponent in the overall complexity. We illustrate this by solving p within half a day a LWE instance with dimension n = 128, modulus $q = n^2$, Gaussian noise $\alpha = 1/(\sqrt{n/\pi} \log^2 n)$ and binary secret, using $2^{28}$ samples, while the previous best result based on BKW claims a time complexity of $2^{74}$ with $2^{60}$ samples for the same parameters. We then introduce variants of BDD, GapSVP and UniqueSVP, where the target point is required to lie in the fundamental parallelepiped, and show how the previous algorithm is able to solve these variants in subexponential time. Moreover, we also show how the previous algorithm can be used to solve the BinaryLWE problem with n samples in subexponential time $2^{(\ln 2/2+o(1))n/\log \log n}$. This analysis does not require any heuristic assumption, contrary to other algebraic approaches; instead, it uses a variant of an idea by Lyubashevsky to generate many samples from a small number of samples. This makes it possible to asymptotically and heuristically break the NTRU cryptosystem in subexponential time (without contradicting its security assumption). We are also able to solve subset sum problems in subexponential time for density $o(1)$, which is of independent interest: for such density, the previous best algorithm requires exponential time. As a direct application, we can solve in subexponential time the parameters of a cryptosystem based on this problem proposed at TCC 2010.
Non-parametric Revenue Optimization for Generalized Second Price Auctions
We present an extensive analysis of the key problem of learning optimal reserve prices for generalized second price auctions. We describe two algorithms for this task: one based on density estimation, and a novel algorithm benefiting from solid theoretical guarantees and with a very favorable running-time complexity of $O(n S \log (n S))$, where $n$ is the sample size and $S$ the number of slots. Our theoretical guarantees are more favorable than those previously presented in the literature. Additionally, we show that even if bidders do not play at an equilibrium, our second algorithm is still well defined and minimizes a quantity of interest. To our knowledge, this is the first attempt to apply learning algorithms to the problem of reserve price optimization in GSP auctions. Finally, we present the first convergence analysis of empirical equilibrium bidding functions to the unique symmetric Bayesian-Nash equilibrium of a GSP.
Empirical Studies on Symbolic Aggregation Approximation Under Statistical Perspectives for Knowledge Discovery in Time Series
Symbolic Aggregation approXimation (SAX) has been the de facto standard representation methods for knowledge discovery in time series on a number of tasks and applications. So far, very little work has been done in empirically investigating the intrinsic properties and statistical mechanics in SAX words. In this paper, we applied several statistical measurements and proposed a new statistical measurement, i.e. information embedding cost (IEC) to analyze the statistical behaviors of the symbolic dynamics. Our experiments on the benchmark datasets and the clinical signals demonstrate that SAX can always reduce the complexity while preserving the core information embedded in the original time series with significant embedding efficiency. Our proposed IEC score provide a priori to determine if SAX is adequate for specific dataset, which can be generalized to evaluate other symbolic representations. Our work provides an analytical framework with several statistical tools to analyze, evaluate and further improve the symbolic dynamics for knowledge discovery in time series.
Inverting Visual Representations with Convolutional Networks
Feature representations, both hand-designed and learned ones, are often hard to analyze and interpret, even when they are extracted from visual data. We propose a new approach to study image representations by inverting them with an up-convolutional neural network. We apply the method to shallow representations (HOG, SIFT, LBP), as well as to deep networks. For shallow representations our approach provides significantly better reconstructions than existing methods, revealing that there is surprisingly rich information contained in these features. Inverting a deep network trained on ImageNet provides several insights into the properties of the feature representation learned by the network. Most strikingly, the colors and the rough contours of an image can be reconstructed from activations in higher network layers and even from the predicted class probabilities.
WordRank: Learning Word Embeddings via Robust Ranking
Embedding words in a vector space has gained a lot of attention in recent years. While state-of-the-art methods provide efficient computation of word similarities via a low-dimensional matrix embedding, their motivation is often left unclear. In this paper, we argue that word embedding can be naturally viewed as a ranking problem due to the ranking nature of the evaluation metrics. Then, based on this insight, we propose a novel framework WordRank that efficiently estimates word representations via robust ranking, in which the attention mechanism and robustness to noise are readily achieved via the DCG-like ranking losses. The performance of WordRank is measured in word similarity and word analogy benchmarks, and the results are compared to the state-of-the-art word embedding techniques. Our algorithm is very competitive to the state-of-the- arts on large corpora, while outperforms them by a significant margin when the training set is limited (i.e., sparse and noisy). With 17 million tokens, WordRank performs almost as well as existing methods using 7.2 billion tokens on a popular word similarity benchmark. Our multi-node distributed implementation of WordRank is publicly available for general usage.
