max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
async.py
nakamoo/a3c_PredNet
443
11179958
<reponame>nakamoo/a3c_PredNet<filename>async.py import multiprocessing as mp import os import random import chainer import numpy as np import random_seed def set_shared_params(a, b): """ Args: a (chainer.Link): link whose params are to be replaced b (dict): dict that consists of (param_name, multiprocessing.Array) """ assert isinstance(a, chainer.Link) for param_name, param in a.namedparams(): if param_name in b: shared_param = b[param_name] param.data = np.frombuffer( shared_param, dtype=param.data.dtype).reshape(param.data.shape) def set_shared_states(a, b): assert isinstance(a, chainer.Optimizer) assert hasattr(a, 'target'), 'Optimizer.setup must be called first' for state_name, shared_state in b.items(): for param_name, param in shared_state.items(): old_param = a._states[state_name][param_name] a._states[state_name][param_name] = np.frombuffer( param, dtype=old_param.dtype).reshape(old_param.shape) def extract_params_as_shared_arrays(link): assert isinstance(link, chainer.Link) shared_arrays = {} for param_name, param in link.namedparams(): shared_arrays[param_name] = mp.RawArray('f', param.data.ravel()) return shared_arrays def share_params_as_shared_arrays(link): shared_arrays = extract_params_as_shared_arrays(link) set_shared_params(link, shared_arrays) return shared_arrays def share_states_as_shared_arrays(link): shared_arrays = extract_states_as_shared_arrays(link) set_shared_states(link, shared_arrays) return shared_arrays def extract_states_as_shared_arrays(optimizer): assert isinstance(optimizer, chainer.Optimizer) assert hasattr(optimizer, 'target'), 'Optimizer.setup must be called first' shared_arrays = {} for state_name, state in optimizer._states.items(): shared_arrays[state_name] = {} for param_name, param in state.items(): shared_arrays[state_name][ param_name] = mp.RawArray('f', param.ravel()) return shared_arrays def run_async(n_process, run_func): """Run experiments asynchronously. Args: n_process (int): number of processes run_func: function that will be run in parallel """ processes = [] def set_seed_and_run(process_idx, run_func): random_seed.set_random_seed(np.random.randint(0, 2 ** 32)) run_func(process_idx) for process_idx in range(n_process): processes.append(mp.Process(target=set_seed_and_run, args=( process_idx, run_func))) for p in processes: p.start() for p in processes: p.join()
filebeat/tests/system/test_container.py
tetianakravchenko/beats
9,729
11179968
<reponame>tetianakravchenko/beats from filebeat import BaseTest import socket import os class Test(BaseTest): """ Test filebeat with the container input """ def test_container_input(self): """ Test container input """ input_raw = """ - type: container paths: - {}/logs/*.log """ self.render_config_template( input_raw=input_raw.format(os.path.abspath(self.working_dir)), inputs=False, ) os.mkdir(self.working_dir + "/logs/") self.copy_files(["logs/docker.log"], target_dir="logs") filebeat = self.start_beat() self.wait_until(lambda: self.output_has(lines=21)) filebeat.check_kill_and_wait() output = self.read_output() assert len(output) == 21 assert output[0]["message"] == "Fetching main repository github.com/elastic/beats..." for o in output: assert o["stream"] == "stdout" def test_container_input_cri(self): """ Test container input with CRI format """ input_raw = """ - type: container paths: - {}/logs/*.log """ self.render_config_template( input_raw=input_raw.format(os.path.abspath(self.working_dir)), inputs=False, ) os.mkdir(self.working_dir + "/logs/") self.copy_files(["logs/cri.log"], target_dir="logs") filebeat = self.start_beat() self.wait_until(lambda: self.output_count(lambda x: x >= 1)) self.wait_until(lambda: self.log_contains("End of file reached")) filebeat.check_kill_and_wait() output = self.read_output() assert len(output) == 1 assert output[0]["stream"] == "stdout" def test_container_input_registry_for_unparsable_lines(self): """ Test container input properly updates registry offset in case of unparsable lines """ input_raw = """ - type: container paths: - {}/logs/*.log """ self.render_config_template( input_raw=input_raw.format(os.path.abspath(self.working_dir)), inputs=False, ) os.mkdir(self.working_dir + "/logs/") self.copy_files(["logs/docker_corrupted.log"], target_dir="logs") filebeat = self.start_beat() self.wait_until(lambda: self.output_has(lines=20)) filebeat.check_kill_and_wait() output = self.read_output() assert len(output) == 20 assert output[19]["message"] == "Moving binaries to host..." for o in output: assert o["stream"] == "stdout" # Check that file exist data = self.get_registry() logs = self.log_access() assert logs.contains("Parse line error") == True # bytes of healthy file are 2244 so for the corrupted one should # be 2244-1=2243 since we removed one character assert data[0]["offset"] == 2243
grammarinator/runtime/dispatching_listener.py
38b394ce01/grammarinator
228
11179981
# Copyright (c) 2020 <NAME>, <NAME>. # # Licensed under the BSD 3-Clause License # <LICENSE.rst or https://opensource.org/licenses/BSD-3-Clause>. # This file may not be copied, modified, or distributed except # according to those terms. from .default_listener import DefaultListener class DispatchingListener(DefaultListener): def enter_rule(self, node): fn = 'enter_' + node.name if hasattr(self, fn): getattr(self, fn)(node) def exit_rule(self, node): fn = 'exit_' + node.name if hasattr(self, fn): getattr(self, fn)(node)
sonarqube/community/settings.py
ckho-wkcda/python-sonarqube-api
113
11179982
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Author: <NAME> from sonarqube.utils.rest_client import RestClient from sonarqube.utils.config import ( API_SETTINGS_SET_ENDPOINT, API_SETTINGS_RESET_ENDPOINT, API_SETTINGS_VALUES_ENDPOINT, API_SETTINGS_LIST_DEFINITIONS_ENDPOINT, ) from sonarqube.utils.common import GET, POST class SonarQubeSettings(RestClient): """ SonarQube settings Operations """ def __init__(self, **kwargs): """ :param kwargs: """ super(SonarQubeSettings, self).__init__(**kwargs) @POST(API_SETTINGS_SET_ENDPOINT) def update_setting_value(self, key, value, component=None, fieldValues=None): """ SINCE 6.1 Update a setting value. The settings defined in conf/sonar.properties are read-only and can't be changed. :param key: Setting key :param value: Setting value. To reset a value, please use the reset web service. :param component: Component key :param fieldValues: Setting field values. To set several values, the parameter must be called once for each value. :return: """ @POST(API_SETTINGS_RESET_ENDPOINT) def remove_setting_value(self, keys, component=None): """ SINCE 6.1 Remove a setting value. The settings defined in conf/sonar.properties are read-only and can't be changed. :param keys: Comma-separated list of keys :param component: Component key :return: """ @GET(API_SETTINGS_VALUES_ENDPOINT) def get_settings_values(self, component=None, keys=None): """ SINCE 6.3 List settings values. If no value has been set for a setting, then the default value is returned. The settings from conf/sonar.properties are excluded from results. :param component: Component key :param keys: List of setting keys :return: """ @GET(API_SETTINGS_LIST_DEFINITIONS_ENDPOINT) def get_settings_definitions(self, component=None): """ SINCE 6.3 List settings definitions. :param component: Component key :return: """
mac/pyobjc-framework-Quartz/PyObjCTest/test_civector.py
albertz/music-player
132
11180012
<filename>mac/pyobjc-framework-Quartz/PyObjCTest/test_civector.py<gh_stars>100-1000 from PyObjCTools.TestSupport import * from Quartz.QuartzCore import * class TestCIVector (TestCase): def testMethods(self): self.assertArgIsIn(CIVector.vectorWithValues_count_, 0) self.assertArgSizeInArg(CIVector.vectorWithValues_count_, 0, 1) self.assertArgIsIn(CIVector.initWithValues_count_, 0) self.assertArgSizeInArg(CIVector.initWithValues_count_, 0, 1) if __name__ == "__main__": main()
pythainlp/wangchanberta/__init__.py
Gorlph/pythainlp
569
11180076
# -*- coding: utf-8 -*- __all__ = [ "ThaiNameTagger", "pos_tag", "segment", ] from pythainlp.wangchanberta.core import ThaiNameTagger, segment from pythainlp.wangchanberta.postag import pos_tag
src/utils.py
lingluodlut/Att-ChemdNER
126
11180086
<filename>src/utils.py<gh_stars>100-1000 import os import re import codecs import numpy as np import six import theano models_path = "./models" eval_path = "./evaluation" eval_temp = os.path.join(eval_path, "temp") eval_script = os.path.join(eval_path, "conlleval") class EarlyStopping(object): #{{{ '''Stop training when a monitored quantity has stopped improving. # Arguments monitor: quantity to be monitored. min_delta: minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. patience: number of epochs with no improvement after which training will be stopped. ''' def __init__(self, monitor='val_loss', min_delta=1e-6, patience=5,mode='min'): #{{{ super(EarlyStopping, self).__init__() self.monitor = monitor self.patience = patience self.min_delta = min_delta self.wait = 0 self.stopped_epoch = 0 self.stop_training=False; if mode =="min": self.monitor_op = np.less; elif mode == "max": self.monitor_op = np.greater; else: assert 0,"unknown early stop mode:"; self.min_delta *= -1 #}}} def on_train_begin(self): self.wait = 0 # Allow instances to be re-used self.best = np.Inf if self.monitor_op == np.less else -np.Inf def on_epoch_end(self, epoch, loss): #{{{ current = loss if self.monitor_op(current - self.min_delta, self.best): self.best = current self.wait = 0 else: if self.wait >= self.patience: self.stopped_epoch = epoch self.stop_training = True self.wait += 1 #}}} def on_train_end(self, logs={}): if self.stopped_epoch > 0 : print('Epoch %05d: early stopping' % (self.stopped_epoch)) #}}} def get_from_module(identifier, module_params, module_name, instantiate=False, kwargs=None): #{{{ if isinstance(identifier, six.string_types): res = module_params.get(identifier) if not res: raise ValueError('Invalid ' + str(module_name) + ': ' + str(identifier)) if instantiate and not kwargs: return res() elif instantiate and kwargs: return res(**kwargs) else: return res elif isinstance(identifier, dict): name = identifier.pop('name') res = module_params.get(name) if res: return res(**identifier) else: raise ValueError('Invalid ' + str(module_name) + ': ' + str(identifier)) return identifier #}}} def findNotSame(fNameX,fNameY): #{{{ """ verify two file is same or not """ space='space'; def loadFile(fName): word=[]; import codecs; for line in codecs.open(fName,'r','utf8'): line=line.rstrip(); if len(line)>0: word.append(line[0]); else: word.append(space); return word; word1=loadFile(fNameX); word2=loadFile(fNameY); i=0; j=0; while i<len(word1) and j<len(word2): if word1[i]==word2[j]: i+=1; j+=1; continue; elif word1[i] ==space: i+=1; elif word2[j]==space: j+=1; else: print "not same,X:",word1[i],",line:",i,',Y:',word2[j],',line:',j; break; #}}} def generateDocSentLen(fNameX,fNameY): #{{{ """ statistic one article have word in each sentence """ from loader import load_sentences; doc=load_sentences(fNameX,False,False); sent=load_sentences(fNameY,False,False); assert len(doc) < len(sent); res=[]; i=0; for elem in doc: docLen=[]; count=0; while count<len(elem): docLen.append(len(sent[i])); count+=len(sent[i]); i+=1; if count!=len(elem): print "two file len not same"; assert 0; res.append(docLen) return res; #}}} def get_name(parameters): #{{{ """ Generate a model name from its parameters. """ l = [] for k, v in parameters.items(): if type(v) is str and "/" in v: l.append((k, v[::-1][:v[::-1].index('/')][::-1])) else: l.append((k, v)) name = ",".join(["%s=%s" % (k, str(v).replace(',', '')) for k, v in l]) return "".join(i for i in name if i not in "\/:*?<>|") #}}} def set_values(name, param, pretrained): #{{{ """ Initialize a network parameter with pretrained values. We check that sizes are compatible. """ param_value = param.get_value() if pretrained.size != param_value.size: raise Exception( "Size mismatch for parameter %s. Expected %i, found %i." % (name, param_value.size, pretrained.size) ) param.set_value(np.reshape( pretrained, param_value.shape ).astype(np.float32)) #}}} import initializations; def shared(shape, name): #{{{ """ Create a shared object of a numpy array. """ init=initializations.get('glorot_uniform'); if len(shape) == 1: value = np.zeros(shape) # bias are initialized with zeros return theano.shared(value=value.astype(theano.config.floatX), name=name) else: drange = np.sqrt(6. / (np.sum(shape))) value = drange * np.random.uniform(low=-1.0, high=1.0, size=shape) return init(shape=shape,name=name); #}}} def create_dico(item_list): #{{{ """ Create a dictionary of items from a list of list of items. """ assert type(item_list) is list dico = {} for items in item_list: for item in items: if item not in dico: dico[item] = 1 else: dico[item] += 1 return dico #}}} def create_mapping(dico): #{{{ """ Create a mapping (item to ID / ID to item) from a dictionary. Items are ordered by decreasing frequency. """ sorted_items = sorted(dico.items(), key=lambda x: (-x[1], x[0])) id_to_item = {i: v[0] for i, v in enumerate(sorted_items)} item_to_id = {v: k for k, v in id_to_item.items()} return item_to_id, id_to_item #}}} def zero_digits(s): #{{{ """ Replace every digit in a string by a zero. """ return re.sub('\d', '0', s) #}}} def iob2(tags): #{{{ """ Check that tags have a valid IOB format. Tags in IOB1 format are converted to IOB2. """ for i, tag in enumerate(tags): if tag == 'O': continue split = tag.split('-') if split[0] not in ['I', 'B']: #if len(split) != 2 or split[0] not in ['I', 'B']: return False if split[0] == 'B': continue elif i == 0 or tags[i - 1] == 'O': # conversion IOB1 to IOB2 tags[i] = 'B' + tag[1:] elif tags[i - 1][1:] == tag[1:]: continue else: # conversion IOB1 to IOB2 tags[i] = 'B' + tag[1:] return True #}}} def iob_iobes(tags): #{{{ """ IOB -> IOBES """ new_tags = [] for i, tag in enumerate(tags): if tag == 'O': new_tags.append(tag) elif tag.split('-')[0] == 'B': if i + 1 != len(tags) and \ tags[i + 1].split('-')[0] == 'I': new_tags.append(tag) else: new_tags.append(tag.replace('B-', 'S-')) elif tag.split('-')[0] == 'I': if i + 1 < len(tags) and \ tags[i + 1].split('-')[0] == 'I': new_tags.append(tag) else: new_tags.append(tag.replace('I-', 'E-')) else: raise Exception('Invalid IOB format!') return new_tags #}}} def iobes_iob(tags): #{{{ """ IOBES -> IOB """ new_tags = [] for i, tag in enumerate(tags): if tag.split('-')[0] == 'B': new_tags.append(tag) elif tag.split('-')[0] == 'I': new_tags.append(tag) elif tag.split('-')[0] == 'S': new_tags.append(tag.replace('S-', 'B-')) elif tag.split('-')[0] == 'E': new_tags.append(tag.replace('E-', 'I-')) elif tag.split('-')[0] == 'O': new_tags.append(tag) else: raise Exception('Invalid format!') return new_tags #}}} def insert_singletons(words, singletons, p=0.5): #{{{ """ Replace singletons by the unknown word with a probability p. """ new_words = [] for word in words: if word in singletons and np.random.uniform() < p: new_words.append(0) else: new_words.append(word) return new_words #}}} def pad_word_chars(words): #{{{ """ Pad the characters of the words in a sentence. Input: - list of lists of ints (list of words, a word being a list of char indexes) Output: - padded list of lists of ints - padded list of lists of ints (where chars are reversed) - list of ints corresponding to the index of the last character of each word """ max_length = max([len(word) for word in words]) char_for = [] char_rev = [] char_pos = [] for word in words: padding = [0] * (max_length - len(word)) char_for.append(word + padding) char_rev.append(word[::-1] + padding) char_pos.append(len(word) - 1) return char_for, char_rev, char_pos #}}} def create_input(data, parameters, add_label, singletons=None, useAttend=True): #{{{ """ Take sentence data and return an input for the training or the evaluation function. """ words = data['words'] wordsTrue=data['words']; chars = data['chars'] if singletons is not None: words = insert_singletons(words, singletons) if parameters['cap_dim']: caps = data['caps'] char_for, char_rev, char_pos = pad_word_chars(chars) input = [] if parameters['word_dim']: input.append(words) if parameters['char_dim']: input.append(char_for) if parameters['char_bidirect']: input.append(char_rev) input.append(char_pos) if parameters['cap_dim']: input.append(caps) if useAttend: input.append(wordsTrue); if parameters.has_key('sentencesLevelLoss') \ and parameters['sentencesLevelLoss']: input.append(data['lens']) ; #add features if parameters.has_key('features'): features=parameters['features']; else: features=None; if features is not None and features['lemma']['isUsed']: input.append(data['lemma']); if features is not None and features['pos']['isUsed']: input.append(data['pos']); if features is not None and features['chunk']['isUsed']: input.append(data['chunk']); if features is not None and features['dic']['isUsed']: input.append(data['dic']); if add_label: input.append(data['tags']) return input #}}} from os.path import isfile from os import chmod import stat import subprocess PREFIX = './evaluation/' def get_perf(filename): ''' run conlleval.pl perl script to obtain precision/recall and F1 score ''' _conlleval = PREFIX + 'conlleval' if not isfile(_conlleval): #download('http://www-etud.iro.umontreal.ca/~mesnilgr/atis/conlleval.pl') os.system('wget https://www.comp.nus.edu.sg/%7Ekanmy/courses/practicalNLP_2008/packages/conlleval.pl') chmod('conlleval.pl', stat.S_IRWXU) # give the execute permissions out = [] proc = subprocess.Popen(["perl", _conlleval], stdin=subprocess.PIPE, stdout=subprocess.PIPE) stdout, _ = proc.communicate(open(filename).read()) for line in stdout.split('\n'): if 'accuracy' in line: out = line.split() break # out = ['accuracy:', '16.26%;', 'precision:', '0.00%;', 'recall:', '0.00%;', 'FB1:', '0.00'] precision = float(out[3][:-2]) recall = float(out[5][:-2]) f1score = float(out[7]) return {'p':precision, 'r':recall, 'f1':f1score} def evaluate(parameters, f_eval, raw_sentences, parsed_sentences, id_to_tag, dictionary_tags,filename, useAttend=True): #{{{ """ Evaluate current model using CoNLL script. """ n_tags = len(id_to_tag) predictions = [] count = np.zeros((n_tags, n_tags), dtype=np.int32) for raw_sentence, data in zip(raw_sentences, parsed_sentences): input = create_input(data, parameters, False,useAttend=useAttend) if parameters['crf']: y_preds = np.array(f_eval(*input)) else: y_preds = f_eval(*input).argmax(axis=1) y_reals = np.array(data['tags']).astype(np.int32) assert len(y_preds) == len(y_reals) p_tags = [id_to_tag[y_pred] for y_pred in y_preds] r_tags = [id_to_tag[y_real] for y_real in y_reals] if parameters['tag_scheme'] == 'iobes': p_tags = iobes_iob(p_tags) r_tags = iobes_iob(r_tags) for i, (y_pred, y_real) in enumerate(zip(y_preds, y_reals)): new_line = " ".join(raw_sentence[i][:-1] + [r_tags[i], p_tags[i]]) predictions.append(new_line) count[y_real, y_pred] += 1 predictions.append("") #write to file with codecs.open(filename, 'w', 'utf8') as f: f.write("\n".join(predictions)) return get_perf(filename) #}}}
src/models/audiounet.py
TECHENGINESSRL/audio-super-res
712
11180090
<gh_stars>100-1000 import numpy as np import tensorflow as tf from scipy import interpolate from .model import Model, default_opt from .layers.subpixel import SubPixel1D, SubPixel1D_v2 from tensorflow.python.keras import backend as K from keras.layers import merge from keras.layers.core import Activation, Dropout from keras.layers import Conv1D from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import LeakyReLU from keras.initializers import RandomNormal, Orthogonal # ---------------------------------------------------------------------------- class AudioUNet(Model): """Generic tensorflow model training code""" def __init__(self, from_ckpt=False, n_dim=None, r=2, opt_params=default_opt, log_prefix='./run'): # perform the usual initialization self.r = r Model.__init__(self, from_ckpt=from_ckpt, n_dim=n_dim, r=r, opt_params=opt_params, log_prefix=log_prefix) def create_model(self, n_dim, r): # load inputs X, _, _ = self.inputs K.set_session(self.sess) with tf.compat.v1.name_scope('generator'): x = X L = self.layers # dim/layer: 4096, 2048, 1024, 512, 256, 128, 64, 32, n_filters = [128, 384, 512, 512, 512, 512, 512, 512] n_filtersizes = [65, 33, 17, 9, 9, 9, 9, 9, 9] downsampling_l = [] print('building model...') # downsampling layers for l, nf, fs in zip(list(range(L)), n_filters, n_filtersizes): with tf.compat.v1.name_scope('downsc_conv%d' % l): x = (Conv1D(filters=nf, kernel_size=fs, activation=None, padding='same', init=Orthogonal(), subsample_length=2))(x) # if l > 0: x = BatchNormalization(mode=2)(x) x = LeakyReLU(0.2)(x) print('D-Block: ', x.get_shape()) downsampling_l.append(x) # bottleneck layer with tf.compat.v1.name_scope('bottleneck_conv'): x = (Conv1D(filters=n_filters[-1], kernel_size=n_filtersizes[-1], activation=None, padding='same', init=Orthogonal(), subsample_length=2))(x) x = Dropout(rate=0.5)(x) x = LeakyReLU(0.2)(x) # upsampling layers for l, nf, fs, l_in in reversed(list(zip(list(range(L)), n_filters, n_filtersizes, downsampling_l))): with tf.compat.v1.name_scope('upsc_conv%d' % l): # (-1, n/2, 2f) x = (Conv1D(filters=2*nf, kernel_size=fs, activation=None, padding='same', init=Orthogonal()))(x) x = Dropout(rate=0.5)(x) x = Activation('relu')(x) # (-1, n, f) x = SubPixel1D(x, r=2) # (-1, n, 2f) x = K.concatenate(tensors=[x, l_in], axis=2) print('U-Block: ', x.get_shape()) # final conv layer with tf.compat.v1.name_scope('lastconv'): x = Convolution1D(filters=2, kernel_size=9, activation=None, padding='same', init=RandomNormal(stdev=1e-3))(x) x = SubPixel1D(x, r=2) print(x.get_shape()) g = merge([x, X], mode='sum') return g def predict(self, X): print("predicting") assert len(X) == 1 x_sp = spline_up(X, self.r) x_sp = x_sp[:len(x_sp) - (len(x_sp) % (2**(self.layers+1)))] X = x_sp.reshape((1,len(x_sp),1)) print((X.shape)) feed_dict = self.load_batch((X,X), train=False) return self.sess.run(self.predictions, feed_dict=feed_dict) # ---------------------------------------------------------------------------- # helpers def spline_up(x_lr, r): x_lr = x_lr.flatten() x_hr_len = len(x_lr) * r x_sp = np.zeros(x_hr_len) i_lr = np.arange(x_hr_len, step=r) i_hr = np.arange(x_hr_len) f = interpolate.splrep(i_lr, x_lr) x_sp = interpolate.splev(i_hr, f) return x_sp
xhr/resources/get-set-cookie.py
meyerweb/wpt
14,668
11180091
import datetime def main(request, response): response.headers.set(b"Content-type", b"text/plain") # By default use a session cookie. expiration = None if request.GET.get(b"clear"): # If deleting, expire yesterday. expiration = -datetime.timedelta(days=1) response.set_cookie(b"WK-test", b"1", expires=expiration) response.set_cookie(b"WK-test-secure", b"1", secure=True, expires=expiration) content = b"" for cookie in request.cookies: content = content + b" " + cookie + b"=" + request.cookies.get(cookie).value response.content = content
step07_appsync_with_subscriptions_using_amplify/aws-cdk/python/lambda/main.py
fullstackwebdev/full-stack-serverless-cdk
192
11180102
<filename>step07_appsync_with_subscriptions_using_amplify/aws-cdk/python/lambda/main.py from __future__ import print_function from addTodo import addTodoItem from getTodo import getItem from deleteTodo import deleteItem from updateTodo import updateItem import os import boto3 dynamodb = boto3.resource('dynamodb') def handler(event, context): field = event['info']['fieldName'] if field == "addTodo": todo = event['arguments']['todo'] return addTodoItem(todo) if field == "getTodos": return getItem()
tests/testapp/lookups.py
StreetHawkInc/django-rest-framework-filters
743
11180116
<gh_stars>100-1000 from django.db.models import Transform # This is a copy of the `Unaccent` transform from `django.contrib.postgres`. # This is necessary as the postgres app requires psycopg2 to be installed. class Unaccent(Transform): bilateral = True lookup_name = 'unaccent' function = 'UNACCENT'
lite/tests/unittest_py/op/test_lod_reset_op.py
714627034/Paddle-Lite
808
11180137
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('../') from auto_scan_test import AutoScanTest, IgnoreReasons from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import unittest import hypothesis from hypothesis import given, settings, seed, example, assume import hypothesis.strategies as st import argparse import numpy as np from functools import partial class TestLodResetOp(AutoScanTest): def __init__(self, *args, **kwargs): AutoScanTest.__init__(self, *args, **kwargs) self.enable_testing_on_place( TargetType.Host, PrecisionType.FP32, DataLayoutType.NCHW, thread=[1, 2]) def is_program_valid(self, program_config: ProgramConfig, predictor_config: CxxConfig) -> bool: return True def sample_program_configs(self, draw): in_shape = draw( st.lists( st.integers( min_value=10, max_value=20), min_size=4, max_size=4)) lod_data = draw( st.sampled_from([[0, 3, 5, in_shape[0]], [0, 4, 7, in_shape[0]], [0, 4, in_shape[0]], [0, 7, in_shape[0]]])) lod_data1 = draw( st.sampled_from([[0, 3, 5, in_shape[0]], [0, 4, 7, in_shape[0]], [0, 4, in_shape[0]], [0, 7, in_shape[0]]])) lod_data2 = draw( st.sampled_from([[0, 3, 5, in_shape[0]], [0, 4, 7, in_shape[0]], [0, 4, in_shape[0]], [0, 7, in_shape[0]]])) case_num = draw(st.sampled_from([0, 1])) def generate_input_x(*args, **kwargs): return np.random.random(in_shape).astype(np.float32) def generate_input_y(*args, **kwargs): return np.array(lod_data1).astype(np.int32) if case_num == 0: build_ops = OpConfig( type="lod_reset", inputs={"X": ["input_data_x"], "Y": []}, outputs={"Out": ["output_data"], }, attrs={"target_lod": lod_data, 'append': True}) program_config = ProgramConfig( ops=[build_ops], weights={}, inputs={ "input_data_x": TensorConfig(data_gen=partial( generate_input_x, lod=list(lod_data2))), }, outputs=["output_data"]) elif case_num == 1: build_ops = OpConfig( type="lod_reset", inputs={"X": ["input_data_x"], "Y": ["input_data_y"]}, outputs={"Out": ["output_data"], }, attrs={"target_lod": [], 'append': True}) program_config = ProgramConfig( ops=[build_ops], weights={}, inputs={ "input_data_x": TensorConfig(data_gen=partial( generate_input_x, lod=list(lod_data2))), "input_data_y": TensorConfig(data_gen=partial(generate_input_y)), }, outputs=["output_data"]) return program_config def sample_predictor_configs(self): return self.get_predictor_configs(), ["lod_reset"], (1e-5, 1e-5) def add_ignore_pass_case(self): pass def test(self, *args, **kwargs): self.run_and_statis(quant=False, max_examples=25) if __name__ == "__main__": unittest.main(argv=[''])
backend/pubsub/store.py
restato/bunnybook
131
11180153
<reponame>restato/bunnybook<filename>backend/pubsub/store.py import datetime as dt from typing import Union, List from uuid import UUID from injector import singleton, inject from common.injection import PubSubStore from common.schemas import dt_to_iso8601z @singleton class WebSocketsStore: ONLINE_STATUS_EX: int = int(dt.timedelta(seconds=11).total_seconds()) @inject def __init__(self, store: PubSubStore): self._store = store async def renew_online_status(self, profile_id: Union[str, UUID]): """Refresh online status for profile_id.""" await self._store.set(f"websockets:{profile_id}", dt_to_iso8601z(dt.datetime.now(dt.timezone.utc)), expire=WebSocketsStore.ONLINE_STATUS_EX) async def get_online_statuses(self, profile_ids: List[Union[str, UUID]]) \ -> List[str]: """Return list of online profile ids.""" if not profile_ids: return [] result = await self._store.mget(*[f"websockets:{profile_id}" for profile_id in profile_ids]) return [str(friend_id) for friend_id, is_online in zip(profile_ids, result) if is_online]
thirdparty/nsiqcppstyle/rules/RULE_9_2_D_use_reentrant_function.py
cfsengineering/tigl
171
11180201
