|
import { dot } from "@huggingface/transformers"; |
|
import type { EmbeddingBackendModel } from "$lib/server/embeddingModels"; |
|
import type { Embedding } from "$lib/server/embeddingEndpoints/embeddingEndpoints"; |
|
|
|
|
|
export function innerProduct(embeddingA: Embedding, embeddingB: Embedding) { |
|
return 1.0 - dot(embeddingA, embeddingB); |
|
} |
|
|
|
export async function getSentenceSimilarity( |
|
embeddingModel: EmbeddingBackendModel, |
|
query: string, |
|
sentences: string[] |
|
): Promise<{ distance: number; embedding: Embedding; idx: number }[]> { |
|
const inputs = [ |
|
`${embeddingModel.preQuery}${query}`, |
|
...sentences.map((sentence) => `${embeddingModel.prePassage}${sentence}`), |
|
]; |
|
|
|
const embeddingEndpoint = await embeddingModel.getEndpoint(); |
|
const output = await embeddingEndpoint({ inputs }).catch((err) => { |
|
throw Error("Failed to generate embeddings for sentence similarity", { cause: err }); |
|
}); |
|
|
|
const queryEmbedding: Embedding = output[0]; |
|
const sentencesEmbeddings: Embedding[] = output.slice(1); |
|
|
|
return sentencesEmbeddings.map((sentenceEmbedding, idx) => ({ |
|
distance: innerProduct(queryEmbedding, sentenceEmbedding), |
|
embedding: sentenceEmbedding, |
|
idx, |
|
})); |
|
} |
|
|