Estimating Posterior Ratio for Classification: Transfer Learning from Probabilistic Perspective
Transfer learning assumes classifiers of similar tasks share certain parameter structures. Unfortunately, modern classifiers uses sophisticated feature representations with huge parameter spaces which lead to costly transfer. Under the impression that changes from one classifier to another should be ``simple'', an efficient transfer learning criteria that only learns the ``differences'' is proposed in this paper. We train a \emph{posterior ratio} which turns out to minimizes the upper-bound of the target learning risk. The model of posterior ratio does not have to share the same parameter space with the source classifier at all so it can be easily modelled and efficiently trained. The resulting classifier therefore is obtained by simply multiplying the existing probabilistic-classifier with the learned posterior ratio.
On the Error of Random Fourier Features
Kernel methods give powerful, flexible, and theoretically grounded approaches to solving many problems in machine learning. The standard approach, however, requires pairwise evaluations of a kernel function, which can lead to scalability issues for very large datasets. Rahimi and Recht (2007) suggested a popular approach to handling this problem, known as random Fourier features. The quality of this approximation, however, is not well understood. We improve the uniform error bound of that paper, as well as giving novel understandings of the embedding's variance, approximation error, and use in some machine learning methods. We also point out that surprisingly, of the two main variants of those features, the more widely used is strictly higher-variance for the Gaussian kernel and has worse bounds.
Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path
This article provides the first procedure for computing a fully data-dependent interval that traps the mixing time $t_{\text{mix}}$ of a finite reversible ergodic Markov chain at a prescribed confidence level. The interval is computed from a single finite-length sample path from the Markov chain, and does not require the knowledge of any parameters of the chain. This stands in contrast to previous approaches, which either only provide point estimates, or require a reset mechanism, or additional prior knowledge. The interval is constructed around the relaxation time $t_{\text{relax}}$, which is strongly related to the mixing time, and the width of the interval converges to zero roughly at a $\sqrt{n}$ rate, where $n$ is the length of the sample path. Upper and lower bounds are given on the number of samples required to achieve constant-factor multiplicative accuracy. The lower bounds indicate that, unless further restrictions are placed on the chain, no procedure can achieve this accuracy level before seeing each state at least $\Omega(t_{\text{relax}})$ times on the average. Finally, future directions of research are identified.
Training Restricted Boltzmann Machines via the Thouless-Anderson-Palmer Free Energy
Restricted Boltzmann machines are undirected neural networks which have been shown to be effective in many applications, including serving as initializations for training deep multi-layer neural networks. One of the main reasons for their success is the existence of efficient and practical stochastic algorithms, such as contrastive divergence, for unsupervised training. We propose an alternative deterministic iterative procedure based on an improved mean field method from statistical physics known as the Thouless-Anderson-Palmer approach. We demonstrate that our algorithm provides performance equal to, and sometimes superior to, persistent contrastive divergence, while also providing a clear and easy to evaluate objective function. We believe that this strategy can be easily generalized to other models as well as to more accurate higher-order approximations, paving the way for systematic improvements in training Boltzmann machines with hidden units.
Stagewise Learning for Sparse Clustering of Discretely-Valued Data
The performance of EM in learning mixtures of product distributions often depends on the initialization. This can be problematic in crowdsourcing and other applications, e.g. when a small number of 'experts' are diluted by a large number of noisy, unreliable participants. We develop a new EM algorithm that is driven by these experts. In a manner that differs from other approaches, we start from a single mixture class. The algorithm then develops the set of 'experts' in a stagewise fashion based on a mutual information criterion. At each stage EM operates on this subset of the players, effectively regularizing the E rather than the M step. Experiments show that stagewise EM outperforms other initialization techniques for crowdsourcing and neurosciences applications, and can guide a full EM to results comparable to those obtained knowing the exact distribution.
Accelerated Stochastic Gradient Descent for Minimizing Finite Sums
We propose an optimization method for minimizing the finite sums of smooth convex functions. Our method incorporates an accelerated gradient descent (AGD) and a stochastic variance reduction gradient (SVRG) in a mini-batch setting. Unlike SVRG, our method can be directly applied to non-strongly and strongly convex problems. We show that our method achieves a lower overall complexity than the recently proposed methods that supports non-strongly convex problems. Moreover, this method has a fast rate of convergence for strongly convex problems. Our experiments show the effectiveness of our method.
On the Interpretability of Conditional Probability Estimates in the Agnostic Setting
We study the interpretability of conditional probability estimates for binary classification under the agnostic setting or scenario. Under the agnostic setting, conditional probability estimates do not necessarily reflect the true conditional probabilities. Instead, they have a certain calibration property: among all data points that the classifier has predicted P(Y = 1|X) = p, p portion of them actually have label Y = 1. For cost-sensitive decision problems, this calibration property provides adequate support for us to use Bayes Decision Theory. In this paper, we define a novel measure for the calibration property together with its empirical counterpart, and prove an uniform convergence result between them. This new measure enables us to formally justify the calibration property of conditional probability estimations, and provides new insights on the problem of estimating and calibrating conditional probabilities.
