import { env } from "$env/dynamic/private"; import type { ChatTemplateInput } from "$lib/types/Template"; import { compileTemplate } from "$lib/utils/template"; import { z } from "zod"; import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints"; import { endpointTgi } from "./endpoints/tgi/endpointTgi"; import { sum } from "$lib/utils/sum"; import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels"; import type { PreTrainedTokenizer } from "@huggingface/transformers"; import JSON5 from "json5"; import { getTokenizer } from "$lib/utils/getTokenizer"; import { logger } from "$lib/server/logger"; import { ToolResultStatus, type ToolInput } from "$lib/types/Tool"; import { isHuggingChat } from "$lib/utils/isHuggingChat"; type Optional = Pick, K> & Omit; const reasoningSchema = z.union([ z.object({ type: z.literal("regex"), // everything is reasoning, extract the answer from the regex regex: z.string(), }), z.object({ type: z.literal("tokens"), // use beginning and end tokens that define the reasoning portion of the answer beginToken: z.string(), endToken: z.string(), }), z.object({ type: z.literal("summarize"), // everything is reasoning, summarize the answer }), ]); const modelConfig = z.object({ /** Used as an identifier in DB */ id: z.string().optional(), /** Used to link to the model page, and for inference */ name: z.string().default(""), displayName: z.string().min(1).optional(), description: z.string().min(1).optional(), logoUrl: z.string().url().optional(), websiteUrl: z.string().url().optional(), modelUrl: z.string().url().optional(), tokenizer: z .union([ z.string(), z.object({ tokenizerUrl: z.string().url(), tokenizerConfigUrl: z.string().url(), }), ]) .optional(), datasetName: z.string().min(1).optional(), datasetUrl: z.string().url().optional(), preprompt: z.string().default(""), prepromptUrl: z.string().url().optional(), chatPromptTemplate: z.string().optional(), promptExamples: z .array( z.object({ title: z.string().min(1), prompt: z.string().min(1), }) ) .optional(), endpoints: z.array(endpointSchema).optional(), parameters: z .object({ temperature: z.number().min(0).max(2).optional(), truncate: z.number().int().positive().optional(), max_new_tokens: z.number().int().positive().optional(), stop: z.array(z.string()).optional(), top_p: z.number().positive().optional(), top_k: z.number().positive().optional(), repetition_penalty: z.number().min(-2).max(2).optional(), presence_penalty: z.number().min(-2).max(2).optional(), }) .passthrough() .optional(), multimodal: z.boolean().default(false), multimodalAcceptedMimetypes: z.array(z.string()).optional(), tools: z.boolean().default(false), unlisted: z.boolean().default(false), embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(), /** Used to enable/disable system prompt usage */ systemRoleSupported: z.boolean().default(true), reasoning: reasoningSchema.optional(), }); const modelsRaw = z.array(modelConfig).parse(JSON5.parse(env.MODELS)); async function getChatPromptRender( m: z.infer ): Promise>> { if (m.chatPromptTemplate) { return compileTemplate(m.chatPromptTemplate, m); } let tokenizer: PreTrainedTokenizer; try { tokenizer = await getTokenizer(m.tokenizer ?? m.id ?? m.name); } catch (e) { // if fetching the tokenizer fails but it wasnt manually set, use the default template if (!m.tokenizer) { logger.warn( `No tokenizer found for model ${m.name}, using default template. Consider setting tokenizer manually or making sure the model is available on the hub.`, m ); return compileTemplate( "{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}", m ); } logger.error( e, `Failed to load tokenizer ${ m.tokenizer ?? m.id ?? m.name } make sure the model is available on the hub and you have access to any gated models.` ); process.exit(); } const renderTemplate = ({ messages, preprompt, tools, toolResults, continueMessage, }: ChatTemplateInput) => { let formattedMessages: { role: string; content: string; tool_calls?: { id: string; tool_call_id: string; output: string }[]; }[] = messages.map((message) => ({ content: message.content, role: message.from, })); if (!m.systemRoleSupported) { const firstSystemMessage = formattedMessages.find((msg) => msg.role === "system"); formattedMessages = formattedMessages.filter((msg) => msg.role !== "system"); if ( firstSystemMessage && formattedMessages.length > 0 && formattedMessages[0].role === "user" ) { formattedMessages[0].content = firstSystemMessage.content + "\n" + formattedMessages[0].content; } } if (preprompt && formattedMessages[0].role !