""" Use reentrant functions. Do not use not reentrant functions.(ctime, strtok, toupper) == Violation == void A() { k = ctime(); <== Violation. ctime() is not the reenterant function. j = strok(blar blar); <== Violation. strok() is not the reenterant function. } == Good == void A() { k = t.ctime(); <== Correct. It may be the reentrant function. } void A() { k = ctime; <== Correct. It may be the reentrant function. } """ from nsiqcppstyle_rulehelper import * from nsiqcppstyle_reporter import * from nsiqcppstyle_rulemanager import * no_reenterant_functions = ( 'ctime', 'strtok', 'toupper', ) def RunRule(lexer, contextStack) : """ Use reenterant keyword. """ t = lexer.GetCurToken() if t.type == "ID" : if t.value in no_reenterant_functions : t2 = lexer.PeekNextTokenSkipWhiteSpaceAndComment() t3 = lexer.PeekPrevTokenSkipWhiteSpaceAndComment() if t2 != None and t2.type == "LPAREN" : if t3 == None or t3.type != "PERIOD" : if t.value == "toupper" and nsiqcppstyle_state._nsiqcppstyle_state.GetVar("ignore_toupper", "false") == "true" : return nsiqcppstyle_reporter.Error(t, __name__, "Do not use not reentrant function(%s)." % t.value) ruleManager.AddFunctionScopeRule(RunRule) ########################################################################################### # Unit Test ########################################################################################### from nsiqunittest.nsiqcppstyle_unittestbase import * class testRule(nct): def setUpRule(self): ruleManager.AddFunctionScopeRule(RunRule) def test1(self): self.Analyze("thisfile.c", """ void func1() { k = ctime() } """) assert CheckErrorContent(__name__) def test2(self): self.Analyze("thisfile.c", """ void func1() { #define ctime() k } """) assert not CheckErrorContent(__name__) def test3(self): self.Analyze("thisfile.c", """ void ctime() { } """) assert not CheckErrorContent(__name__) def test4(self): self.Analyze("thisfile.c", """ void ctime () { } """) assert not CheckErrorContent(__name__) def test5(self): self.Analyze("thisfile.c", """ void func1() { k = help.ctime () } """) assert not CheckErrorContent(__name__) def test6(self): self.Analyze("thisfile.c", """ void func1() { k = toupper() } """) assert CheckErrorContent(__name__) def test7(self): nsiqcppstyle_state._nsiqcppstyle_state.varMap["ignore_toupper"] = "true" self.Analyze("thisfile.c", """ void func1() { k = toupper() } """) assert not CheckErrorContent(__name__)
benchmarks/driver/runner.py
SymbioticLab/Salus
104
11180207
<reponame>SymbioticLab/Salus # -*- coding: future_fstrings -*- # # Copyright 2019 <NAME> <<EMAIL>> # # This file is part of Salus # (see https://github.com/SymbioticLab/Salus). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, print_function, division, unicode_literals from builtins import super, str from future.utils import with_metaclass import logging from absl import flags from abc import ABCMeta, abstractmethod from collections import namedtuple from enum import Enum from typing import Iterable, Tuple, Union, Any, Dict from .server import SalusServer from .tfserver import TFDistServer from .utils import Popen, execute, snake_to_pascal, str2bool, remove_suffix from .utils.compatiblity import pathlib, subprocess as sp Path = pathlib.Path FLAGS = flags.FLAGS logger = logging.getLogger(__name__) flags.DEFINE_string('tfbench_base', '../tf_benchmarks', 'Base dir of TFBenchmark based workloads') flags.DEFINE_string('unit_base', 'tests', 'Base dir of unittest based workloads') flags.DEFINE_string('fathom_base', '../fathom', 'Base dir of Fathom based workloads') flags.DEFINE_string('tfweb_base', '../tfweb', 'Base dir of TFWeb based workloads') flags.DEFINE_string('tfweb_saved_model_dir', '~/../symbiotic/peifeng/tf_cnn_benchmarks_models/saved_models', 'SavedModel dir of TFWeb based workloads') flags.DEFINE_string('tfweb_request_body_dir', '~/../symbiotic/peifeng/tf_cnn_benchmarks_models/reqeusts', 'Predefined request body dir for TFWeb based workloads') flags.DEFINE_boolean('no_capture', False, 'Do not capture workload outputs') RunConfig = namedtuple('RunConfig', [ 'batch_size', 'batch_num', 'cfgname', ]) class Executor(Enum): Salus = "salus" TF = "tf" TFDist = "tfdist" def enumerate_rcfgs(batch_sizes, batch_nums): # type: (Iterable[Union[int, str]], Iterable[int]) -> Iterable[RunConfig] """Convenient method to generate a list of RunConfig""" return [ RunConfig(batch_size, batch_num, None) for batch_size in batch_sizes for batch_num in batch_nums ] class Runner(with_metaclass(ABCMeta, object)): """A runner knows how to run a given workload""" def __init__(self, wl): # type: (Any) -> None super().__init__() self.wl = wl self.env = wl.env.copy() # type: Dict[str, str] def set_default(d, key, defval): if key not in d: d[key] = defval else: logger.info(f'Using custom value {key}={d[key]}') set_default(self.env, 'CUDA_VISIBLE_DEVICES', '0') set_default(self.env, 'TF_CPP_MIN_LOG_LEVEL', '2') @abstractmethod def __call__(self, executor, output_file): # type: (Executor, Path) -> Popen pass class TFBenchmarkRunner(Runner): """Run a tf benchmark job""" def __init__(self, wl, base_dir=None): # type: (Any, Path) -> None super().__init__(wl) self.base_dir = base_dir if self.base_dir is None: self.base_dir = Path(FLAGS.tfbench_base) def __call__(self, executor, output_file): # type: (Executor, Path) -> Popen cwd = self.base_dir / 'scripts' / 'tf_cnn_benchmarks' cmd = [ 'stdbuf', '-o0', '-e0', '--', 'python', 'tf_cnn_benchmarks.py', '--display_every=1', '--num_gpus=1', '--variable_update=parameter_server', '--nodistortions', '--executor={}'.format(executor.value), '--num_batches={}'.format(self.wl.batch_num), '--batch_size={}'.format(self.wl.batch_size), ] eval_interval = self.wl.env.pop('SALUS_TFBENCH_EVAL_INTERVAL', None) eval_rand_factor = self.wl.env.pop('SALUS_TFBENCH_EVAL_RAND_FACTOR', None) eval_block = self.wl.env.pop('SALUS_TFBENCH_EVAL_BLOCK', 'true') eval_model_dir = self.wl.env.pop('SALUS_TFBENCH_EVAL_MODEL_DIR', 'models') eval_model_dir = str(Path(eval_model_dir).joinpath(remove_suffix(self.wl.name, 'eval'))) eval_saved_model_dir = self.wl.env.pop('SALUS_TFBENCH_EVAL_SAVED_MODEL_DIR', None) if eval_saved_model_dir is not None: eval_saved_model_dir = str(Path(eval_saved_model_dir).joinpath(remove_suffix(self.wl.name, 'eval'))) num_seconds = self.wl.env.pop('SALUS_ITER_SECONDS', None) if num_seconds is not None: cmd += [ '--num_seconds={}'.format(num_seconds) ] wait_for_signal = self.wl.env.pop('SALUS_WAIT_FOR_SIGNAL', None) if wait_for_signal is not None: cmd += [ '--wait_for_signal={}'.format(wait_for_signal) ] if self.wl.name.endswith('eval'): model_name = remove_suffix(self.wl.name, 'eval') cmd += [ '--model_dir=' + eval_model_dir, '--model={}'.format(model_name), '--eval_block={}'.format(eval_block), '--eval' ] if eval_interval is not None: cmd += [ '--eval_interval_secs={}'.format(eval_interval), ] if eval_rand_factor is not None: cmd += [ '--eval_interval_random_factor={}'.format(eval_rand_factor), ] if eval_saved_model_dir is not None: cmd += [ '--saved_model_dir=' + eval_saved_model_dir ] else: cmd += [ '--model={}'.format(self.wl.name), ] if str2bool(self.wl.env.pop('SALUS_SAVE_MODEL', '')): cmd += [ '--model_dir=' + eval_model_dir, ] cmd += self.wl.extra_args logger.info(f'Starting workload with cmd: {cmd}') if FLAGS.no_capture: return execute(cmd, cwd=str(cwd), env=self.env) else: output_file.parent.mkdir(exist_ok=True, parents=True) with output_file.open('w') as f: return execute(cmd, cwd=str(cwd), env=self.env, stdout=f, stderr=sp.STDOUT) class UnittestRunner(Runner): """Run a unittest job""" def __init__(self, wl, base_dir=None): # type: (Any, Path) -> None super().__init__(wl) self.base_dir = base_dir if self.base_dir is None: self.base_dir = Path(FLAGS.unit_base) def __call__(self, executor, output_file): # type: (Executor, Path) -> Popen env = self.env.copy() env['EXEC_ITER_NUMBER'] = str(self.wl.batch_num) env['SALUS_BATCH_SIZE'] = str(self.wl.batch_size) if executor == Executor.TFDist: env['SALUS_TFDIST_ENDPOINT'] = TFDistServer.current_server().endpoint cwd = self.base_dir pkg, method = self._construct_test_name(executor) cmd = [ 'stdbuf', '-o0', '-e0', '--', 'python', '-m', pkg, method, ] cmd += self.wl.extra_args logger.info(f'Starting workload with cmd: {cmd}') if FLAGS.no_capture: return execute(cmd, cwd=str(cwd), env=self.env) else: output_file.parent.mkdir(exist_ok=True, parents=True) with output_file.open('w') as f: # return execute(cmd, cwd=str(cwd), env=env, stdout=f, stderr=sp.STDOUT) return execute(cmd, cwd=str(cwd), env=env, stdout=f, stderr=None) def _construct_test_name(self, executor): # type: (Executor) -> Tuple[str, str] """Construct test class and name from RunConfig""" supported_model = { 'seq2seq': ('test_tf.test_seq', 'TestSeqPtb', { 'small': '0_small', 'medium': '1_medium', 'large': '2_large', }), 'mnistsf': ('test_tf.test_mnist_tf', 'TestMnistSoftmax', { 25: '0', 50: '1', 100: '2' }), 'mnistcv': ('test_tf.test_mnist_tf', 'TestMnistConv', { 25: '0', 50: '1', 100: '2' }), 'mnistlg': ('test_tf.test_mnist_tf', 'TestMnistLarge', { 25: '0', 50: '1', 100: '2' }), 'superres': ('test_tf.test_super_res', 'TestSuperRes', { 32: '0', 64: '1', 128: '2', 1: '0', 5: '1', 10: '2', }) } variable_batch_size_models = {'vae', 'superres', 'seq2seq', 'mnistsf', 'mnistcv', 'mnistlg'} if remove_suffix(self.wl.name, 'eval') not in variable_batch_size_models: if self.wl.batch_size not in self.wl.wtl.available_batch_sizes(): raise ValueError(f"Batch size `{self.wl.batch_size}' is not supported for {self.wl.name}," f" available ones: {self.wl.wtl.available_batch_sizes()}") if executor == Executor.Salus: prefix = 'test_rpc_' elif executor == Executor.TF: prefix = 'test_gpu_' elif executor == Executor.TFDist: prefix = 'test_distributed_' else: raise ValueError(f'Unknown executor: {executor}') if self.wl.name.endswith('eval'): prefix += 'eval_' model_name = remove_suffix(self.wl.name, 'eval') if model_name in supported_model: pkg, cls, names = supported_model[model_name] else: # fallback to guessing pkg = f'test_tf.test_{model_name}' cls = f'Test{snake_to_pascal(model_name)}' # get method name names = { s: str(idx) for idx, s in enumerate(self.wl.wtl.available_batch_sizes()) } postfix = names.get(self.wl.batch_size, '0') if model_name == 'seq2seq' and postfix == '0': postfix = '2_large' method = f'{cls}.{prefix}{postfix}' return pkg, method class FathomRunner(Runner): """Run a fathom job""" def __init__(self, wl, base_dir=None): super().__init__(wl) self.base_dir = base_dir if self.base_dir is None: self.base_dir = FLAGS.fathom_base def __call__(self, executor, output_file): # type: (Executor, Path) -> Popen cwd = self.base_dir cmd = [ 'stdbuf', '-o0', '-e0', '--', 'python', '-m', 'fathom.cli', '--workload', remove_suffix(self.wl.name, 'eval'), '--action', 'test' if self.wl.name.endswith('eval') else 'train', '--num_iters', str(self.wl.batch_num), '--batch_size', str(self.wl.batch_size), ] if executor == Executor.Salus: cmd += [ '--target', SalusServer.current_server().endpoint, '--dev', '/gpu:0', ] elif executor == Executor.TF: cmd += [ '--dev', '/gpu:0', ] elif executor == Executor.TFDist: cmd += [ '--target', TFDistServer.current_server().endpoint, '--dev', '/job:tfworker/gpu:0', ] else: raise ValueError(f'Unknown executor: {executor}') cmd += self.wl.extra_args logger.info(f'Starting workload with cmd: {cmd}') if FLAGS.no_capture: return execute(cmd, cwd=str(cwd), env=self.env) else: output_file.parent.mkdir(exist_ok=True, parents=True) with output_file.open('w') as f: return execute(cmd, cwd=str(cwd), env=self.env, stdout=f, stderr=sp.STDOUT) class TFWebDirectRunner(Runner): """Using TFWeb's load infrastructure to directly run""" def __init__(self, wl, base_dir=None): super().__init__(wl) self.base_dir = base_dir if self.base_dir is None: self.base_dir = FLAGS.tfweb_base def __call__(self, executor, output_file): model_name = remove_suffix(self.wl.name, 'eval') cwd = self.base_dir cmd = [ 'stdbuf', '-o0', '-e0', '--', 'examples/direct/client', '--model="{}"'.format(str(Path(FLAGS.tfweb_saved_model_dir).joinpath(model_name))), '--batch_size={}'.format(self.wl.batch_size), '--batch_num={}'.format(self.wl.batch_num), ] if executor == Executor.Salus: cmd += [ '--sess_target', SalusServer.current_server().endpoint, ] elif executor == Executor.TF: cmd += [ '--sess_target', '""', ] elif executor == Executor.TFDist: cmd += [ '--sess_target', TFDistServer.current_server().endpoint, ] else: raise ValueError(f'Unknown executor: {executor}') cmd += self.wl.extra_args logger.info(f'Starting workload with cmd: {cmd}') if FLAGS.no_capture: return execute(cmd, cwd=str(cwd), env=self.env) else: output_file.parent.mkdir(exist_ok=True, parents=True) with output_file.open('w') as f: return execute(cmd, cwd=str(cwd), env=self.env, stdout=f, stderr=sp.STDOUT) class TFWebRunner(Runner): """ Run a TFWeb based inference job We start several servers and a balancer on the same node. The server commandline: tfweb --model=path/to/saved_model/network --sess_target=... The client commandline: gobetween from-file xxx.toml """ def __init__(self, wl, base_dir=None): super().__init__(wl) self.base_dir = base_dir if self.base_dir is None: self.base_dir = FLAGS.tfweb_base def __call__(self, executor, output_file): # type: (Executor, Path) -> Popen model_name = remove_suffix(self.wl.name, 'web') cwd = self.base_dir cmd = [ 'stdbuf', '-o0', '-e0', '--', 'examples/cluster/start_cluster', '--model="{}"'.format(str(Path(FLAGS.tfweb_saved_model_dir).joinpath(model_name))), ] if executor == Executor.Salus: cmd += [ '--sess_target', SalusServer.current_server().endpoint, ] elif executor == Executor.TF: cmd += [ '--sess_target', '""', ] elif executor == Executor.TFDist: cmd += [ '--sess_target', TFDistServer.current_server().endpoint, ] else: raise ValueError(f'Unknown executor: {executor}') num_replicas = self.wl.env.pop('SALUS_TFWEB_REPLICAS', '1') cmd += [ '--num_replicas', num_replicas ] cmd += self.wl.extra_args logger.info(f'Starting workload with cmd: {cmd}') if FLAGS.no_capture: return execute(cmd, cwd=str(cwd), env=self.env) else: output_file.parent.mkdir(exist_ok=True, parents=True) with output_file.open('w') as f: return execute(cmd, cwd=str(cwd), env=self.env, stdout=f, stderr=sp.STDOUT) class TFWebClientRunner(Runner): """ Run a tfweb client attacker. Command: examples/cluster/tfweb-client TARGET REQ_BODY PLANTXT """ def __init__(self, wl, base_dir=None): super().__init__(wl) self.base_dir = base_dir if self.base_dir is None: self.base_dir = FLAGS.tfweb_base def __call__(self, executor, output_file): # type: (Executor, Path) -> Popen model_name = remove_suffix(self.wl.name, 'client') cwd = self.base_dir cmd = [ 'stdbuf', '-o0', '-e0', '--', 'examples/tfweb-client', '-output', str(output_file), self.wl.target, # request body str(Path(FLAGS.tfweb_request_body_dir).joinpath(model_name).with_suffix('.txt')), # always write plan to stdin '-', ] cmd += self.wl.extra_args logger.info(f'Starting workload with cmd: {cmd}') proc = execute(cmd, cwd=str(cwd), env=self.env, stdin=sp.PIPE) proc.stdin.write(self._plan_to_bytes()) proc.stdin.close() return proc def _plan_to_bytes(self): return ' '.join(self.wl.plan).encode('utf-8')