Measuring Sample Quality with Stein's Method
To improve the efficiency of Monte Carlo estimation, practitioners are turning to biased Markov chain Monte Carlo procedures that trade off asymptotic exactness for computational speed. The reasoning is sound: a reduction in variance due to more rapid sampling can outweigh the bias introduced. However, the inexactness creates new challenges for sampler and parameter selection, since standard measures of sample quality like effective sample size do not account for asymptotic bias. To address these challenges, we introduce a new computable quality measure based on Stein's method that quantifies the maximum discrepancy between sample and target expectations over a large class of test functions. We use our tool to compare exact, biased, and deterministic sample sequences and illustrate applications to hyperparameter selection, convergence rate assessment, and quantifying bias-variance tradeoffs in posterior inference.
Deep SimNets
We present a deep layered architecture that generalizes convolutional neural networks (ConvNets). The architecture, called SimNets, is driven by two operators: (i) a similarity function that generalizes inner-product, and (ii) a log-mean-exp function called MEX that generalizes maximum and average. The two operators applied in succession give rise to a standard neuron but in "feature space". The feature spaces realized by SimNets depend on the choice of the similarity operator. The simplest setting, which corresponds to a convolution, realizes the feature space of the Exponential kernel, while other settings realize feature spaces of more powerful kernels (Generalized Gaussian, which includes as special cases RBF and Laplacian), or even dynamically learned feature spaces (Generalized Multiple Kernel Learning). As a result, the SimNet contains a higher abstraction level compared to a traditional ConvNet. We argue that enhanced expressiveness is important when the networks are small due to run-time constraints (such as those imposed by mobile applications). Empirical evaluation validates the superior expressiveness of SimNets, showing a significant gain in accuracy over ConvNets when computational resources at run-time are limited. We also show that in large-scale settings, where computational complexity is less of a concern, the additional capacity of SimNets can be controlled with proper regularization, yielding accuracies comparable to state of the art ConvNets.
Clustering by transitive propagation
We present a global optimization algorithm for clustering data given the ratio of likelihoods that each pair of data points is in the same cluster or in different clusters. To define a clustering solution in terms of pairwise relationships, a necessary and sufficient condition is that belonging to the same cluster satisfies transitivity. We define a global objective function based on pairwise likelihood ratios and a transitivity constraint over all triples, assigning an equal prior probability to all clustering solutions. We maximize the objective function by implementing max-sum message passing on the corresponding factor graph to arrive at an O(N^3) algorithm. Lastly, we demonstrate an application inspired by mutational sequencing for decoding random binary words transmitted through a noisy channel.
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks
Recurrent Neural Networks can be trained to produce sequences of tokens given some input, as exemplified by recent results in machine translation and image captioning. The current approach to training them consists of maximizing the likelihood of each token in the sequence given the current (recurrent) state and the previous token. At inference, the unknown previous token is then replaced by a token generated by the model itself. This discrepancy between training and inference can yield errors that can accumulate quickly along the generated sequence. We propose a curriculum learning strategy to gently change the training process from a fully guided scheme using the true previous token, towards a less guided scheme which mostly uses the generated token instead. Experiments on several sequence prediction tasks show that this approach yields significant improvements. Moreover, it was used successfully in our winning entry to the MSCOCO image captioning challenge, 2015.
Provable Bayesian Inference via Particle Mirror Descent
Bayesian methods are appealing in their flexibility in modeling complex data and ability in capturing uncertainty in parameters. However, when Bayes' rule does not result in tractable closed-form, most approximate inference algorithms lack either scalability or rigorous guarantees. To tackle this challenge, we propose a simple yet provable algorithm, \emph{Particle Mirror Descent} (PMD), to iteratively approximate the posterior density. PMD is inspired by stochastic functional mirror descent where one descends in the density space using a small batch of data points at each iteration, and by particle filtering where one uses samples to approximate a function. We prove result of the first kind that, with $m$ particles, PMD provides a posterior density estimator that converges in terms of $KL$-divergence to the true posterior in rate $O(1/\sqrt{m})$. We demonstrate competitive empirical performances of PMD compared to several approximate inference algorithms in mixture models, logistic regression, sparse Gaussian processes and latent Dirichlet allocation on large scale datasets.
Pointer Networks
We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.
