Datasets:
File size: 6,245 Bytes
8d88d9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import { z } from "zod";
import type { Endpoint } from "../endpoints";
import { env } from "$env/dynamic/private";
import type { TextGenerationStreamOutput } from "@huggingface/inference";
import { createImageProcessorOptionsValidator } from "../images";
import { endpointMessagesToAnthropicMessages, addToolResults } from "./utils";
import { createDocumentProcessorOptionsValidator } from "../document";
import type {
Tool,
ToolCall,
ToolInput,
ToolInputFile,
ToolInputFixed,
ToolInputOptional,
} from "$lib/types/Tool";
import type Anthropic from "@anthropic-ai/sdk";
import type { MessageParam } from "@anthropic-ai/sdk/resources/messages.mjs";
import directlyAnswer from "$lib/server/tools/directlyAnswer";
export const endpointAnthropicParametersSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("anthropic"),
baseURL: z.string().url().default("https://api.anthropic.com"),
apiKey: z.string().default(env.ANTHROPIC_API_KEY ?? "sk-"),
defaultHeaders: z.record(z.string()).optional(),
defaultQuery: z.record(z.string()).optional(),
multimodal: z
.object({
image: createImageProcessorOptionsValidator({
supportedMimeTypes: ["image/png", "image/jpeg", "image/webp"],
preferredMimeType: "image/webp",
// The 4 / 3 compensates for the 33% increase in size when converting to base64
maxSizeInMB: (5 / 4) * 3,
maxWidth: 4096,
maxHeight: 4096,
}),
document: createDocumentProcessorOptionsValidator({
supportedMimeTypes: ["application/pdf"],
maxSizeInMB: 32,
}),
})
.default({}),
});
export async function endpointAnthropic(
input: z.input<typeof endpointAnthropicParametersSchema>
): Promise<Endpoint> {
const { baseURL, apiKey, model, defaultHeaders, defaultQuery, multimodal } =
endpointAnthropicParametersSchema.parse(input);
let Anthropic;
try {
Anthropic = (await import("@anthropic-ai/sdk")).default;
} catch (e) {
throw new Error("Failed to import @anthropic-ai/sdk", { cause: e });
}
const anthropic = new Anthropic({
apiKey,
baseURL,
defaultHeaders,
defaultQuery,
});
return async ({
messages,
preprompt,
generateSettings,
conversationId,
tools = [],
toolResults = [],
}) => {
let system = preprompt;
if (messages?.[0]?.from === "system") {
system = messages[0].content;
}
let tokenId = 0;
if (tools.length === 0 && toolResults.length > 0) {
const toolNames = new Set(toolResults.map((tool) => tool.call.name));
tools = Array.from(toolNames).map((name) => ({
name,
description: "",
inputs: [],
})) as unknown as Tool[];
}
const parameters = { ...model.parameters, ...generateSettings };
return (async function* () {
const stream = anthropic.messages.stream({
model: model.id ?? model.name,
tools: createAnthropicTools(tools),
tool_choice:
tools.length > 0 ? { type: "auto", disable_parallel_tool_use: false } : undefined,
messages: addToolResults(
await endpointMessagesToAnthropicMessages(messages, multimodal, conversationId),
toolResults
) as MessageParam[],
max_tokens: parameters?.max_new_tokens,
temperature: parameters?.temperature,
top_p: parameters?.top_p,
top_k: parameters?.top_k,
stop_sequences: parameters?.stop,
system,
});
while (true) {
const result = await Promise.race([stream.emitted("text"), stream.emitted("end")]);
if (result === undefined) {
if ("tool_use" === stream.receivedMessages[0].stop_reason) {
// this should really create a new "Assistant" message with the tool id in it.
const toolCalls: ToolCall[] = stream.receivedMessages[0].content
.filter(
(block): block is Anthropic.Messages.ContentBlock & { type: "tool_use" } =>
block.type === "tool_use"
)
.map((block) => ({
name: block.name,
parameters: block.input as Record<string, string | number | boolean>,
id: block.id,
}));
yield {
token: { id: tokenId, text: "", logprob: 0, special: false, toolCalls },
generated_text: null,
details: null,
};
} else {
yield {
token: {
id: tokenId++,
text: "",
logprob: 0,
special: true,
},
generated_text: await stream.finalText(),
details: null,
} satisfies TextGenerationStreamOutput;
}
return;
}
// Text delta
yield {
token: {
id: tokenId++,
text: result as unknown as string,
special: false,
logprob: 0,
},
generated_text: null,
details: null,
} satisfies TextGenerationStreamOutput;
}
})();
};
}
function createAnthropicTools(tools: Tool[]): Anthropic.Messages.Tool[] {
return tools
.filter((tool) => tool.name !== directlyAnswer.name)
.map((tool) => {
const properties = tool.inputs.reduce((acc, input) => {
acc[input.name] = convertToolInputToJSONSchema(input);
return acc;
}, {} as Record<string, unknown>);
const required = tool.inputs
.filter((input) => input.paramType === "required")
.map((input) => input.name);
return {
name: tool.name,
description: tool.description,
input_schema: {
type: "object",
properties,
required: required.length > 0 ? required : undefined,
},
};
});
}
function convertToolInputToJSONSchema(input: ToolInput): Record<string, unknown> {
const baseSchema: Record<string, unknown> = {};
if ("description" in input) {
baseSchema["description"] = input.description || "";
}
switch (input.paramType) {
case "optional":
baseSchema["default"] = (input as ToolInputOptional).default;
break;
case "fixed":
baseSchema["const"] = (input as ToolInputFixed).value;
break;
}
if (input.type === "file") {
baseSchema["type"] = "string";
baseSchema["format"] = "binary";
baseSchema["mimeTypes"] = (input as ToolInputFile).mimeTypes;
} else {
switch (input.type) {
case "str":
baseSchema["type"] = "string";
break;
case "int":
baseSchema["type"] = "integer";
break;
case "float":
baseSchema["type"] = "number";
break;
case "bool":
baseSchema["type"] = "boolean";
break;
}
}
return baseSchema;
}
|