model/resnet_cifar10.py
cmu-enyac/LeGR
106
11180218
<filename>model/resnet_cifar10.py '''ResNet in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] <NAME>, <NAME>, <NAME>, <NAME> Deep Residual Learning for Image Recognition. arXiv:1512.03385 ''' import torch import math import torch.nn as nn import torch.nn.functional as F class DownsampleA(nn.Module): def __init__(self, nIn, nOut, stride): super(DownsampleA, self).__init__() assert stride == 2 self.out_channels = nOut self.avg = nn.AvgPool2d(kernel_size=1, stride=stride) def forward(self, x): x = self.avg(x) if self.out_channels-x.size(1) > 0: return torch.cat((x, torch.zeros(x.size(0), self.out_channels-x.size(1), x.size(2), x.size(3), device='cuda')), 1) else: return x def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) class BasicBlock(nn.Module): def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(planes), nn.ReLU(inplace=True), nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(planes), ) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = DownsampleA(in_planes, planes, stride) #self.shortcut = nn.Sequential( # nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False), # nn.BatchNorm2d(planes) #) def forward(self, x): x = F.relu(self.shortcut(x) + self.conv(x)) return x class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 16 self.features = [conv_bn(3, 16, 1)] self.features.append(self._make_layer(block, 16, num_blocks[0], stride=1)) self.features.append(self._make_layer(block, 32, num_blocks[1], stride=2)) self.features.append(self._make_layer(block, 64, num_blocks[2], stride=2)) self.features.append(nn.AvgPool2d(8)) self.features = nn.Sequential(*self.features) self.classifier = nn.Sequential(nn.Linear(64, num_classes)) self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if type(m) in [nn.Conv2d, nn.Linear, nn.BatchNorm2d]: m.reset_parameters() def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes return nn.Sequential(*layers) def forward(self, x): x = self.features(x) x = x.view(-1, self.classifier[0].in_features) x = self.classifier(x) return x def ResNet20(num_classes=10): return ResNet(BasicBlock, [3,3,3], num_classes=num_classes) def ResNet32(num_classes=10): return ResNet(BasicBlock, [5,5,5], num_classes=num_classes) def ResNet44(num_classes=10): return ResNet(BasicBlock, [7,7,7], num_classes=num_classes) def ResNet56(num_classes=10): return ResNet(BasicBlock, [9,9,9], num_classes=num_classes) def test(): net = ResNet20() y = net(torch.randn(1,3,32,32)) print(y.size()) # test()
lib/pymedphys/_experimental/wlutz/interppoints.py
ethanio12345/pymedphys
207
11180222
# Copyright (C) 2019 Cancer Care Associates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pymedphys._imports import numpy as np import pymedphys._utilities.createshells from . import transformation as _transformation def transform_penumbra_points(points_at_origin, centre, rotation): transform = _transformation.rotate_and_translate_transform(centre, rotation) xx_left_right, yy_left_right, xx_top_bot, yy_top_bot = points_at_origin ( xx_left_right_transformed, yy_left_right_transformed, ) = _transformation.apply_transform(xx_left_right, yy_left_right, transform) xx_top_bot_transformed, yy_top_bot_transformed = _transformation.apply_transform( xx_top_bot, yy_top_bot, transform ) return ( xx_left_right_transformed, yy_left_right_transformed, xx_top_bot_transformed, yy_top_bot_transformed, ) def define_penumbra_points_at_origin(edge_lengths, penumbra): penumbra_range = np.linspace(-penumbra / 2, penumbra / 2, 11) def _each_edge(current_edge_length, orthogonal_edge_length): half_field_range = np.linspace( -orthogonal_edge_length / 4, orthogonal_edge_length / 4, 51 ) a_side_lookup = -current_edge_length / 2 + penumbra_range b_side_lookup = current_edge_length / 2 + penumbra_range current_axis_lookup = np.concatenate([a_side_lookup, b_side_lookup]) return current_axis_lookup, half_field_range edge_points_left_right = _each_edge(edge_lengths[0], edge_lengths[1]) edge_points_top_bot = _each_edge(edge_lengths[1], edge_lengths[0]) xx_left_right, yy_left_right = np.meshgrid(*edge_points_left_right) xx_top_bot, yy_top_bot = np.meshgrid(*edge_points_top_bot[::-1]) return xx_left_right, yy_left_right, xx_top_bot, yy_top_bot def create_bb_points_function(bb_diameter): max_distance = bb_diameter * 0.5 min_distance = 0 num_steps = 11 min_dist_between_points = (max_distance - min_distance) / num_steps distances = np.arange( min_distance, max_distance + min_dist_between_points, min_dist_between_points ) x = [] y = [] dist = [] for _, distance in enumerate(distances): ( new_x, new_y, ) = pymedphys._utilities.createshells.calculate_coordinates_shell_2d( # pylint: disable = protected-access distance, min_dist_between_points ) x.append(new_x) y.append(new_y) dist.append(distance * np.ones_like(new_x)) x = np.concatenate(x) y = np.concatenate(y) dist = np.concatenate(dist) def points_to_check(bb_centre): x_shifted = x + bb_centre[0] y_shifted = y + bb_centre[1] return x_shifted, y_shifted return points_to_check, dist
Hamming_Distance/Python/jcla1/hamming.py
Mynogs/Algorithm-Implementations
1,184
11180237
<gh_stars>1000+ def hamming_distance(p, 1): """Return the Hamming distance between equal-length sequences""" if len(p) != len(q): raise ValueError("Undefined for sequences of unequal length") return sum(ch1 != ch2 for ch1, ch2 in zip(p, q))
tbx/work/migrations/0009_remove_play_fields.py
elviva404/wagtail-torchbox
103
11180248
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2019-01-21 13:52 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("work", "0008_remove_workpage_body"), ] operations = [ migrations.RemoveField(model_name="workindexpage", name="show_in_play_menu",), migrations.RemoveField(model_name="workpage", name="show_in_play_menu",), ]
atest/testdata/test_libraries/MyLibDir/ClassLib.py
rdagum/robotframework
7,073
11180254
<filename>atest/testdata/test_libraries/MyLibDir/ClassLib.py class ClassLib: def keyword_in_mylibdir_classlib(self): pass
matchzoo/utils/timer.py
ChrisRBXiong/MatchZoo-py
468
11180257
"""Timer.""" import time class Timer(object): """Computes elapsed time.""" def __init__(self): """Timer constructor.""" self.reset() def reset(self): """Reset timer.""" self.running = True self.total = 0 self.start = time.time() def resume(self): """Resume.""" if not self.running: self.running = True self.start = time.time() return self def stop(self): """Stop.""" if self.running: self.running = False self.total += time.time() - self.start return self @property def time(self): """Return time.""" if self.running: return self.total + time.time() - self.start return self.total
applications/FluidDynamicsApplication/python_scripts/flow_output_process.py
lkusch/Kratos
778
11180268
# Importing the Kratos Library import KratosMultiphysics import KratosMultiphysics.FluidDynamicsApplication as KratosCFD # other imports from KratosMultiphysics.time_based_ascii_file_writer_utility import TimeBasedAsciiFileWriterUtility def Factory(settings, Model): if(type(settings) != KratosMultiphysics.Parameters): raise Exception("expected input shall be a Parameters object, encapsulating a json string") return FlowOutputProcess(Model, settings["Parameters"]) class FlowOutputProcess(KratosMultiphysics.Process): """This process calculates(using c++ utilities) and writes the flow through a given list of (sub)model parts. In 3D use a surface eg. Inlet, Outlet In 2D use a line eg. Inlet, Outlet This process works in MPI as well as with restarts """ def __init__(self, model, params): KratosMultiphysics.Process.__init__(self) default_settings = KratosMultiphysics.Parameters('''{ "help" : "This process calculates(using c++ utilities) and writes the flow through a given list of (sub)model parts.", "model_part_name_list" : [], "print_format" : "", "output_file_settings": {} }''') self.model = model self.params = params self.params.ValidateAndAssignDefaults(default_settings) self.output_file = None self.format = self.params["print_format"].GetString() def ExecuteInitialize(self): # getting the ModelPart from the Model model_part_name_list = self.params["model_part_name_list"] if model_part_name_list.size() == 0: raise Exception('No model parts are specified!') self.model_part_for_time = self.model[model_part_name_list[0].GetString()] # Only rank 0 writes in MPI my_rank = 0 comm = self.model_part_for_time.GetCommunicator().GetDataCommunicator() self.is_writing_rank = my_rank == comm.Rank() if self.is_writing_rank: file_handler_params = KratosMultiphysics.Parameters(self.params["output_file_settings"]) file_header = self.GetFileHeader() self.output_file = TimeBasedAsciiFileWriterUtility(self.model_part_for_time, file_handler_params, file_header).file def ExecuteFinalizeSolutionStep(self): time = self.model_part_for_time.ProcessInfo[KratosMultiphysics.TIME] model_part_name_list = self.params["model_part_name_list"] out = str(time) for model_part_name_param in model_part_name_list: model_part_name = model_part_name_param.GetString() model_part = self.model[model_part_name] flow_value = self.CalculateFlow(model_part) out += " " + format(flow_value,self.format) out += "\n" if self.is_writing_rank: self.output_file.write(out) def ExecuteFinalize(self): if self.is_writing_rank: self.output_file.close() def GetFileHeader(self): model_part_name_list = self.params["model_part_name_list"] header = '# Flow results ' + '\n' header += '# time ' for model_part_name_param in model_part_name_list: model_part_name = model_part_name_param.GetString() model_part = self.model[model_part_name] header += model_part.Name header += ' ' header += "\n" return header def CalculateFlow(self, model_part): flow_value = KratosCFD.FluidAuxiliaryUtilities.CalculateFlowRate(model_part) return flow_value
Sources/Workflows/Monkey-Patch/alfred/util.py
yagosys/AlfredWorkflow.com
2,177
11180319
# -*- coding: utf-8 -*- import hashlib, random import core hashDigest = lambda s: hashlib.md5(s).hexdigest() uid = lambda: '{0}.{1}'.format(core.bundleID(), random.getrandbits(25))
xrspatial/tests/test_focal.py
g2giovanni/xarray-spatial
547
11180320
<filename>xrspatial/tests/test_focal.py import pytest import xarray as xr import numpy as np import dask.array as da from xrspatial.utils import doesnt_have_cuda from xrspatial.utils import ngjit from xrspatial import mean from xrspatial.focal import hotspots, apply, focal_stats from xrspatial.convolution import ( convolve_2d, calc_cellsize, circle_kernel, annulus_kernel ) def _do_sparse_array(data_array): import random indx = list(zip(*np.where(data_array))) pos = random.sample(range(data_array.size), data_array.size//2) indx = np.asarray(indx)[pos] r = indx[:, 0] c = indx[:, 1] data_half = data_array.copy() data_half[r, c] = 0 return data_half def _do_gaussian_array(): _x = np.linspace(0, 50, 101) _y = _x.copy() _mean = 25 _sdev = 5 X, Y = np.meshgrid(_x, _y, sparse=True) x_fac = -np.power(X-_mean, 2) y_fac = -np.power(Y-_mean, 2) gaussian = np.exp((x_fac+y_fac)/(2*_sdev**2)) / (2.5*_sdev) return gaussian data_random = np.random.random_sample((100, 100)) data_random_sparse = _do_sparse_array(data_random) data_gaussian = _do_gaussian_array() def test_mean_transfer_function_cpu(): # numpy case numpy_agg = xr.DataArray(data_random) numpy_mean = mean(numpy_agg) assert isinstance(numpy_mean.data, np.ndarray) # dask + numpy case dask_numpy_agg = xr.DataArray(da.from_array(data_random, chunks=(3, 3))) dask_numpy_mean = mean(dask_numpy_agg) assert isinstance(dask_numpy_mean.data, da.Array) # both output same results assert np.isclose( numpy_mean, dask_numpy_mean.compute(), equal_nan=True ).all() assert numpy_agg.shape == numpy_mean.shape @pytest.mark.skipif(doesnt_have_cuda(), reason="CUDA Device not Available") def test_mean_transfer_function_gpu_equals_cpu(): import cupy # cupy case cupy_agg = xr.DataArray(cupy.asarray(data_random)) cupy_mean = mean(cupy_agg) assert isinstance(cupy_mean.data, cupy.ndarray) # numpy case numpy_agg = xr.DataArray(data_random) numpy_mean = mean(numpy_agg) assert np.isclose(numpy_mean, cupy_mean.data.get(), equal_nan=True).all() # dask + cupy case not implemented dask_cupy_agg = xr.DataArray( da.from_array(cupy.asarray(data_random), chunks=(3, 3)) ) with pytest.raises(NotImplementedError) as e_info: mean(dask_cupy_agg) assert e_info convolve_2d_data = np.array([[0., 1., 1., 1., 1., 1.], [1., 0., 1., 1., 1., 1.], [1., 1., 0., 1., 1., 1.], [1., 1., 1., np.nan, 1., 1.], [1., 1., 1., 1., 0., 1.], [1., 1., 1., 1., 1., 0.]]) def test_kernel(): data = convolve_2d_data m, n = data.shape agg = xr.DataArray(data, dims=['y', 'x']) agg['x'] = np.linspace(0, n, n) agg['y'] = np.linspace(0, m, m) cellsize_x, cellsize_y = calc_cellsize(agg) kernel1 = circle_kernel(cellsize_x, cellsize_y, 2) expected_kernel1 = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) assert isinstance(kernel1, np.ndarray) assert np.isclose(kernel1, expected_kernel1, equal_nan=True).all() kernel2 = annulus_kernel(cellsize_x, cellsize_y, 2, 0.5) expected_kernel2 = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) assert isinstance(kernel2, np.ndarray) assert np.isclose(kernel2, expected_kernel2, equal_nan=True).all() def test_convolution(): data = convolve_2d_data dask_data = da.from_array(data, chunks=(3, 3)) kernel1 = np.ones((1, 1)) numpy_output_1 = convolve_2d(data, kernel1) expected_output_1 = np.array([[0., 1., 1., 1., 1., 1.], [1., 0., 1., 1., 1., 1.], [1., 1., 0., 1., 1., 1.], [1., 1., 1., np.nan, 1., 1.], [1., 1., 1., 1., 0., 1.], [1., 1., 1., 1., 1., 0.]]) assert isinstance(numpy_output_1, np.ndarray) assert np.isclose(numpy_output_1, expected_output_1, equal_nan=True).all() dask_output_1 = convolve_2d(dask_data, kernel1) assert isinstance(dask_output_1, da.Array) assert np.isclose( dask_output_1.compute(), expected_output_1, equal_nan=True ).all() kernel2 = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) numpy_output_2 = convolve_2d(data, kernel2) expected_output_2 = np.array([ [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, 4., 3., 5., 5., np.nan], [np.nan, 3., np.nan, np.nan, np.nan, np.nan], [np.nan, 5., np.nan, np.nan, np.nan, np.nan], [np.nan, 5., np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] ]) # kernel2 is of 3x3, thus the border edge is 1 cell long. # currently, ignoring border edge (i.e values in edges are all nans) assert isinstance(numpy_output_2, np.ndarray) assert np.isclose( numpy_output_2, expected_output_2, equal_nan=True ).all() dask_output_2 = convolve_2d(dask_data, kernel2) assert isinstance(dask_output_2, da.Array) assert np.isclose( dask_output_2.compute(), expected_output_2, equal_nan=True ).all() kernel3 = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) numpy_output_3 = convolve_2d(data, kernel3) expected_output_3 = np.array([ [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, 4., 2., 4., 4., np.nan], [np.nan, 2., np.nan, np.nan, np.nan, np.nan], [np.nan, 4., np.nan, np.nan, np.nan, np.nan], [np.nan, 4., np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] ]) # kernel3 is of 3x3, thus the border edge is 1 cell long. # currently, ignoring border edge (i.e values in edges are all nans) assert isinstance(numpy_output_3, np.ndarray) assert np.isclose(numpy_output_3, expected_output_3, equal_nan=True).all() dask_output_3 = convolve_2d(dask_data, kernel3) assert isinstance(dask_output_3, da.Array) assert np.isclose( dask_output_3.compute(), expected_output_3, equal_nan=True ).all() @pytest.mark.skipif(doesnt_have_cuda(), reason="CUDA Device not Available") def test_2d_convolution_gpu_equals_cpu(): import cupy data = convolve_2d_data numpy_agg = xr.DataArray(data) cupy_agg = xr.DataArray(cupy.asarray(data)) kernel1 = np.ones((1, 1)) output_numpy1 = convolve_2d(numpy_agg.data, kernel1) output_cupy1 = convolve_2d(cupy_agg.data, kernel1) assert isinstance(output_cupy1, cupy.ndarray) assert np.isclose(output_numpy1, output_cupy1.get(), equal_nan=True).all() kernel2 = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) output_numpy2 = convolve_2d(numpy_agg.data, kernel2) output_cupy2 = convolve_2d(cupy_agg.data, kernel2) assert isinstance(output_cupy2, cupy.ndarray) assert np.isclose(output_numpy2, output_cupy2.get(), equal_nan=True).all() kernel3 = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) output_numpy3 = convolve_2d(numpy_agg.data, kernel3) output_cupy3 = convolve_2d(cupy_agg.data, kernel3) assert isinstance(output_cupy3, cupy.ndarray) assert np.isclose(output_numpy3, output_cupy3.get(), equal_nan=True).all() # dask + cupy case not implemented dask_cupy_agg = xr.DataArray( da.from_array(cupy.asarray(data), chunks=(3, 3)) ) with pytest.raises(NotImplementedError) as e_info: convolve_2d(dask_cupy_agg.data, kernel3) assert e_info data_apply = np.array([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]) kernel_apply = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) def test_apply_cpu(): @ngjit def func_zero_cpu(x): return 0 # numpy case numpy_agg = xr.DataArray(data_apply) numpy_apply = apply(numpy_agg, kernel_apply, func_zero_cpu) assert isinstance(numpy_apply.data, np.ndarray) assert numpy_agg.shape == numpy_apply.shape assert np.count_nonzero(numpy_apply.data) == 0 # dask + numpy case dask_numpy_agg = xr.DataArray(da.from_array(data_apply, chunks=(3, 3))) dask_numpy_apply = apply(dask_numpy_agg, kernel_apply, func_zero_cpu) assert isinstance(dask_numpy_apply.data, da.Array) # both output same results assert np.isclose( numpy_apply, dask_numpy_apply.compute(), equal_nan=True ).all() @pytest.mark.skipif(doesnt_have_cuda(), reason="CUDA Device not Available") def test_apply_gpu_equals_gpu(): def func_zero(x): return 0 @ngjit def func_zero_cpu(x): return 0 # cupy case import cupy cupy_agg = xr.DataArray(cupy.asarray(data_apply)) cupy_apply = apply(cupy_agg, kernel_apply, func_zero) assert isinstance(cupy_apply.data, cupy.ndarray) # numpy case numpy_agg = xr.DataArray(data_apply) numpy_apply = apply(numpy_agg, kernel_apply, func_zero_cpu) assert np.isclose(numpy_apply, cupy_apply.data.get(), equal_nan=True).all() # dask + cupy case not implemented dask_cupy_agg = xr.DataArray( da.from_array(cupy.asarray(data_apply), chunks=(3, 3)) ) with pytest.raises(NotImplementedError) as e_info: apply(dask_cupy_agg, kernel_apply, func_zero) assert e_info def test_focal_stats_cpu(): data = np.arange(16).reshape(4, 4) numpy_agg = xr.DataArray(data) dask_numpy_agg = xr.DataArray(da.from_array(data, chunks=(3, 3))) cellsize = (1, 1) kernel = circle_kernel(*cellsize, 1.5) numpy_focalstats = focal_stats(numpy_agg, kernel) assert isinstance(numpy_focalstats.data, np.ndarray) assert numpy_focalstats.ndim == 3 assert numpy_agg.shape == numpy_focalstats.shape[1:] dask_numpy_focalstats = focal_stats(dask_numpy_agg, kernel) assert isinstance(dask_numpy_focalstats.data, da.Array) assert np.isclose( numpy_focalstats, dask_numpy_focalstats.compute(), equal_nan=True ).all() def test_hotspot(): n, m = 10, 10 data = np.zeros((n, m), dtype=float) all_idx = zip(*np.where(data == 0)) nan_cells = [(i, i) for i in range(m)] for cell in nan_cells: data[cell[0], cell[1]] = np.nan # add some extreme values hot_region = [(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)] cold_region = [(7, 7), (7, 8), (7, 9), (8, 7), (8, 8), (8, 9), (9, 7), (9, 8), (9, 9)] for p in hot_region: data[p[0], p[1]] = 10000 for p in cold_region: data[p[0], p[1]] = -10000 numpy_agg = xr.DataArray(data, dims=['y', 'x']) numpy_agg['x'] = np.linspace(0, n, n) numpy_agg['y'] = np.linspace(0, m, m) cellsize_x, cellsize_y = calc_cellsize(numpy_agg) kernel = circle_kernel(cellsize_x, cellsize_y, 2.0) no_significant_region = [id for id in all_idx if id not in hot_region and id not in cold_region] # numpy case numpy_hotspots = hotspots(numpy_agg, kernel) # dask + numpy dask_numpy_agg = xr.DataArray(da.from_array(data, chunks=(3, 3))) dask_numpy_hotspots = hotspots(dask_numpy_agg, kernel) assert isinstance(dask_numpy_hotspots.data, da.Array) # both output same results assert np.isclose(numpy_hotspots.data, dask_numpy_hotspots.data.compute(), equal_nan=True).all() # check output's properties # output must be an xarray DataArray assert isinstance(numpy_hotspots, xr.DataArray) assert isinstance(numpy_hotspots.values, np.ndarray) assert issubclass(numpy_hotspots.values.dtype.type, np.int8) # shape, dims, coords, attr preserved assert numpy_agg.shape == numpy_hotspots.shape assert numpy_agg.dims == numpy_hotspots.dims assert numpy_agg.attrs == numpy_hotspots.attrs for coord in numpy_agg.coords: assert np.all(numpy_agg[coord] == numpy_hotspots[coord]) # no nan in output assert not np.isnan(np.min(numpy_hotspots)) # output of extreme regions are non-zeros # hot spots hot_spot = np.asarray([numpy_hotspots[p] for p in hot_region]) assert np.all(hot_spot >= 0) assert np.sum(hot_spot) > 0 # cold spots cold_spot = np.asarray([numpy_hotspots[p] for p in cold_region]) assert np.all(cold_spot <= 0) assert np.sum(cold_spot) < 0 # output of no significant regions are 0s no_sign = np.asarray([numpy_hotspots[p] for p in no_significant_region]) assert np.all(no_sign == 0) @pytest.mark.skipif(doesnt_have_cuda(), reason="CUDA Device not Available") def test_hotspot_gpu_equals_cpu(): n, m = 10, 10 data = np.zeros((n, m), dtype=float) nan_cells = [(i, i) for i in range(m)] for cell in nan_cells: data[cell[0], cell[1]] = np.nan # add some extreme values hot_region = [(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)] cold_region = [(7, 7), (7, 8), (7, 9), (8, 7), (8, 8), (8, 9), (9, 7), (9, 8), (9, 9)] for p in hot_region: data[p[0], p[1]] = 10000 for p in cold_region: data[p[0], p[1]] = -10000 numpy_agg = xr.DataArray(data, dims=['y', 'x']) numpy_agg['x'] = np.linspace(0, n, n) numpy_agg['y'] = np.linspace(0, m, m) cellsize_x, cellsize_y = calc_cellsize(numpy_agg) kernel = circle_kernel(cellsize_x, cellsize_y, 2.0) # numpy case numpy_hotspots = hotspots(numpy_agg, kernel) # cupy case import cupy cupy_agg = xr.DataArray(cupy.asarray(data)) cupy_hotspots = hotspots(cupy_agg, kernel) assert isinstance(cupy_hotspots.data, cupy.ndarray) assert np.isclose( numpy_hotspots, cupy_hotspots.data.get(), equal_nan=True ).all() # dask + cupy case not implemented dask_cupy_agg = xr.DataArray( da.from_array(cupy.asarray(data), chunks=(3, 3)) ) with pytest.raises(NotImplementedError) as e_info: hotspots(dask_cupy_agg, kernel) assert e_info
tools/pot/openvino/tools/pot/configs/hardware_config.py
ryanloney/openvino-1
1,127
11180332
<reponame>ryanloney/openvino-1 # Copyright (C) 2020-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 try: import jstyleson as json except ImportError: import json from collections import OrderedDict from addict import Dict from .utils import product_dict class HardwareConfig(list): def get(self, op_type, attr): def match_attrs(op_config, attr): for attr_name, attr_value in attr.items(): if attr_name in op_config: equal = attr_value in op_config[attr_name] if isinstance(op_config[attr_name], list) \ else attr_value == op_config[attr_name] if not equal: return False return True config = None for op_config in self: if op_config.type == op_type and match_attrs(op_config, attr): if config is not None: raise RuntimeError('Several hardware configs were defined for operation with type {}, attr {}\n ' 'Specify the operation uniquely'.format(op_type, attr)) config = op_config return config @classmethod def from_json(cls, path): with open(path) as f: json_config = json.load(f, object_pairs_hook=OrderedDict) hw_config = cls() hw_config.append(Dict(('target_device', json_config['target_device']))) configs = {} for algorithm_name, algorithm_config in json_config.get('config', {}).items(): configs[algorithm_name] = {} for config_name, config in algorithm_config.items(): for key, val in config.items(): if not isinstance(val, list): config[key] = [val] configs[algorithm_name][config_name] = list(product_dict(config)) for op_config in json_config.get('operations', []): for algorithm_name in op_config: if algorithm_name not in configs: continue tmp_config = {} for name, algorithm_config in op_config[algorithm_name].items(): if not isinstance(algorithm_config, list): algorithm_config = [algorithm_config] tmp_config[name] = [] for config_item in algorithm_config: if isinstance(config_item, str): tmp_config[name].extend(configs[algorithm_name][config_item]) else: for key, val in config_item.items(): if not isinstance(val, list): config_item[key] = [val] tmp_config[name].extend(list(product_dict(config_item))) op_config[algorithm_name] = tmp_config hw_config.append(Dict(op_config)) return hw_config
sdklab/meantimerecovery/mean_time_recover_with_docker.py
dominicbetts/azure-iot-sdk-python
366
11180340