Symmetric Tensor Completion from Multilinear Entries and Learning Product Mixtures over the Hypercube
We give an algorithm for completing an order-$m$ symmetric low-rank tensor from its multilinear entries in time roughly proportional to the number of tensor entries. We apply our tensor completion algorithm to the problem of learning mixtures of product distributions over the hypercube, obtaining new algorithmic results. If the centers of the product distribution are linearly independent, then we recover distributions with as many as $\Omega(n)$ centers in polynomial time and sample complexity. In the general case, we recover distributions with as many as $\tilde\Omega(n)$ centers in quasi-polynomial time, answering an open problem of Feldman et al. (SIAM J. Comp.) for the special case of distributions with incoherent bias vectors. Our main algorithmic tool is the iterated application of a low-rank matrix completion algorithm for matrices with adversarially missing entries.
Copula variational inference
We develop a general variational inference method that preserves dependency among the latent variables. Our method uses copulas to augment the families of distributions used in mean-field and structured approximations. Copulas model the dependency that is not captured by the original variational distribution, and thus the augmented variational family guarantees better approximations to the posterior. With stochastic optimization, inference on the augmented distribution is scalable. Furthermore, our strategy is generic: it can be applied to any inference procedure that currently uses the mean-field or structured approach. Copula variational inference has many advantages: it reduces bias; it is less sensitive to local optima; it is less sensitive to hyperparameters; and it helps characterize and interpret the dependency among the latent variables.
Permutation Search Methods are Efficient, Yet Faster Search is Possible
We survey permutation-based methods for approximate k-nearest neighbor search. In these methods, every data point is represented by a ranked list of pivots sorted by the distance to this point. Such ranked lists are called permutations. The underpinning assumption is that, for both metric and non-metric spaces, the distance between permutations is a good proxy for the distance between original points. Thus, it should be possible to efficiently retrieve most true nearest neighbors by examining only a tiny subset of data points whose permutations are similar to the permutation of a query. We further test this assumption by carrying out an extensive experimental evaluation where permutation methods are pitted against state-of-the art benchmarks (the multi-probe LSH, the VP-tree, and proximity-graph based retrieval) on a variety of realistically large data set from the image and textual domain. The focus is on the high-accuracy retrieval methods for generic spaces. Additionally, we assume that both data and indices are stored in main memory. We find permutation methods to be reasonably efficient and describe a setup where these methods are most useful. To ease reproducibility, we make our software and data sets publicly available.
Explore no more: Improved high-probability regret bounds for non-stochastic bandits
This work addresses the problem of regret minimization in non-stochastic multi-armed bandit problems, focusing on performance guarantees that hold with high probability. Such results are rather scarce in the literature since proving them requires a large deal of technical effort and significant modifications to the standard, more intuitive algorithms that come only with guarantees that hold on expectation. One of these modifications is forcing the learner to sample arms from the uniform distribution at least $\Omega(\sqrt{T})$ times over $T$ rounds, which can adversely affect performance if many of the arms are suboptimal. While it is widely conjectured that this property is essential for proving high-probability regret bounds, we show in this paper that it is possible to achieve such strong results without this undesirable exploration component. Our result relies on a simple and intuitive loss-estimation strategy called Implicit eXploration (IX) that allows a remarkably clean analysis. To demonstrate the flexibility of our technique, we derive several improved high-probability bounds for various extensions of the standard multi-armed bandit framework. Finally, we conduct a simple experiment that illustrates the robustness of our implicit exploration technique.
Neural Adaptive Sequential Monte Carlo
Sequential Monte Carlo (SMC), or particle filtering, is a popular class of methods for sampling from an intractable target distribution using a sequence of simpler intermediate distributions. Like other importance sampling-based methods, performance is critically dependent on the proposal distribution: a bad proposal can lead to arbitrarily inaccurate estimates of the target distribution. This paper presents a new method for automatically adapting the proposal using an approximation of the Kullback-Leibler divergence between the true posterior and the proposal distribution. The method is very flexible, applicable to any parameterized proposal distribution and it supports online and batch variants. We use the new framework to adapt powerful proposal distributions with rich parameterizations based upon neural networks leading to Neural Adaptive Sequential Monte Carlo (NASMC). Experiments indicate that NASMC significantly improves inference in a non-linear state space model outperforming adaptive proposal methods including the Extended Kalman and Unscented Particle Filters. Experiments also indicate that improved inference translates into improved parameter learning when NASMC is used as a subroutine of Particle Marginal Metropolis Hastings. Finally we show that NASMC is able to train a latent variable recurrent neural network (LV-RNN) achieving results that compete with the state-of-the-art for polymorphic music modelling. NASMC can be seen as bridging the gap between adaptive SMC methods and the recent work in scalable, black-box variational inference.
