|
import { |
|
VertexAI, |
|
HarmCategory, |
|
HarmBlockThreshold, |
|
type Content, |
|
type TextPart, |
|
} from "@google-cloud/vertexai"; |
|
import type { Endpoint, TextGenerationStreamOutputWithToolsAndWebSources } from "../endpoints"; |
|
import { z } from "zod"; |
|
import type { Message } from "$lib/types/Message"; |
|
import { createImageProcessorOptionsValidator, makeImageProcessor } from "../images"; |
|
import { createDocumentProcessorOptionsValidator, makeDocumentProcessor } from "../document"; |
|
|
|
export const endpointVertexParametersSchema = z.object({ |
|
weight: z.number().int().positive().default(1), |
|
model: z.any(), |
|
type: z.literal("vertex"), |
|
location: z.string().default("europe-west1"), |
|
extraBody: z.object({ model_version: z.string() }).optional(), |
|
project: z.string(), |
|
apiEndpoint: z.string().optional(), |
|
safetyThreshold: z |
|
.enum([ |
|
HarmBlockThreshold.HARM_BLOCK_THRESHOLD_UNSPECIFIED, |
|
HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, |
|
HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, |
|
HarmBlockThreshold.BLOCK_NONE, |
|
HarmBlockThreshold.BLOCK_ONLY_HIGH, |
|
]) |
|
.optional(), |
|
tools: z.array(z.any()).optional(), |
|
multimodal: z |
|
.object({ |
|
image: createImageProcessorOptionsValidator({ |
|
supportedMimeTypes: [ |
|
"image/png", |
|
"image/jpeg", |
|
"image/webp", |
|
"image/avif", |
|
"image/tiff", |
|
"image/gif", |
|
], |
|
preferredMimeType: "image/webp", |
|
maxSizeInMB: 20, |
|
maxWidth: 4096, |
|
maxHeight: 4096, |
|
}), |
|
document: createDocumentProcessorOptionsValidator({ |
|
supportedMimeTypes: ["application/pdf", "text/plain"], |
|
maxSizeInMB: 20, |
|
}), |
|
}) |
|
.default({}), |
|
}); |
|
|
|
export function endpointVertex(input: z.input<typeof endpointVertexParametersSchema>): Endpoint { |
|
const { project, location, model, apiEndpoint, safetyThreshold, tools, multimodal, extraBody } = |
|
endpointVertexParametersSchema.parse(input); |
|
|
|
const vertex_ai = new VertexAI({ |
|
project, |
|
location, |
|
apiEndpoint, |
|
}); |
|
|
|
return async ({ messages, preprompt, generateSettings }) => { |
|
const parameters = { ...model.parameters, ...generateSettings }; |
|
|
|
const hasFiles = messages.some((message) => message.files && message.files.length > 0); |
|
|
|
const generativeModel = vertex_ai.getGenerativeModel({ |
|
model: extraBody?.model_version ?? model.id ?? model.name, |
|
safetySettings: safetyThreshold |
|
? [ |
|
{ |
|
category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, |
|
threshold: safetyThreshold, |
|
}, |
|
{ |
|
category: HarmCategory.HARM_CATEGORY_HARASSMENT, |
|
threshold: safetyThreshold, |
|
}, |
|
{ |
|
category: HarmCategory.HARM_CATEGORY_HATE_SPEECH, |
|
threshold: safetyThreshold, |
|
}, |
|
{ |
|
category: HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, |
|
threshold: safetyThreshold, |
|
}, |
|
{ |
|
category: HarmCategory.HARM_CATEGORY_UNSPECIFIED, |
|
threshold: safetyThreshold, |
|
}, |
|
] |
|
: undefined, |
|
generationConfig: { |
|
maxOutputTokens: parameters?.max_new_tokens ?? 4096, |
|
stopSequences: parameters?.stop, |
|
temperature: parameters?.temperature ?? 1, |
|
}, |
|
|
|
tools: !hasFiles ? tools : undefined, |
|
}); |
|
|
|
|
|
let systemMessage = preprompt; |
|
if (messages[0].from === "system") { |
|
systemMessage = messages[0].content; |
|
messages.shift(); |
|
} |
|
|
|
const vertexMessages = await Promise.all( |
|
messages.map(async ({ from, content, files }: Omit<Message, "id">): Promise<Content> => { |
|
const imageProcessor = makeImageProcessor(multimodal.image); |
|
const documentProcessor = makeDocumentProcessor(multimodal.document); |
|
|
|
const processedFilesWithNull = |
|
files && files.length > 0 |
|
? await Promise.all( |
|
files.map(async (file) => { |
|
if (file.mime.includes("image")) { |
|
const { image, mime } = await imageProcessor(file); |
|
|
|
return { file: image, mime }; |
|
} else if (file.mime === "application/pdf" || file.mime === "text/plain") { |
|
return documentProcessor(file); |
|
} |
|
|
|
return null; |
|
}) |
|
) |
|
: []; |
|
|
|
const processedFiles = processedFilesWithNull.filter((file) => file !== null); |
|
|
|
return { |
|
role: from === "user" ? "user" : "model", |
|
parts: [ |
|
...processedFiles.map((processedFile) => ({ |
|
inlineData: { |
|
data: processedFile.file.toString("base64"), |
|
mimeType: processedFile.mime, |
|
}, |
|
})), |
|
{ |
|
text: content, |
|
}, |
|
], |
|
}; |
|
}) |
|
); |
|
|
|
const result = await generativeModel.generateContentStream({ |
|
contents: vertexMessages, |
|
systemInstruction: systemMessage |
|
? { |
|
role: "system", |
|
parts: [ |
|
{ |
|
text: systemMessage, |
|
}, |
|
], |
|
} |
|
: undefined, |
|
}); |
|
|
|
let tokenId = 0; |
|
return (async function* () { |
|
let generatedText = ""; |
|
|
|
const webSources = []; |
|
|
|
for await (const data of result.stream) { |
|
if (!data?.candidates?.length) break; |
|
|
|
const candidate = data.candidates[0]; |
|
if (!candidate.content?.parts?.length) continue; |
|
|
|
const firstPart = candidate.content.parts.find((part) => "text" in part) as |
|
| TextPart |
|
| undefined; |
|
if (!firstPart) continue; |
|
|
|
const isLastChunk = !!candidate.finishReason; |
|
|
|
const candidateWebSources = candidate.groundingMetadata?.groundingChunks |
|
?.map((chunk) => { |
|
const uri = chunk.web?.uri ?? chunk.retrievedContext?.uri; |
|
const title = chunk.web?.title ?? chunk.retrievedContext?.title; |
|
|
|
if (!uri || !title) { |
|
return null; |
|
} |
|
|
|
return { |
|
uri, |
|
title, |
|
}; |
|
}) |
|
.filter((source) => source !== null); |
|
|
|
if (candidateWebSources) { |
|
webSources.push(...candidateWebSources); |
|
} |
|
|
|
const content = firstPart.text; |
|
generatedText += content; |
|
const output: TextGenerationStreamOutputWithToolsAndWebSources = { |
|
token: { |
|
id: tokenId++, |
|
text: content, |
|
logprob: 0, |
|
special: isLastChunk, |
|
}, |
|
generated_text: isLastChunk ? generatedText : null, |
|
details: null, |
|
webSources, |
|
}; |
|
yield output; |
|
|
|
if (isLastChunk) break; |
|
} |
|
})(); |
|
}; |
|
} |
|
export default endpointVertex; |
|
|