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import docker import asyncio import uuid from azure.iot.device.aio import IoTHubDeviceClient from azure.iot.device import Message from time import perf_counter import threading from multiprocessing import Value, Process # Scenario based values KEEP_ALIVE = 18 FACTOR_OF_KEEP_ALIVE = 0.5 KEEP_RUNNING = 10 KEEP_DEAD = int(KEEP_ALIVE * FACTOR_OF_KEEP_ALIVE) MQTT_BROKER_RESTART_COUNT = 5 CONTAINER_NAME = "leaky-cauldron" elapsed_times = [] container = None def control_container( container_name, keep_running, keep_dead, restart_count, signal_to_quit, should_be_restarted=True ): global container print("Container started.") client = docker.from_env() container = client.containers.run( "mqtt-broker", detach=True, name=container_name, ports={"8883/tcp": 8883} ) if should_be_restarted: kill_and_restart_container( keep_running=keep_running, keep_dead=keep_dead, restart_count=restart_count, signal_to_quit=signal_to_quit, ) else: # This may need to be varied so that the last message can be SENT without an async task cancellation error. kill_container(keep_running=5) signal_to_quit.value = 1 def kill_and_restart_container(keep_running, keep_dead, restart_count, signal_to_quit): kill_container(keep_running) print("Container stopped.") start_timer(duration=keep_dead, restart_count=restart_count, signal_to_quit=signal_to_quit) def kill_container(keep_running): print("Container will run for {} secs.".format(keep_running)) container.stop(timeout=keep_running) container.remove() def quitting_listener(quit_signal): while True: sig_val = quit_signal.value if sig_val == 1: print("Quitting...") break async def send_test_message(device_client, restart_count): i = 0 while True: print("sending message #" + str(i)) msg = Message("test wind speed " + str(i)) msg.message_id = uuid.uuid4() t_start = perf_counter() await device_client.send_message(msg) t_stop = perf_counter() elapsed_time = t_stop - t_start elapsed_times.append(elapsed_time) print("done sending message #" + str(i)) i = i + 1 await asyncio.sleep(3) val = restart_count.value if val >= MQTT_BROKER_RESTART_COUNT: print( "Executed container restarts with telemetry {} times. Quitting telemetry task.".format( val ) ) break def start_timer(duration, restart_count, signal_to_quit): def timer_done(): timer.cancel() print("{} secs is up. Cancelled timer. Container will be restarted again.".format(duration)) restart_count.value = restart_count.value + 1 # signal_to_quit.value = 0 needs_restart = True if restart_count.value >= MQTT_BROKER_RESTART_COUNT: print( "Executed container restarts {} times. Container will not be restarted after the current loop. Quitting any future loop.".format( restart_count.value ) ) # signal_to_quit.value = 1 needs_restart = False control_container( CONTAINER_NAME, keep_running=KEEP_RUNNING, keep_dead=duration, restart_count=restart_count, signal_to_quit=signal_to_quit, should_be_restarted=needs_restart, ) print("Container will be dead for {} secs.".format(duration)) timer = threading.Timer(duration, timer_done) timer.start() async def main(): ca_cert = "self_cert_localhost.pem" certfile = open(ca_cert) root_ca_cert = certfile.read() # Inter process values times_container_restart = Value("i", 0) signal_to_quit = Value("i", 0) process_docker = Process( target=control_container, args=(CONTAINER_NAME, KEEP_RUNNING, KEEP_DEAD, times_container_restart, signal_to_quit), ) process_docker.start() # Do not delete sleep from here. Server needs some time to start. await asyncio.sleep(5) conn_str = "HostName=localhost;DeviceId=devicemtr;SharedAccessKey=<KEY>" device_client = IoTHubDeviceClient.create_from_connection_string( conn_str, keep_alive=KEEP_ALIVE, server_verification_cert=root_ca_cert ) await device_client.connect() send_message_task = asyncio.create_task( send_test_message(device_client, times_container_restart) ) # Run the listener in the event loop # This can be a STDIN listener as well for user to indicate quitting. loop = asyncio.get_running_loop() finished_loops = loop.run_in_executor(None, quitting_listener, signal_to_quit) # Wait for count times to reach a certain number indicative of completion await finished_loops print("Count is " + str(times_container_restart.value)) print(elapsed_times) process_docker.terminate() try: send_message_task.cancel() except asyncio.CancelledError: print("send message task is cancelled now") await device_client.disconnect() if __name__ == "__main__": asyncio.run(main())
api/tests/unit/features/test_unit_features_views.py
SolidStateGroup/Bullet-Train-API
126
11180348
from django.urls import reverse from rest_framework import status from environments.models import Environment from features.feature_types import MULTIVARIATE from features.models import Feature from features.multivariate.models import MultivariateFeatureOption from organisations.models import Organisation from projects.models import Project, UserProjectPermission def test_list_feature_states_from_simple_view_set( environment, feature, admin_user, admin_client, django_assert_num_queries ): # Given base_url = reverse("api-v1:features:featurestates-list") url = f"{base_url}?environment={environment.id}" # add another feature Feature.objects.create(name="another_feature", project=environment.project) # add another organisation with a project, environment and feature (which should be # excluded) another_organisation = Organisation.objects.create(name="another_organisation") admin_user.add_organisation(another_organisation) another_project = Project.objects.create( name="another_project", organisation=another_organisation ) Environment.objects.create(name="another_environment", project=another_project) Feature.objects.create(project=another_project, name="another_projects_feature") UserProjectPermission.objects.create( user=admin_user, project=another_project, admin=True ) # add another feature with multivariate options mv_feature = Feature.objects.create( name="mv_feature", project=environment.project, type=MULTIVARIATE ) MultivariateFeatureOption.objects.create( feature=mv_feature, default_percentage_allocation=10, type="unicode", string_value="foo", ) # When with django_assert_num_queries(7): response = admin_client.get(url) # Then assert response.status_code == status.HTTP_200_OK response_json = response.json() assert response_json["count"] == 3 def test_list_feature_states_nested_environment_view_set( environment, project, feature, admin_client, django_assert_num_queries ): # Given base_url = reverse( "api-v1:environments:environment-featurestates-list", args=[environment.api_key], ) # Add an MV feature mv_feature = Feature.objects.create( name="mv_feature", project=project, type=MULTIVARIATE ) MultivariateFeatureOption.objects.create( feature=mv_feature, default_percentage_allocation=10, type="unicode", string_value="foo", ) # Add another feature Feature.objects.create(name="another_feature", project=project) # When with django_assert_num_queries(6): response = admin_client.get(base_url) # Then assert response.status_code == status.HTTP_200_OK response_json = response.json() assert response_json["count"] == 3
RecoTracker/MkFit/python/mkFitHitConverter_cfi.py
Purva-Chaudhari/cmssw
852
11180361
<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from RecoTracker.MkFit.mkFitHitConverterDefault_cfi import mkFitHitConverterDefault as _mkFitHitConverterDefault from RecoLocalTracker.SiStripClusterizer.SiStripClusterChargeCut_cfi import * mkFitHitConverter = _mkFitHitConverterDefault.clone( minGoodStripCharge = cms.PSet( refToPSet_ = cms.string('SiStripClusterChargeCutLoose')) )
h2o-py/tests/testdir_algos/isoforextended/pyunit_isoforextended_saveload.py
vishalbelsare/h2o-3
6,098
11180418
from __future__ import print_function import sys, os sys.path.insert(1, os.path.join("..","..","..")) import h2o from tests import pyunit_utils from h2o.estimators.extended_isolation_forest import H2OExtendedIsolationForestEstimator def extended_isolation_forest_save_and_load(): print("Extended Isolation Forest Save Load Test") train = h2o.import_file(pyunit_utils.locate("smalldata/anomaly/single_blob.csv")) eif_model = H2OExtendedIsolationForestEstimator(ntrees=7, seed=12, sample_size=5) eif_model.train(training_frame=train) anomaly_score = eif_model.predict(train) anomaly = anomaly_score['anomaly_score'].as_data_frame(use_pandas=True)["anomaly_score"] path = pyunit_utils.locate("results") assert os.path.isdir(path), "Expected save directory {0} to exist, but it does not.".format(path) model_path = h2o.save_model(eif_model, path=path, force=True) assert os.path.isfile(model_path), "Expected load file {0} to exist, but it does not.".format(model_path) reloaded = h2o.load_model(model_path) anomaly_score_reloaded = reloaded.predict(train) anomaly_reloaded = anomaly_score_reloaded['anomaly_score'].as_data_frame(use_pandas=True)["anomaly_score"] assert isinstance(reloaded, H2OExtendedIsolationForestEstimator), \ "Expected and H2OExtendedIsolationForestEstimator, but got {0}"\ .format(reloaded) assert (anomaly[0] == anomaly_reloaded[0]), "Output is not the same after reload" assert anomaly[5] == anomaly_reloaded[5], "Output is not the same after reload" assert anomaly[33] == anomaly_reloaded[33], "Output is not the same after reload" assert anomaly[256] == anomaly_reloaded[256], "Output is not the same after reload" assert anomaly[499] == anomaly_reloaded[499], "Output is not the same after reload" if __name__ == "__main__": pyunit_utils.standalone_test(extended_isolation_forest_save_and_load) else: extended_isolation_forest_save_and_load()
examples/d2/white.py
manu-mannattil/nolitsa
118
11180426
<reponame>manu-mannattil/nolitsa #!/usr/bin/env python # -*- coding: utf-8 -*- """D2 for white noise. D2 is (theoretically) equal to the embedding dimension for white noise. """ import numpy as np import matplotlib.pyplot as plt from nolitsa import d2, utils x = np.random.random(5 * 1000) dim = np.arange(1, 10 + 1) tau = 1 plt.title('Local $D_2$ vs $r$ for white noise') plt.xlabel(r'Distance $r$') plt.ylabel(r'Local $D_2$') for r, c in d2.c2_embed(x, tau=tau, dim=dim, window=2, r=utils.gprange(0.001, 1.0, 100)): plt.semilogx(r[1:-1], d2.d2(r, c, hwin=1), color='#4682B4') plt.show()
mmdet/utils/general_utils.py
Yibin122/conditional-lane-detection
232
11180447
import os import time import numpy as np import cv2 def getPathList(path, suffix='png'): if (path[-1] != '/') & (path[-1] != '\\'): path = path + '/' pathlist = list() g = os.walk(path) for p, d, filelist in g: for filename in filelist: if filename.endswith(suffix): pathlist.append(os.path.join(p, filename)) return pathlist def mkdir(path): if not os.path.isdir(path): mkdir(os.path.split(path)[0]) else: return if not os.path.isdir(path): os.mkdir(path) def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True): num_imgs = tensor.size(0) mean = np.array(mean, dtype=np.float32) std = np.array(std, dtype=np.float32) imgs = [] for img_id in range(num_imgs): img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0) img = (mmcv.imdenormalize( img, mean, std, to_bgr=to_rgb)) img = (np.clip(img * 255, a_min=0, a_max=255)).astype(np.uint8) imgs.append(np.ascontiguousarray(img)) return imgs def path_join(root, name): if root == '': return name if name[0] == '/': return os.path.join(root, name[1:]) else: return os.path.join(root, name) class Timer: def __init__(self, msg): self.msg = msg self.start_time = None def __enter__(self): self.start_time = time.time() def __exit__(self, exc_type, exc_value, exc_tb): print(self.msg % (time.time() - self.start_time))
tool/taint_analysis/coretaint.py
cpbscholten/karonte
294
11180452
<reponame>cpbscholten/karonte<filename>tool/taint_analysis/coretaint.py import os import claripy import logging import random import signal from random import shuffle from angr import BP, SimValueError from angr.procedures.stubs.ReturnUnconstrained import ReturnUnconstrained from taint_analysis.utils import * logging.basicConfig() log = logging.getLogger("CoreTaint") log.setLevel("DEBUG") GLOB_TAINT_DEP_KEY = 'taint_deps' UNTAINT_DATA = 'untainted_data' UNTAINTED_VARS = 'untainted_vars' SEEN_MASTERS = 'seen_masters' class MyFileHandler(object): def __init__(self, filename, handler_factory, **kw): kw['filename'] = filename self._handler = handler_factory(**kw) def __getattr__(self, n): if hasattr(self._handler, n): return getattr(self._handler, n) raise AttributeError(n) class TimeOutException(Exception): def __init__(self, message): super(TimeOutException, self).__init__(message) class UnSATException(Exception): def __init__(self, message): super(UnSATException, self).__init__(message) class CoreTaint: """ Perform a symbolic-execution-based taint analysis on a given binary to find whether it exists a tainted path between a source and a sink. """ def __init__(self, p, interfunction_level=0, log_path='/tmp/coretaint.out', exploration_strategy=None, smart_call=True, follow_unsat=False, try_thumb=False, white_calls=[], black_calls=[], not_follow_any_calls=False, default_log=True, exit_on_decode_error=True, concretization_strategy=None, force_paths=False, reverse_sat=False, only_tracker=False, shuffle_sat=False, taint_returns_unfollowed_calls=False, taint_arguments_unfollowed_calls=False, allow_untaint=True, logger_obj=None): """ Initialialization function :param p: angr project :param interfunction_level: interfunction level :param log_path: path where the analysis' log is created :param smart_call: if True a call is followed only if at least one of its parameters is tainted :param follow_unsat: if true unsat successors are also considered during path exploration. In this case the collected constraints up to that point will be dropped. :param try_thumb: try to force thumb mode if some decoding error occurred :param white_calls: calls to follow in any case :param default_log: log info by default :param exit_on_decode_error: terminate the analysis in case of error :param concretization_strategy: concretization strategy callback :param force_paths: force a path to be followed even when some decode errors were found :param allow_untaint: allow to untaint variables. """ global log self._old_signal_handler = None self._old_timer = 0 self._count_var = 0 self._use_smart_concretization = False self._back_jumps = {} self._N = 1 self._keep_run = True self._timeout_triggered = False self._timer = 0 self._force_exit_after = -1 self._p = p self._taint_buf = "taint_buf" self._taint_applied = False self._taint_buf_size = 4096 self._bogus_return = 0x41414141 self._fully_taint_guard = [] self._white_calls = white_calls self._black_calls = black_calls self._taint_returns_unfollowed_calls = taint_returns_unfollowed_calls self._taint_arguments_unfollowed_calls = taint_arguments_unfollowed_calls self._allow_untaint = allow_untaint self._not_follow_any_calls = not_follow_any_calls self._reverse_sat = reverse_sat self._shuffle_sat = shuffle_sat self._exploration_strategy = self._base_exploration_strategy if \ exploration_strategy is None else exploration_strategy self._only_tracker = only_tracker self._try_to_avoid_z3 = 3 if exploration_strategy is not None and (shuffle_sat or reverse_sat): log.warning("Exploration strategy takes precedence over state shuffling/reversing") self._deref_taint_address = False self._deref_instruction = None self._deref_addr_expr = None self._deref = (None, None) self._old_deref = self._deref self._old_deref_taint_address = self._deref_taint_address self._old_deref_addr_expr = self._deref_addr_expr self._interfunction_level = interfunction_level self._smart_call = smart_call self._follow_unsat = follow_unsat self._concretizations = {} self._summarized_f = {} self._fp = open(log_path, 'w') self._interesing_path = {'sink': [], 'deref': [], 'loop': []} self._try_thumb = try_thumb self._force_paths = force_paths self._default_log = default_log