An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives
We consider a contextual version of multi-armed bandit problem with global knapsack constraints. In each round, the outcome of pulling an arm is a scalar reward and a resource consumption vector, both dependent on the context, and the global knapsack constraints require the total consumption for each resource to be below some pre-fixed budget. The learning agent competes with an arbitrary set of context-dependent policies. This problem was introduced by Badanidiyuru et al. (2014), who gave a computationally inefficient algorithm with near-optimal regret bounds for it. We give a computationally efficient algorithm for this problem with slightly better regret bounds, by generalizing the approach of Agarwal et al. (2014) for the non-constrained version of the problem. The computational time of our algorithm scales logarithmically in the size of the policy space. This answers the main open question of Badanidiyuru et al. (2014). We also extend our results to a variant where there are no knapsack constraints but the objective is an arbitrary Lipschitz concave function of the sum of outcome vectors.
On the Prior Sensitivity of Thompson Sampling
The empirically successful Thompson Sampling algorithm for stochastic bandits has drawn much interest in understanding its theoretical properties. One important benefit of the algorithm is that it allows domain knowledge to be conveniently encoded as a prior distribution to balance exploration and exploitation more effectively. While it is generally believed that the algorithm's regret is low (high) when the prior is good (bad), little is known about the exact dependence. In this paper, we fully characterize the algorithm's worst-case dependence of regret on the choice of prior, focusing on a special yet representative case. These results also provide insights into the general sensitivity of the algorithm to the choice of priors. In particular, with $p$ being the prior probability mass of the true reward-generating model, we prove $O(\sqrt{T/p})$ and $O(\sqrt{(1-p)T})$ regret upper bounds for the bad- and good-prior cases, respectively, as well as \emph{matching} lower bounds. Our proofs rely on the discovery of a fundamental property of Thompson Sampling and make heavy use of martingale theory, both of which appear novel in the literature, to the best of our knowledge.
The Online Coupon-Collector Problem and Its Application to Lifelong Reinforcement Learning
Transferring knowledge across a sequence of related tasks is an important challenge in reinforcement learning (RL). Despite much encouraging empirical evidence, there has been little theoretical analysis. In this paper, we study a class of lifelong RL problems: the agent solves a sequence of tasks modeled as finite Markov decision processes (MDPs), each of which is from a finite set of MDPs with the same state/action sets and different transition/reward functions. Motivated by the need for cross-task exploration in lifelong learning, we formulate a novel online coupon-collector problem and give an optimal algorithm. This allows us to develop a new lifelong RL algorithm, whose overall sample complexity in a sequence of tasks is much smaller than single-task learning, even if the sequence of tasks is generated by an adversary. Benefits of the algorithm are demonstrated in simulated problems, including a recently introduced human-robot interaction problem.
Sparse Projection Oblique Randomer Forests
Decision forests, including Random Forests and Gradient Boosting Trees, have recently demonstrated state-of-the-art performance in a variety of machine learning settings. Decision forests are typically ensembles of axis-aligned decision trees; that is, trees that split only along feature dimensions. In contrast, many recent extensions to decision forests are based on axis-oblique splits. Unfortunately, these extensions forfeit one or more of the favorable properties of decision forests based on axis-aligned splits, such as robustness to many noise dimensions, interpretability, or computational efficiency. We introduce yet another decision forest, called "Sparse Projection Oblique Randomer Forests" (SPORF). SPORF uses very sparse random projections, i.e., linear combinations of a small subset of features. SPORF significantly improves accuracy over existing state-of-the-art algorithms on a standard benchmark suite for classification with >100 problems of varying dimension, sample size, and number of classes. To illustrate how SPORF addresses the limitations of both axis-aligned and existing oblique decision forest methods, we conduct extensive simulated experiments. SPORF typically yields improved performance over existing decision forests, while mitigating computational efficiency and scalability and maintaining interpretability. SPORF can easily be incorporated into other ensemble methods such as boosting to obtain potentially similar gains.
Convergence rates for pretraining and dropout: Guiding learning parameters using network structure
Unsupervised pretraining and dropout have been well studied, especially with respect to regularization and output consistency. However, our understanding about the explicit convergence rates of the parameter estimates, and their dependence on the learning (like denoising and dropout rate) and structural (like depth and layer lengths) aspects of the network is less mature. An interesting question in this context is to ask if the network structure could "guide" the choices of such learning parameters. In this work, we explore these gaps between network structure, the learning mechanisms and their interaction with parameter convergence rates. We present a way to address these issues based on the backpropagation convergence rates for general nonconvex objectives using first-order information. We then incorporate two learning mechanisms into this general framework -- denoising autoencoder and dropout, and subsequently derive the convergence rates of deep networks. Building upon these bounds, we provide insights into the choices of learning parameters and network sizes that achieve certain levels of convergence accuracy. The results derived here support existing empirical observations, and we also conduct a set of experiments to evaluate them.
