File size: 4,594 Bytes
8d88d9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import { GoogleGenerativeAI, HarmBlockThreshold, HarmCategory } from "@google/generative-ai";
import type { Content, Part, SafetySetting, TextPart } from "@google/generative-ai";
import { z } from "zod";
import type { Message, MessageFile } from "$lib/types/Message";
import type { TextGenerationStreamOutput } from "@huggingface/inference";
import type { Endpoint } from "../endpoints";
import { createImageProcessorOptionsValidator, makeImageProcessor } from "../images";
import type { ImageProcessorOptions } from "../images";
import { env } from "$env/dynamic/private";

export const endpointGenAIParametersSchema = z.object({
	weight: z.number().int().positive().default(1),
	model: z.any(),
	type: z.literal("genai"),
	apiKey: z.string().default(env.GOOGLE_GENAI_API_KEY),
	safetyThreshold: z
		.enum([
			HarmBlockThreshold.HARM_BLOCK_THRESHOLD_UNSPECIFIED,
			HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
			HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
			HarmBlockThreshold.BLOCK_NONE,
			HarmBlockThreshold.BLOCK_ONLY_HIGH,
		])
		.optional(),
	multimodal: z
		.object({
			image: createImageProcessorOptionsValidator({
				supportedMimeTypes: ["image/png", "image/jpeg", "image/webp"],
				preferredMimeType: "image/webp",
				// The 4 / 3 compensates for the 33% increase in size when converting to base64
				maxSizeInMB: (5 / 4) * 3,
				maxWidth: 4096,
				maxHeight: 4096,
			}),
		})
		.default({}),
});

export function endpointGenAI(input: z.input<typeof endpointGenAIParametersSchema>): Endpoint {
	const { model, apiKey, safetyThreshold, multimodal } = endpointGenAIParametersSchema.parse(input);

	const genAI = new GoogleGenerativeAI(apiKey);

	const safetySettings = safetyThreshold
		? Object.keys(HarmCategory)
				.filter((cat) => cat !== HarmCategory.HARM_CATEGORY_UNSPECIFIED)
				.reduce((acc, val) => {
					acc.push({
						category: val as HarmCategory,
						threshold: safetyThreshold,
					});
					return acc;
				}, [] as SafetySetting[])
		: undefined;

	return async ({ messages, preprompt, generateSettings }) => {
		const parameters = { ...model.parameters, ...generateSettings };

		const generativeModel = genAI.getGenerativeModel({
			model: model.id ?? model.name,
			safetySettings,
			generationConfig: {
				maxOutputTokens: parameters?.max_new_tokens ?? 4096,
				stopSequences: parameters?.stop,
				temperature: parameters?.temperature ?? 1,
			},
		});

		let systemMessage = preprompt;
		if (messages[0].from === "system") {
			systemMessage = messages[0].content;
			messages.shift();
		}

		const genAIMessages = await Promise.all(
			messages.map(async ({ from, content, files }: Omit<Message, "id">): Promise<Content> => {
				return {
					role: from === "user" ? "user" : "model",
					parts: [
						...(await Promise.all(
							(files ?? []).map((file) => fileToImageBlock(file, multimodal.image))
						)),
						{ text: content },
					],
				};
			})
		);

		const result = await generativeModel.generateContentStream({
			contents: genAIMessages,
			systemInstruction:
				systemMessage && systemMessage.trim() !== ""
					? {
							role: "system",
							parts: [{ text: systemMessage }],
					  }
					: undefined,
		});

		let tokenId = 0;
		return (async function* () {
			let generatedText = "";

			for await (const data of result.stream) {
				if (!data?.candidates?.length) break; // Handle case where no candidates are present

				const candidate = data.candidates[0];
				if (!candidate.content?.parts?.length) continue; // Skip if no parts are present

				const firstPart = candidate.content.parts.find((part) => "text" in part) as
					| TextPart
					| undefined;
				if (!firstPart) continue; // Skip if no text part is found

				const content = firstPart.text;
				generatedText += content;

				const output: TextGenerationStreamOutput = {
					token: {
						id: tokenId++,
						text: content,
						logprob: 0,
						special: false,
					},
					generated_text: null,
					details: null,
				};
				yield output;
			}

			const output: TextGenerationStreamOutput = {
				token: {
					id: tokenId++,
					text: "",
					logprob: 0,
					special: true,
				},
				generated_text: generatedText,
				details: null,
			};
			yield output;
		})();
	};
}

async function fileToImageBlock(
	file: MessageFile,
	opts: ImageProcessorOptions<"image/png" | "image/jpeg" | "image/webp">
): Promise<Part> {
	const processor = makeImageProcessor(opts);
	const { image, mime } = await processor(file);

	return {
		inlineData: {
			mimeType: mime,
			data: image.toString("base64"),
		},
	};
}

export default endpointGenAI;