== "system") { formattedMessages = [ { role: m.systemRoleSupported ? "system" : "user", content: preprompt, }, ...formattedMessages, ]; } if (toolResults?.length) { // todo: should update the command r+ tokenizer to support system messages at any location // or use the `rag` mode without the citations const id = m.id ?? m.name; if (isHuggingChat && id.startsWith("CohereForAI")) { formattedMessages = [ { role: "user", content: "\n\n\n" + toolResults .flatMap((result, idx) => { if (result.status === ToolResultStatus.Error) { return ( `Document: ${idx}\n` + `Tool "${result.call.name}" error\n` + result.message ); } return ( `Document: ${idx}\n` + result.outputs .flatMap((output) => Object.entries(output).map(([title, text]) => `${title}\n${text}`) ) .join("\n") ); }) .join("\n\n") + "\n", }, ...formattedMessages, ]; } else if (isHuggingChat && id.startsWith("meta-llama")) { const results = toolResults.flatMap((result) => { if (result.status === ToolResultStatus.Error) { return [ { tool_call_id: result.call.name, output: "Error: " + result.message, }, ]; } else { return result.outputs.map((output) => ({ tool_call_id: result.call.name, output: JSON.stringify(output), })); } }); formattedMessages = [ ...formattedMessages, { role: "python", content: JSON.stringify(results), }, ]; } else { formattedMessages = [ ...formattedMessages, { role: m.systemRoleSupported ? "system" : "user", content: JSON.stringify(toolResults), }, ]; } tools = []; } const mappedTools = tools?.map((tool) => { const inputs: Record< string, { type: ToolInput["type"]; description: string; required: boolean; } > = {}; for (const value of tool.inputs) { if (value.paramType !== "fixed") { inputs[value.name] = { type: value.type, description: value.description ?? "", required: value.paramType === "required", }; } } return { name: tool.name, description: tool.description, parameter_definitions: inputs, }; }) ?? []; const output = tokenizer.apply_chat_template(formattedMessages, { tokenize: false, add_generation_prompt: !continueMessage, tools: mappedTools.length ? mappedTools : undefined, }); if (typeof output !== "string") { throw new Error("Failed to apply chat template, the output is not a string"); } return output; }; return renderTemplate; } const processModel = async (m: z.infer) => ({ ...m, chatPromptRender: await getChatPromptRender(m), id: m.id || m.name, displayName: m.displayName || m.name, preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt, parameters: { ...m.parameters, stop_sequences: m.parameters?.stop }, }); const addEndpoint = (m: Awaited>) => ({ ...m, getEndpoint: async (): Promise => { if (!m.endpoints) { return endpointTgi({ type: "tgi", url: `${env.HF_API_ROOT}/${m.name}`, accessToken: env.HF_TOKEN ?? env.HF_ACCESS_TOKEN, weight: 1, model: m, }); } const totalWeight = sum(m.endpoints.map((e) => e.weight)); let random = Math.random() * totalWeight; for (const endpoint of m.endpoints) { if (random < endpoint.weight) { const args = { ...endpoint, model: m }; switch (args.type) { case "tgi": return endpoints.tgi(args); case "anthropic": return endpoints.anthropic(args); case "anthropic-vertex": return endpoints.anthropicvertex(args); case "bedrock": return endpoints.bedrock(args); case "aws": return await endpoints.aws(args); case "openai": return await endpoints.openai(args); case "llamacpp": return endpoints.llamacpp(args); case "ollama": return endpoints.ollama(args); case "vertex": return await endpoints.vertex(args); case "genai": return await endpoints.genai(args); case "cloudflare": return await endpoints.cloudflare(args); case "cohere": return await endpoints.cohere(args); case "langserve": return await endpoints.langserve(args); default: // for legacy reason return endpoints.tgi(args); } } random -= endpoint.weight; } throw new Error(`Failed to select endpoint`); }, }); const inferenceApiIds = isHuggingChat ? await fetch( "https://huggingface.co/api/models?pipeline_tag=text-generation&inference=warm&filter=conversational" ) .then((r) => r.json()) .then((json) => json.map((r: { id: string }) => r.id)) .catch((err) => { logger.error(err, "Failed to fetch inference API ids"); return []; }) : []; export const models = await Promise.all( modelsRaw.map((e) => processModel(e) .then(addEndpoint) .then(async (m) => ({ ...m, hasInferenceAPI: inferenceApiIds.includes(m.id ?? m.name), })) ) ); export type ProcessedModel = (typeof models)[number]; // super ugly but not sure how to make typescript happier export const validModelIdSchema = z.enum(models.map((m) => m.id) as [string, ...string[]]); export const defaultModel = models[0]; // Models that have been deprecated export const oldModels = env.OLD_MODELS ? z .array( z.object({ id: z.string().optional(), name: z.string().min(1), displayName: z.string().min(1).optional(), transferTo: validModelIdSchema.optional(), }) ) .parse(JSON5.parse(env.OLD_MODELS)) .map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name })) : []; export const validateModel = (_models: BackendModel[]) => { // Zod enum function requires 2 parameters return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]); }; // if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself export const smallModel = env.TASK_MODEL ? (models.find((m) => m.name === env.TASK_MODEL) || (await processModel(modelConfig.parse(JSON5.parse(env.TASK_MODEL))).then((m) => addEndpoint(m) ))) ?? defaultModel : defaultModel; export type BackendModel = Optional< typeof defaultModel, "preprompt" | "parameters" | "multimodal" | "unlisted" | "tools" | "hasInferenceAPI" >;