Fast Online Clustering with Randomized Skeleton Sets
We present a new fast online clustering algorithm that reliably recovers arbitrary-shaped data clusters in high throughout data streams. Unlike the existing state-of-the-art online clustering methods based on k-means or k-medoid, it does not make any restrictive generative assumptions. In addition, in contrast to existing nonparametric clustering techniques such as DBScan or DenStream, it gives provable theoretical guarantees. To achieve fast clustering, we propose to represent each cluster by a skeleton set which is updated continuously as new data is seen. A skeleton set consists of weighted samples from the data where weights encode local densities. The size of each skeleton set is adapted according to the cluster geometry. The proposed technique automatically detects the number of clusters and is robust to outliers. The algorithm works for the infinite data stream where more than one pass over the data is not feasible. We provide theoretical guarantees on the quality of the clustering and also demonstrate its advantage over the existing state-of-the-art on several datasets.
Generative Image Modeling Using Spatial LSTMs
Modeling the distribution of natural images is challenging, partly because of strong statistical dependencies which can extend over hundreds of pixels. Recurrent neural networks have been successful in capturing long-range dependencies in a number of problems but only recently have found their way into generative image models. We here introduce a recurrent image model based on multi-dimensional long short-term memory units which are particularly suited for image modeling due to their spatial structure. Our model scales to images of arbitrary size and its likelihood is computationally tractable. We find that it outperforms the state of the art in quantitative comparisons on several image datasets and produces promising results when used for texture synthesis and inpainting.
Sequential Nonparametric Testing with the Law of the Iterated Logarithm
We propose a new algorithmic framework for sequential hypothesis testing with i.i.d. data, which includes A/B testing, nonparametric two-sample testing, and independence testing as special cases. It is novel in several ways: (a) it takes linear time and constant space to compute on the fly, (b) it has the same power guarantee as a non-sequential version of the test with the same computational constraints up to a small factor, and (c) it accesses only as many samples as are required - its stopping time adapts to the unknown difficulty of the problem. All our test statistics are constructed to be zero-mean martingales under the null hypothesis, and the rejection threshold is governed by a uniform non-asymptotic law of the iterated logarithm (LIL). For the case of nonparametric two-sample mean testing, we also provide a finite sample power analysis, and the first non-asymptotic stopping time calculations for this class of problems. We verify our predictions for type I and II errors and stopping times using simulations.
Bayesian Poisson Tensor Factorization for Inferring Multilateral Relations from Sparse Dyadic Event Counts
We present a Bayesian tensor factorization model for inferring latent group structures from dynamic pairwise interaction patterns. For decades, political scientists have collected and analyzed records of the form "country $i$ took action $a$ toward country $j$ at time $t$"---known as dyadic events---in order to form and test theories of international relations. We represent these event data as a tensor of counts and develop Bayesian Poisson tensor factorization to infer a low-dimensional, interpretable representation of their salient patterns. We demonstrate that our model's predictive performance is better than that of standard non-negative tensor factorization methods. We also provide a comparison of our variational updates to their maximum likelihood counterparts. In doing so, we identify a better way to form point estimates of the latent factors than that typically used in Bayesian Poisson matrix factorization. Finally, we showcase our model as an exploratory analysis tool for political scientists. We show that the inferred latent factor matrices capture interpretable multilateral relations that both conform to and inform our knowledge of international affairs.
Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation
The completion of low rank matrices from few entries is a task with many practical applications. We consider here two aspects of this problem: detectability, i.e. the ability to estimate the rank $r$ reliably from the fewest possible random entries, and performance in achieving small reconstruction error. We propose a spectral algorithm for these two tasks called MaCBetH (for Matrix Completion with the Bethe Hessian). The rank is estimated as the number of negative eigenvalues of the Bethe Hessian matrix, and the corresponding eigenvectors are used as initial condition for the minimization of the discrepancy between the estimated matrix and the revealed entries. We analyze the performance in a random matrix setting using results from the statistical mechanics of the Hopfield neural network, and show in particular that MaCBetH efficiently detects the rank $r$ of a large $n\times m$ matrix from $C(r)r\sqrt{nm}$ entries, where $C(r)$ is a constant close to $1$. We also evaluate the corresponding root-mean-square error empirically and show that MaCBetH compares favorably to other existing approaches.
Data Generation as Sequential Decision Making
We connect a broad class of generative models through their shared reliance on sequential decision making. Motivated by this view, we develop extensions to an existing model, and then explore the idea further in the context of data imputation -- perhaps the simplest setting in which to investigate the relation between unconditional and conditional generative modelling. We formulate data imputation as an MDP and develop models capable of representing effective policies for it. We construct the models using neural networks and train them using a form of guided policy search. Our models generate predictions through an iterative process of feedback and refinement. We show that this approach can learn effective policies for imputation problems of varying difficulty and across multiple datasets.
