Datasets:
File size: 11,917 Bytes
8d88d9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import { env } from "$env/dynamic/private";
import type { ChatTemplateInput } from "$lib/types/Template";
import { compileTemplate } from "$lib/utils/template";
import { z } from "zod";
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints";
import { endpointTgi } from "./endpoints/tgi/endpointTgi";
import { sum } from "$lib/utils/sum";
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels";
import type { PreTrainedTokenizer } from "@huggingface/transformers";
import JSON5 from "json5";
import { getTokenizer } from "$lib/utils/getTokenizer";
import { logger } from "$lib/server/logger";
import { ToolResultStatus, type ToolInput } from "$lib/types/Tool";
import { isHuggingChat } from "$lib/utils/isHuggingChat";
type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>;
const reasoningSchema = z.union([
z.object({
type: z.literal("regex"), // everything is reasoning, extract the answer from the regex
regex: z.string(),
}),
z.object({
type: z.literal("tokens"), // use beginning and end tokens that define the reasoning portion of the answer
beginToken: z.string(),
endToken: z.string(),
}),
z.object({
type: z.literal("summarize"), // everything is reasoning, summarize the answer
}),
]);
const modelConfig = z.object({
/** Used as an identifier in DB */
id: z.string().optional(),
/** Used to link to the model page, and for inference */
name: z.string().default(""),
displayName: z.string().min(1).optional(),
description: z.string().min(1).optional(),
logoUrl: z.string().url().optional(),
websiteUrl: z.string().url().optional(),
modelUrl: z.string().url().optional(),
tokenizer: z
.union([
z.string(),
z.object({
tokenizerUrl: z.string().url(),
tokenizerConfigUrl: z.string().url(),
}),
])
.optional(),
datasetName: z.string().min(1).optional(),
datasetUrl: z.string().url().optional(),
preprompt: z.string().default(""),
prepromptUrl: z.string().url().optional(),
chatPromptTemplate: z.string().optional(),
promptExamples: z
.array(
z.object({
title: z.string().min(1),
prompt: z.string().min(1),
})
)
.optional(),
endpoints: z.array(endpointSchema).optional(),
parameters: z
.object({
temperature: z.number().min(0).max(2).optional(),
truncate: z.number().int().positive().optional(),
max_new_tokens: z.number().int().positive().optional(),
stop: z.array(z.string()).optional(),
top_p: z.number().positive().optional(),
top_k: z.number().positive().optional(),
repetition_penalty: z.number().min(-2).max(2).optional(),
presence_penalty: z.number().min(-2).max(2).optional(),
})
.passthrough()
.optional(),
multimodal: z.boolean().default(false),
multimodalAcceptedMimetypes: z.array(z.string()).optional(),
tools: z.boolean().default(false),
unlisted: z.boolean().default(false),
embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(),
/** Used to enable/disable system prompt usage */
systemRoleSupported: z.boolean().default(true),
reasoning: reasoningSchema.optional(),
});
const modelsRaw = z.array(modelConfig).parse(JSON5.parse(env.MODELS));
async function getChatPromptRender(
m: z.infer<typeof modelConfig>
): Promise<ReturnType<typeof compileTemplate<ChatTemplateInput>>> {
if (m.chatPromptTemplate) {
return compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m);
}
let tokenizer: PreTrainedTokenizer;
try {
tokenizer = await getTokenizer(m.tokenizer ?? m.id ?? m.name);
} catch (e) {
// if fetching the tokenizer fails but it wasnt manually set, use the default template
if (!m.tokenizer) {
logger.warn(
`No tokenizer found for model ${m.name}, using default template. Consider setting tokenizer manually or making sure the model is available on the hub.`,
m
);
return compileTemplate<ChatTemplateInput>(
"{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",
m
);
}
logger.error(
e,
`Failed to load tokenizer ${
m.tokenizer ?? m.id ?? m.name
} make sure the model is available on the hub and you have access to any gated models.`
);
process.exit();
}
const renderTemplate = ({
messages,
preprompt,
tools,
toolResults,
continueMessage,
}: ChatTemplateInput) => {
let formattedMessages: {
role: string;
content: string;
tool_calls?: { id: string; tool_call_id: string; output: string }[];
}[] = messages.map((message) => ({
content: message.content,
role: message.from,
}));
if (!m.systemRoleSupported) {
const firstSystemMessage = formattedMessages.find((msg) => msg.role === "system");
formattedMessages = formattedMessages.filter((msg) => msg.role !== "system");
if (
firstSystemMessage &&
formattedMessages.length > 0 &&
formattedMessages[0].role === "user"
) {
formattedMessages[0].content =
firstSystemMessage.content + "\n" + formattedMessages[0].content;
}
}
if (preprompt && formattedMessages[0].role !== "system") {
formattedMessages = [
{
role: m.systemRoleSupported ? "system" : "user",
content: preprompt,
},
...formattedMessages,
];
}
if (toolResults?.length) {
// todo: should update the command r+ tokenizer to support system messages at any location
// or use the `rag` mode without the citations
const id = m.id ?? m.name;
if (isHuggingChat && id.startsWith("CohereForAI")) {
formattedMessages = [
{
role: "user",
content:
"\n\n<results>\n" +
toolResults
.flatMap((result, idx) => {
if (result.status === ToolResultStatus.Error) {
return (
`Document: ${idx}\n` + `Tool "${result.call.name}" error\n` + result.message
);
}
return (
`Document: ${idx}\n` +
result.outputs
.flatMap((output) =>
Object.entries(output).map(([title, text]) => `${title}\n${text}`)
)
.join("\n")
);
})
.join("\n\n") +
"\n</results>",
},
...formattedMessages,
];
} else if (isHuggingChat && id.startsWith("meta-llama")) {
const results = toolResults.flatMap((result) => {
if (result.status === ToolResultStatus.Error) {
return [
{
tool_call_id: result.call.name,
output: "Error: " + result.message,
},
];
} else {
return result.outputs.map((output) => ({
tool_call_id: result.call.name,
output: JSON.stringify(output),
}));
}
});
formattedMessages = [
...formattedMessages,
{
role: "python",
content: JSON.stringify(results),
},
];
} else {
formattedMessages = [
...formattedMessages,
{
role: m.systemRoleSupported ? "system" : "user",
content: JSON.stringify(toolResults),
},
];
}
tools = [];
}
const mappedTools =
tools?.map((tool) => {
const inputs: Record<
string,
{
type: ToolInput["type"];
description: string;
required: boolean;
}
> = {};
for (const value of tool.inputs) {
if (value.paramType !== "fixed") {
inputs[value.name] = {
type: value.type,
description: value.description ?? "",
required: value.paramType === "required",
};
}
}
return {
name: tool.name,
description: tool.description,
parameter_definitions: inputs,
};
}) ?? [];
const output = tokenizer.apply_chat_template(formattedMessages, {
tokenize: false,
add_generation_prompt: !continueMessage,
tools: mappedTools.length ? mappedTools : undefined,
});
if (typeof output !== "string") {
throw new Error("Failed to apply chat template, the output is not a string");
}
return output;
};
return renderTemplate;
}
const processModel = async (m: z.infer<typeof modelConfig>) => ({
...m,
chatPromptRender: await getChatPromptRender(m),
id: m.id || m.name,
displayName: m.displayName || m.name,
preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt,
parameters: { ...m.parameters, stop_sequences: m.parameters?.stop },
});
const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
...m,
getEndpoint: async (): Promise<Endpoint> => {
if (!m.endpoints) {
return endpointTgi({
type: "tgi",
url: `${env.HF_API_ROOT}/${m.name}`,
accessToken: env.HF_TOKEN ?? env.HF_ACCESS_TOKEN,
weight: 1,
model: m,
});
}
const totalWeight = sum(m.endpoints.map((e) => e.weight));
let random = Math.random() * totalWeight;
for (const endpoint of m.endpoints) {
if (random < endpoint.weight) {
const args = { ...endpoint, model: m };
switch (args.type) {
case "tgi":
return endpoints.tgi(args);
case "anthropic":
return endpoints.anthropic(args);
case "anthropic-vertex":
return endpoints.anthropicvertex(args);
case "bedrock":
return endpoints.bedrock(args);
case "aws":
return await endpoints.aws(args);
case "openai":
return await endpoints.openai(args);
case "llamacpp":
return endpoints.llamacpp(args);
case "ollama":
return endpoints.ollama(args);
case "vertex":
return await endpoints.vertex(args);
case "genai":
return await endpoints.genai(args);
case "cloudflare":
return await endpoints.cloudflare(args);
case "cohere":
return await endpoints.cohere(args);
case "langserve":
return await endpoints.langserve(args);
default:
// for legacy reason
return endpoints.tgi(args);
}
}
random -= endpoint.weight;
}
throw new Error(`Failed to select endpoint`);
},
});
const inferenceApiIds = isHuggingChat
? await fetch(
"https://huggingface.co/api/models?pipeline_tag=text-generation&inference=warm&filter=conversational"
)
.then((r) => r.json())
.then((json) => json.map((r: { id: string }) => r.id))
.catch((err) => {
logger.error(err, "Failed to fetch inference API ids");
return [];
})
: [];
export const models = await Promise.all(
modelsRaw.map((e) =>
processModel(e)
.then(addEndpoint)
.then(async (m) => ({
...m,
hasInferenceAPI: inferenceApiIds.includes(m.id ?? m.name),
}))
)
);
export type ProcessedModel = (typeof models)[number];
// super ugly but not sure how to make typescript happier
export const validModelIdSchema = z.enum(models.map((m) => m.id) as [string, ...string[]]);
export const defaultModel = models[0];
// Models that have been deprecated
export const oldModels = env.OLD_MODELS
? z
.array(
z.object({
id: z.string().optional(),
name: z.string().min(1),
displayName: z.string().min(1).optional(),
transferTo: validModelIdSchema.optional(),
})
)
.parse(JSON5.parse(env.OLD_MODELS))
.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name }))
: [];
export const validateModel = (_models: BackendModel[]) => {
// Zod enum function requires 2 parameters
return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]);
};
// if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself
export const smallModel = env.TASK_MODEL
? (models.find((m) => m.name === env.TASK_MODEL) ||
(await processModel(modelConfig.parse(JSON5.parse(env.TASK_MODEL))).then((m) =>
addEndpoint(m)
))) ??
defaultModel
: defaultModel;
export type BackendModel = Optional<
typeof defaultModel,
"preprompt" | "parameters" | "multimodal" | "unlisted" | "tools" | "hasInferenceAPI"
>;
|