Convolutional Dictionary Learning through Tensor Factorization
Tensor methods have emerged as a powerful paradigm for consistent learning of many latent variable models such as topic models, independent component analysis and dictionary learning. Model parameters are estimated via CP decomposition of the observed higher order input moments. However, in many domains, additional invariances such as shift invariances exist, enforced via models such as convolutional dictionary learning. In this paper, we develop novel tensor decomposition algorithms for parameter estimation of convolutional models. Our algorithm is based on the popular alternating least squares method, but with efficient projections onto the space of stacked circulant matrices. Our method is embarrassingly parallel and consists of simple operations such as fast Fourier transforms and matrix multiplications. Our algorithm converges to the dictionary much faster and more accurately compared to the alternating minimization over filters and activation maps.
Max-Entropy Feed-Forward Clustering Neural Network
The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI datasets, comparing with a few baselines and applied purity as the measurement . The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.
Margin-Based Feed-Forward Neural Network Classifiers
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.
Constrained Convolutional Neural Networks for Weakly Supervised Segmentation
We present an approach to learn a dense pixel-wise labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of a Convolutional Neural Network (CNN) classifier. We propose Constrained CNN (CCNN), a method which uses a novel loss function to optimize for any set of linear constraints on the output space (i.e. predicted label distribution) of a CNN. Our loss formulation is easy to optimize and can be incorporated directly into standard stochastic gradient descent optimization. The key idea is to phrase the training objective as a biconvex optimization for linear models, which we then relax to nonlinear deep networks. Extensive experiments demonstrate the generality of our new learning framework. The constrained loss yields state-of-the-art results on weakly supervised semantic image segmentation. We further demonstrate that adding slightly more supervision can greatly improve the performance of the learning algorithm.
Variance Reduced Stochastic Gradient Descent with Neighbors
Stochastic Gradient Descent (SGD) is a workhorse in machine learning, yet its slow convergence can be a computational bottleneck. Variance reduction techniques such as SAG, SVRG and SAGA have been proposed to overcome this weakness, achieving linear convergence. However, these methods are either based on computations of full gradients at pivot points, or on keeping per data point corrections in memory. Therefore speed-ups relative to SGD may need a minimal number of epochs in order to materialize. This paper investigates algorithms that can exploit neighborhood structure in the training data to share and re-use information about past stochastic gradients across data points, which offers advantages in the transient optimization phase. As a side-product we provide a unified convergence analysis for a family of variance reduction algorithms, which we call memorization algorithms. We provide experimental results supporting our theory.
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference
We describe an embarrassingly parallel, anytime Monte Carlo method for likelihood-free models. The algorithm starts with the view that the stochasticity of the pseudo-samples generated by the simulator can be controlled externally by a vector of random numbers u, in such a way that the outcome, knowing u, is deterministic. For each instantiation of u we run an optimization procedure to minimize the distance between summary statistics of the simulator and the data. After reweighing these samples using the prior and the Jacobian (accounting for the change of volume in transforming from the space of summary statistics to the space of parameters) we show that this weighted ensemble represents a Monte Carlo estimate of the posterior distribution. The procedure can be run embarrassingly parallel (each node handling one sample) and anytime (by allocating resources to the worst performing sample). The procedure is validated on six experiments.
Random Maxout Features
In this paper, we propose and study random maxout features, which are constructed by first projecting the input data onto sets of randomly generated vectors with Gaussian elements, and then outputing the maximum projection value for each set. We show that the resulting random feature map, when used in conjunction with linear models, allows for the locally linear estimation of the function of interest in classification tasks, and for the locally linear embedding of points when used for dimensionality reduction or data visualization. We derive generalization bounds for learning that assess the error in approximating locally linear functions by linear functions in the maxout feature space, and empirically evaluate the efficacy of the approach on the MNIST and TIMIT classification tasks.
Recovering communities in the general stochastic block model without knowing the parameters
Most recent developments on the stochastic block model (SBM) rely on the knowledge of the model parameters, or at least on the number of communities. This paper introduces efficient algorithms that do not require such knowledge and yet achieve the optimal information-theoretic tradeoffs identified in [AS15] for linear size communities. The results are three-fold: (i) in the constant degree regime, an algorithm is developed that requires only a lower-bound on the relative sizes of the communities and detects communities with an optimal accuracy scaling for large degrees; (ii) in the regime where degrees are scaled by $\omega(1)$ (diverging degrees), this is enhanced into a fully agnostic algorithm that only takes the graph in question and simultaneously learns the model parameters (including the number of communities) and detects communities with accuracy $1-o(1)$, with an overall quasi-linear complexity; (iii) in the logarithmic degree regime, an agnostic algorithm is developed that learns the parameters and achieves the optimal CH-limit for exact recovery, in quasi-linear time. These provide the first algorithms affording efficiency, universality and information-theoretic optimality for strong and weak consistency in the general SBM with linear size communities.
GAP Safe screening rules for sparse multi-task and multi-class models
High dimensional regression benefits from sparsity promoting regularizations. Screening rules leverage the known sparsity of the solution by ignoring some variables in the optimization, hence speeding up solvers. When the procedure is proven not to discard features wrongly the rules are said to be \emph{safe}. In this paper we derive new safe rules for generalized linear models regularized with $\ell_1$ and $\ell_1/\ell_2$ norms. The rules are based on duality gap computations and spherical safe regions whose diameters converge to zero. This allows to discard safely more variables, in particular for low regularization parameters. The GAP Safe rule can cope with any iterative solver and we illustrate its performance on coordinate descent for multi-task Lasso, binary and multinomial logistic regression, demonstrating significant speed ups on all tested datasets with respect to previous safe rules.
Spectral Representations for Convolutional Neural Networks
Discrete Fourier transforms provide a significant speedup in the computation of convolutions in deep learning. In this work, we demonstrate that, beyond its advantages for efficient computation, the spectral domain also provides a powerful representation in which to model and train convolutional neural networks (CNNs). We employ spectral representations to introduce a number of innovations to CNN design. First, we propose spectral pooling, which performs dimensionality reduction by truncating the representation in the frequency domain. This approach preserves considerably more information per parameter than other pooling strategies and enables flexibility in the choice of pooling output dimensionality. This representation also enables a new form of stochastic regularization by randomized modification of resolution. We show that these methods achieve competitive results on classification and approximation tasks, without using any dropout or max-pooling. Finally, we demonstrate the effectiveness of complex-coefficient spectral parameterization of convolutional filters. While this leaves the underlying model unchanged, it results in a representation that greatly facilitates optimization. We observe on a variety of popular CNN configurations that this leads to significantly faster convergence during training.
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Many real-world regression problems demand a measure of the uncertainty associated with each prediction. Standard decision forests deliver efficient state-of-the-art predictive performance, but high-quality uncertainty estimates are lacking. Gaussian processes (GPs) deliver uncertainty estimates, but scaling GPs to large-scale data sets comes at the cost of approximating the uncertainty estimates. We extend Mondrian forests, first proposed by Lakshminarayanan et al. (2014) for classification problems, to the large-scale non-parametric regression setting. Using a novel hierarchical Gaussian prior that dovetails with the Mondrian forest framework, we obtain principled uncertainty estimates, while still retaining the computational advantages of decision forests. Through a combination of illustrative examples, real-world large-scale datasets, and Bayesian optimization benchmarks, we demonstrate that Mondrian forests outperform approximate GPs on large-scale regression tasks and deliver better-calibrated uncertainty assessments than decision-forest-based methods.
Bidirectional Helmholtz Machines
Efficient unsupervised training and inference in deep generative models remains a challenging problem. One basic approach, called Helmholtz machine, involves training a top-down directed generative model together with a bottom-up auxiliary model used for approximate inference. Recent results indicate that better generative models can be obtained with better approximate inference procedures. Instead of improving the inference procedure, we here propose a new model which guarantees that the top-down and bottom-up distributions can efficiently invert each other. We achieve this by interpreting both the top-down and the bottom-up directed models as approximate inference distributions and by defining the model distribution to be the geometric mean of these two. We present a lower-bound for the likelihood of this model and we show that optimizing this bound regularizes the model so that the Bhattacharyya distance between the bottom-up and top-down approximate distributions is minimized. This approach results in state of the art generative models which prefer significantly deeper architectures while it allows for orders of magnitude more efficient approximate inference.
Place classification with a graph regularized deep neural network model
Place classification is a fundamental ability that a robot should possess to carry out effective human-robot interactions. It is a nontrivial classification problem which has attracted many research. In recent years, there is a high exploitation of Artificial Intelligent algorithms in robotics applications. Inspired by the recent successes of deep learning methods, we propose an end-to-end learning approach for the place classification problem. With the deep architectures, this methodology automatically discovers features and contributes in general to higher classification accuracies. The pipeline of our approach is composed of three parts. Firstly, we construct multiple layers of laser range data to represent the environment information in different levels of granularity. Secondly, each layer of data is fed into a deep neural network model for classification, where a graph regularization is imposed to the deep architecture for keeping local consistency between adjacent samples. Finally, the predicted labels obtained from all the layers are fused based on confidence trees to maximize the overall confidence. Experimental results validate the effective- ness of our end-to-end place classification framework in which both the multi-layer structure and the graph regularization promote the classification performance. Furthermore, results show that the features automatically learned from the raw input range data can achieve competitive results to the features constructed based on statistical and geometrical information.