self._exit_on_decode_error = exit_on_decode_error self._concretization_strategy = self._default_concretization_strategy if concretization_strategy is None \ else concretization_strategy self._hooked_addrs = [] # stats self._new_path = True self._n_paths = 0 if logger_obj: log = logger_obj if type(log) == logging.Logger: formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fileh = MyFileHandler(log_path + '._log', logging.FileHandler) fileh.setFormatter(formatter) log.addHandler(fileh) def triggered_to(self): return self._timeout_triggered def handler(self, _, frame): """ Timeout handler :param _: signal number :param frame: frame :return: """ log.info(f"Timeout triggered, {str(self._force_exit_after)} left....") self._keep_run = False self._timeout_triggered = True self._force_exit_after -= 1 signal.alarm(self._timer) if self._force_exit_after <= 0 and not self._keep_run: # raising an exception while the execution is in z3 might crash the program if 'z3' in frame.f_code.co_filename: log.info("Hard Timeout triggered, but we are in z3, trying again in 30 seconds") signal.alarm(30) else: log.info(f"Hard Timeout triggered, {str(self._force_exit_after)} left....") raise TimeOutException("Hard timeout triggered") def _get_bb(self, addr): """ Get a basic block of an address :param addr: address :return: the basic block """ try: bl = self._p.factory.block(addr) except: bl = None if bl is None or bl.vex.jumpkind == 'Ijk_NoDecode': try: bl = self._p.factory.block(addr, thumb=True) except: bl = None return bl def _save_taint_flag(self): """ Save the tainting related flags :return: """ self._old_deref = self._deref self._old_deref_taint_address = self._deref_taint_address self._old_deref_addr_expr = self._deref_addr_expr def _restore_taint_flags(self): """ Restiore the tainting related flags :return: """ self._deref = self._old_deref self._deref_taint_address = self._old_deref_taint_address self._deref_addr_expr = self._old_deref_addr_expr @property def n_paths(self): return self._n_paths @property def bogus_return(self): return self._bogus_return @property def taint_buf(self): return self._taint_buf @property def taint_buf_size(self): return self._taint_buf_size @property def taint_applied(self): return self._taint_applied @property def p(self): return self._p def estimate_mem_buf_size(self, state, addr, max_size=None): """ Estimate the size allocated in a buffer :param state: the current state :param addr: addr of the buffer :param max_size: the maximum size to load :return: the estimated allocated size """ if not max_size: max_size = self.taint_buf_size try: # estimate the size of the buffer by looking at the buffer contents in memory temp_load = state.memory.load(addr, max_size) if self._taint_buf in str(temp_load.args[0]): # when there is only one thing to load if isinstance(temp_load.args[0], str): return temp_load.length # tainted size = 0 for arg in temp_load.args: if self._taint_buf in str(arg): size += arg.length else: break else: # not tainted if isinstance(temp_load.args[0], (str, int)): return temp_load.length size = temp_load.args[0].length if not size: # TODO solve when there is a conditional in the data log.error("Should debug. Encountered something in estimate buffer size that should not happen") size = temp_load.length return size except Exception as e: # The size may be too long and collide with the heap. Try a smaller size. Stop when size smaller than 1 # This is a bug in angr that may be fixed at a later time, since there are not enough stack pages allocated new_max_size = int(max_size / 2) if new_max_size > 1: return self.estimate_mem_buf_size(state, addr, new_max_size) return 1 def safe_load(self, path, addr, size=None, unconstrained=False, estimate_size=False): """ Loads bytes from memory, saving and restoring taint info :param path: path :param addr: address :return: the content in memory at address addr """ self._save_taint_flag() state = path.active[0] if not unconstrained else path.unconstrained[0] if not size and not estimate_size: size = self._p.arch.bytes elif not size and estimate_size: size = self.estimate_mem_buf_size(state, addr) / 8 # convert to int to prevent errors, since it requires an int not float size = int(size) mem_cnt = state.memory.load(addr, size) self._restore_taint_flags() return mem_cnt def safe_store(self, path, addr, thing): """ Stores bytes in memory, saving and restoring taint info :param path: path :param addr: address :param thing: thing to store :return: """ self._save_taint_flag() path.active[0].memory.store(addr, thing) self._restore_taint_flags() def get_sym_val(self, **args): return self._get_sym_val(**args) def _set_deref_bounds(self, ast_node): """ Check an ast node and if contains a dereferenced address, it sets its bounds :param ast_node: ast node :return: None """ lb = self._deref[0] ub = self._deref[1] if hasattr(ast_node, 'op') and ast_node.op == 'Extract' \ and self.is_tainted(ast_node.args[2]): m = min(ast_node.args[0], ast_node.args[1]) lb = m if lb is None or m < lb else lb m = max(ast_node.args[0], ast_node.args[1]) ub = m if ub is None or m > ub else ub self._deref = (lb, ub) elif hasattr(ast_node, 'args'): for a in ast_node.args: self._set_deref_bounds(a) elif self.is_tainted(ast_node): self._deref = (0, 0) def addr_concrete_after(self, state): """ Hook for address concretization :param state: Program state """ addr_expr = state.inspect.address_concretization_expr if self._use_smart_concretization: state.inspect.address_concretization_result = [self._get_target_concretization(addr_expr, state)] else: if state.inspect.address_concretization_result is None: # current angr strategy didn't give result, trying next one return None # a tainted buffer's location is used as address if self.is_tainted(addr_expr, state=state): self._set_deref_bounds(addr_expr) self._deref_taint_address = True self._deref_addr_expr = addr_expr self._deref_instruction = state.ip.args[0] if state.inspect.address_concretization_action == 'load': # new fresh var name = f"cnt_pt_by({self._taint_buf}[{str(self._deref[0])}, {str(self._deref[1])}])" for conc_addr in state.inspect.address_concretization_result: old_val = state.memory.load(conc_addr, self._p.arch.bytes) # we do not apply any extra constraints if there is already taint at this location if self.is_tainted(old_val): continue if self._only_tracker: try: state.solver.eval_atleast(old_val, 2) except SimValueError: # todo, find real bitsize var = self._get_sym_val(name=name, bits=self._p.arch.bits) state.memory.store(conc_addr, var) val = state.solver.eval(old_val) state.add_constraints(var == val) def _default_concretization_strategy(self, state, cnt): """ Default concretization strategy :param state: angr state :param cnt: variable to concretize :return: concretization value for the variable """ extra_constraints = state.inspect.added_constraints if not extra_constraints: extra_constraints = tuple() concs = state.solver.eval_upto(cnt, 50, extra_constraints=extra_constraints) return random.choice(concs) def _get_target_concretization(self, var, state): """ Concretization must be done carefully in order to perform a precise taint analysis. We concretize according the following strategy: * every symbolic leaf of an ast node is concretized to unique value, according on its name. In this way we obtain the following advantages: a = get_pts(); b = a c = a + 2 d = b + 1 + 1 d = get_pts() conc(a) = conc(b) conc(c) = conc(d) conc(d) != any other concretizations :param var: ast node :param state: current state :return: concretization value """ def get_key_cnt(x): # angr by default create a unique id for every new symbolic variable. # as in karonte we often have to copy the state, step and check some # quantities before step() with the current state, two identical variables might assume # two different names. Therefore, we should not consider the unique _id_ added to symbolic variables # created by angr ret = str(x) if '_' in str(x) and not self.is_tainted(x): splits = str(x).split('_') idx = splits[-2] if not idx.isdigit(): log.error(f"get_key_cnt: Symbolic ID parsing failed, using the whole id: {ret}") return ret ret = '_'.join(splits[:-2]) + '_' ret += '_'.join(splits[-1:]) return ret # chek if unconstrained state_cp = state.copy() se = state_cp.solver leafs = [l for l in var.recursive_leaf_asts] if not leafs: conc = self._concretization_strategy(state_cp, var) if not se.solution(var, conc): conc = se.eval(var) key_cnt = get_key_cnt(var) self._concretizations[key_cnt] = conc return conc # todo why is this constraining a copied state? for cnt in leafs: key_cnt = get_key_cnt(cnt) # concretize all unconstrained children if cnt.symbolic: # first check whether the value is already constrained if key_cnt in self._concretizations.keys(): conc = self._concretizations[key_cnt] if state_cp.solver.solution(cnt, conc): state_cp.add_constraints(cnt == conc) continue conc = self._concretization_strategy(state_cp, cnt) self._concretizations[key_cnt] = conc state_cp.add_constraints(cnt == conc) val = state_cp.solver.eval(var) return val def is_tainted(self, var, path=None, state=None, unconstrained=False): """ Checks if a variable is tainted :param var: variable :param path: angr path :param state: state :param unconstrained: check unconstrained states :return: """ def is_untaint_constraint_present(v, un_vars): for u in un_vars: # get argument name if v.args[0] in u: # variable is untainted return True # no untaint found, var is tainted! return False # Nothing is tainted if self._taint_buf not in str(var): return False # # something is tainted # if not self._allow_untaint or (not path and not state): return True # get contraints if path: state = path.active[0] if not unconstrained else path.unconstrained[0] untaint_var_strs = state.globals[UNTAINT_DATA][UNTAINTED_VARS] if not untaint_var_strs: return True taint_leafs = list(set([l for l in var.recursive_leaf_asts if self._taint_buf in str(l)])) taints = set() for l in taint_leafs: if l in taints: continue # search an untaint constraint for this taint variable if not is_untaint_constraint_present(l, untaint_var_strs): return True taints.add(l) return False def add_taint_glob_dep(self, master, slave, path): """ Add a taint dependency: if master gets untainted, slave should be untainted :param master: master expression :param slave: slave expression :param path: path :return: """ if not self.is_tainted(master): return leafs = list(set([l for l in master.recursive_leaf_asts if self.is_tainted(l)])) key = tuple(map(str, leafs)) if key not in self.get_state(path).globals[GLOB_TAINT_DEP_KEY]: self.get_state(path).globals[GLOB_TAINT_DEP_KEY][key] = [] self.get_state(path).globals[GLOB_TAINT_DEP_KEY][key].append(slave) def _do_recursive_untaint_core(self, dst, path): """ Given an expression to untaint, we untaint every single tainted variable in it. E.g., given (taint_x + taint_y) to untaint, both variables gets untainted as they cannot assume no longer arbitrary values down this path. :param dst: expression to untaint :param path: angr path :return: """ if not self._allow_untaint: return state = self.get_state(path) leafs = list(set([l for l in dst.recursive_leaf_asts if self.is_tainted(l)])) # then we use the collected untainted variables # and check whether we should untaint some other variables state.globals[UNTAINT_DATA][UNTAINTED_VARS] += map(str, leafs) deps = dict(state.globals[GLOB_TAINT_DEP_KEY]) for master, slave in deps.items(): # if not already untainted, let's consider it if master not in state.globals[UNTAINT_DATA][SEEN_MASTERS]: untainted_vars = set(state.globals[UNTAINT_DATA][UNTAINTED_VARS]) set_master = set(master) # we can not untaint it if set_master.intersection(untainted_vars) == set_master: state.globals[UNTAINT_DATA][SEEN_MASTERS].append(master) for entry in deps[master]: self._do_recursive_untaint_core(entry, path) # restart! continue def do_recursive_untaint(self, dst, path): """ Perform the untaint operation (see do_recursive_untaint_core) :param dst: variable to untaint :param path: angr path :return: """ return self._do_recursive_untaint_core(dst, path) def apply_taint(self, current_path, addr, taint_id, bit_size=None): """ Applies the taint to an address addr :param current_path: angr current path :param addr: address to taint :param taint_id: taint identification :param bit_size: number of bites :return: tainted variable """ self._save_taint_flag() bit_size = bit_size if bit_size else self.estimate_mem_buf_size(self.get_state(current_path), addr) # todo check endianness, since now it is always LE t = self._get_sym_val(name=self._taint_buf + '_' + taint_id + '_', bits=bit_size).reversed self.get_state(current_path).memory.store(addr, t) self._restore_taint_flags() self._taint_applied = True return t def _get_sym_val(self, name='x_', bits=None, inc=True, explicit=False): """ Creates a fresh symbolic variable :param name: variable name :param bits: number of bits :param inc: increment the global counter :param explicit: name should be exactly as reported (True, False) :return: a symbolic variable """ if bits is None: bits = self._p.arch.bits if explicit: var = claripy.BVS(name=name, size=bits, explicit_name=True) else: var = claripy.BVS(name=(name + '_' + str(self._count_var) + '_' + str(self._p.arch.bits)), size=bits, explicit_name=True) if inc: self._count_var += 1 return var def get_addr(self, path): """ Gets the path current address :param path: angr path :return: path current address """ return path.active[0].ip.args[0] def get_state(self, path): """ Gets the state from a path :param path: path :return: angr state """ return path.active[0] def is_or_points_to_tainted_data(self, x, path, unconstrained=False): """ Checks if a symbolic variable is or points to tainted data :param x: variable :param path: angr current path :param unconstrained: consider unconstrained data :return: """ return self.is_tainted(x, path=path, unconstrained=unconstrained) or \ self.is_tainted(self.safe_load(path, x, unconstrained=unconstrained), path=path, unconstrained=unconstrained) def _is_summarized(self, prev_path, suc_path, *_): """ Check if function is summarized, and execute it if so. :param prev_path: previous path :param suc_path: successor path :return: """ # first check if function is summarized addr = self.get_addr(suc_path) if self._summarized_f: for s_addr in self._summarized_f.keys(): if addr == s_addr: # execute and store possible new symbolic variables (get_env etc) self._summarized_f[s_addr](self, prev_path, suc_path) return True return False def _follow_call(self, prev_path, suc_path, current_depth): """ Checks if a call should be followed or not: if any of its parameters is tainted and the current depth of transitive closure allows it yes, otherwise no. :param prev_path: previous path :param suc_path: successive path :param current_depth: current depth of transitive closure :return: True if call should be followed, false otherwise """ if self._not_follow_any_calls: return False # first check if function is summarized addr = self.get_addr(suc_path) if addr in self._black_calls: return False # check if call falls within bound binary if addr > self._p.loader.max_addr or addr < self._p.loader.min_addr: return False # if the function is summarized by angr, we follow it if addr in self._summarized_f.keys(): # consider also next addr in case th current one is a trampoline (eg., plt) trp = suc_path.copy(deep=True) trp.step() trp_addr = self.get_addr(trp) if self._p.is_hooked(addr) or self._p.is_hooked(trp_addr): return True # remove the copied state to prevent state explosion for state in trp.active + trp.unconstrained: state.history.trim() state.downsize() state.release_plugin('solver') if addr in self._white_calls: return True if current_depth <= 0: return False if not self._smart_call: return True if not self._taint_applied: return False bl = self._get_bb(self.get_addr(prev_path)) puts = [s for s in bl.vex.statements if s.tag == 'Ist_Put'] expected = 0 index = 0 set_regs = [] # type of regs we are looking for reg_ty = 'r' if self._p.arch.bits == 32 else 'x' while True: if index >= len(puts): break p = puts[index] if self._p.arch.register_names[p.offset] == reg_ty + str(expected): set_regs.append(reg_ty + str(expected)) expected += 1 index = 0 continue index += 1 self._save_taint_flag() for r in set_regs: reg_cnt = getattr(self.get_state(suc_path).regs, r) # check if it is pointing to a tainted location tmp_s = self.get_state(suc_path) try: # estimate the size first, so we are not loading to much data. limit it at the taint_buf_size size = min(self.estimate_mem_buf_size(tmp_s, reg_cnt), self.taint_buf_size) mem_cnt = tmp_s.memory.load(reg_cnt, size) except TimeOutException as t: raise t except KeyError as e: # state is unconstrained log.warning("Tried to dereference a non pointer!") continue # we might have dereferenced wrongly a tainted variable during the tests before if (self.is_tainted(reg_cnt) or self.is_tainted(mem_cnt)) and current_depth > 0: self._restore_taint_flags() return True self._restore_taint_flags() return False def _follow_back_jump(self, current_path, next_path, guards_info): """ Check if a back jump (probably a loop) should be followed. :param current_path: current path :param next_path: next path :param guards_info: guards information :return: True if should back jump, False otherwise """ key = hash(''.join(sorted(list(set([x[0] for x in guards_info]))))) bj = (key, self.get_addr(next_path), self.get_addr(current_path)) if bj not in self._back_jumps.keys(): self._back_jumps[bj] = 1 elif self._back_jumps[bj] > self._N: # we do not want to follow the same back jump infinite times return False else: self._back_jumps[bj] += 1 return True @staticmethod def _check_sat_state(current_path): """ Check whether the state is SAT :param current_path: angr current path :return: True is the state is SAT, False otherwise """ return current_path.active[0].solver.satisfiable() def _drop_constraints(self, path): """ Drop all the constraints within the symbolic engine :param path: angr current path :return: None """ self.get_state(path).release_plugin('solver') self.get_state(path).downsize() self.get_state(path).history.trim() # FIXME: change offset according arch. def _next_inst(self, bl): """ Get next instruction (sometimes angr messes up) :param bl: basic block :return: """ return bl.instruction_addrs[-1] + 4 def _base_exploration_strategy(self, _, next_states): """ Base exploration strategy :param current_path: angr current path :param next_states: next states :return: """ if self._reverse_sat: next_states.reverse() elif self._shuffle_sat: shuffle(next_states) return next_states def _flat_explore(self, current_path, check_path_fun, guards_info, current_depth, **kwargs): """ Performs the symbolic-based exploration :param current_path: current path :param check_path_fun: function to call for every block in the path :param guards_info: current info about the guards in the current path :param kwargs: additional arguments to pass to check_path_fun :return: the tainted path between the source and the sink, if any """ if not self._keep_run: log.debug("Backtracking due to stop") return current_path_addr = self.get_addr(current_path) log.debug(f"{os.path.basename(self._p.filename)}: Analyzing block {hex(current_path_addr)}") if not CoreTaint._check_sat_state(current_path) and not self._timeout_triggered: log.error("State got messed up!") raise UnSATException("State became UNSAT") # check whether we reached a sink # todo add back in try: check_path_fun(current_path, guards_info, current_depth, **kwargs) except Exception as e: if not self._keep_run: return log.error(f"'Function check path errored out: {str(e)}") try: succ_path = current_path.copy().step() except Exception as e: log.error(f"ERROR: {str(e)}") return # try thumb if succ_path and succ_path.errored and self._try_thumb and not self._force_paths: succ_path = current_path.copy().step(thumb=True) if succ_path and succ_path.errored and self._try_thumb and not self._force_paths: if self._exit_on_decode_error: self._keep_run = False return # succ_states_unsat = succ_path.unsat if self._follow_unsat else [] succ_states_sat = succ_path.active if succ_path.deadended and not succ_states_sat and not succ_states_unsat: log.debug("Backtracking from dead path") return if not succ_states_sat: # check if it was un unconstrained call. # sometimes angr fucks it up bl = self._get_bb(current_path_addr) if not bl: return if bl.vex.jumpkind == 'Ijk_Call': # create a fake successors # which should have been created # before. if not succ_path.unconstrained: return log.error("Unconstrained call. Fix This. Not ported yet :-(") # raise NotImplementedError("Unconstrained call. Fix This") # FIXME: I should use get_below_block # but as of now I don;t want to use CFG # unc_state = succ_path.unconstrained[0] # ret_addr = self._next_inst(bl) # # only do this when there is a link register in the current arch # if link_regs[self._p.arch.name]: # link_reg = self._p.arch.register_names[link_regs[self._p.arch.name]] # ret_func = getattr(self.get_state(current_path).regs, link_reg) # tmp_path = self._set_fake_ret_succ(current_path, unc_state, ret_addr, ret_func) # else: # tmp_path = self._set_fake_ret_succ(current_path, unc_state) # succ_states_sat = [self.get_state(tmp_path)] # register sat and unsat information so that later we can drop the constraints for s in succ_states_sat: s.sat = True for s in succ_states_unsat: s.sat = False # collect and prepare the successors to be analyzed succ_states_sat = self._exploration_strategy(current_path, succ_states_sat) succ_states = succ_states_sat + succ_states_unsat for next_state in succ_states: if self._new_path: self._n_paths += 1 self._new_path = False if hasattr(next_state.ip, 'symbolic') and next_state.ip.symbolic: if next_state.sat: log.error("Next state UNSAT") log.warning("Got a symbolic IP, perhaps a non-handled switch statement? FIX ME... ") continue # create a new path state with only the next state to continue from next_path = self._p.factory.simgr(next_state.copy(), save_unconstrained=True, save_unsat=True) if self._p.is_hooked(next_state.addr) and next_state.addr in self._hooked_addrs: self._p.unhook(next_state.addr) self._hooked_addrs.remove(next_state.addr) if not next_state.solver.satisfiable(): # unsat successors, drop the constraints and continue with other states self._drop_constraints(next_path) continue next_depth = current_depth # First, let's see if we can follow the calls try: if self.get_state(next_path).history.jumpkind == 'Ijk_Call': if not self._is_summarized(current_path, next_path, current_depth): if not self._follow_call(current_path, next_path, current_depth): # we add a hook with the return unconstrained on the call self._p.hook(next_state.addr, ReturnUnconstrained()) self._hooked_addrs.append(next_state.addr) else: log.debug(f"Following function call to {hex(self.get_addr(next_path))}") next_depth = current_depth - 1 # todo add back in except Exception as e: log.error(f"Following call coretaint: {str(e)}") self._drop_constraints(next_path) continue try: if self.get_state(next_path).history.jumpkind == 'Ijk_Ret': next_depth = current_depth + 1 except: self._drop_constraints(next_path) continue # we have a back jump if self.get_state(next_path).history.jumpkind == 'Ijk_Boring' and \ self.get_addr(next_path) <= self.get_addr(current_path) and \ not self._follow_back_jump(current_path, next_path, guards_info): log.debug("breaking loop") self._new_path = True self._drop_constraints(next_path) continue # the successor leads out of the function, we do not want to follow it if self.get_addr(next_path) == self._bogus_return: log.debug("hit a return") self._new_path = True self._drop_constraints(next_path) continue # save the info about the guards of this path new_guards_info = list(guards_info) current_guards = [g for g in self.get_state(next_path).history.jump_guards] if current_guards and len(new_guards_info) < len(current_guards): new_guards_info.append([hex(self.get_addr(current_path)), current_guards[-1]]) # next step! self._flat_explore(next_path, check_path_fun, new_guards_info, next_depth, **kwargs) log.debug(f"Back to block {hex(self.get_addr(current_path))}") self._new_path = True # information about this state is not needed anymore. Drop constraints to free up lots of memory self._drop_constraints(current_path) log.debug("Backtracking") def set_project(self, p): """ Set the project :param p: angr project :return: """ self._p = p def stop_run(self): """ Stop the taint analysis :return: None """ self._keep_run = False def flat_explore(self, state, check_path_fun, guards_info, force_thumb=False, **kwargs): """ Run a symbolic-based exploration :param state: state :param check_path_fun: function to call for each visited basic block :param guards_info: guards ITE info :param force_thumb: start with thumb mode ON :param kwargs: kwargs :return: None """ self._keep_run = True initial_path = self._p.factory.simgr(state, save_unconstrained=True, save_unsat=True) current_depth = self._interfunction_level if force_thumb: # set thumb mode initial_path = initial_path.step(thumb=True)[0] self._flat_explore(initial_path, check_path_fun, guards_info, current_depth, **kwargs) def _init_bss(self, state): """ Initialize the bss section with symboli data (might be slow!). :param state: angr state :return: """ bss = [s for s in self._p.loader.main_object.sections if s.name == '.bss'] if not bss: return bss = bss[0] min_addr = bss.min_addr max_addr = bss.max_addr for a in range(min_addr, max_addr + 1): var = self._get_sym_val(name="bss_", bits=8) state.memory.store(a, var) def set_alarm(self, timer, n_tries=0): """ Set the alarm to interrupt the analysis :param timer: timer :param n_tries: number of tries to stop the analysis gracefully :return: Non """ if self._old_signal_handler is None: handler = signal.getsignal(signal.SIGALRM) assert handler != signal.SIG_IGN, "The coretaint alarm handler should never be SIG_IGN" self._old_signal_handler = handler # TODO save the time left by the previous analysis # and restore it signal.signal(signal.SIGALRM, self.handler) self._old_timer = signal.alarm(timer) self._force_exit_after = n_tries self._timer = timer def unset_alarm(self): signal.alarm(0) def restore_signal_handler(self): """ Restore the signal handler :return: None """ if self._old_signal_handler is not None: signal.signal(signal.SIGALRM, self._old_signal_handler) if self._old_timer != 0: # someone else was looking at this time # let's restore it signal.alarm(self._old_timer) def run(self, state, sinks_info, sources_info, summarized_f=None, init_bss=True, check_func=None, force_thumb=False, use_smart_concretization=True): """ Run the static taint engine :param state: initial state :param sinks_info: sinks info :param sources_info: sources info :param summarized_f: function summaries :param init_bss: initializ bss flag :param check_func: function to execute for each explored basic block :param force_thumb: start analysis in thumb mode :param use_smart_concretization: use smart concretization attempts to decrease imprecision due to spurious pointer aliasing. :return: None """ def null_fun(*_, **__): return None if summarized_f is None: summarized_f = {} self._use_smart_concretization = use_smart_concretization state.inspect.add_breakpoint( 'address_concretization', BP(when=angr.BP_AFTER, action=self.addr_concrete_after) ) state.globals[GLOB_TAINT_DEP_KEY] = {} state.globals[UNTAINT_DATA] = {UNTAINTED_VARS: [], SEEN_MASTERS: []} self._count_var = 0 self._n_paths = 0 self._new_path = True self._back_jumps = {} self._keep_run = True self._taint_applied = False self._fully_taint_guard = [] self._deref_taint_address = False self._deref_addr_expr = None self._deref = (None, None) self._old_deref = self._deref self._old_deref_taint_address = self._deref_taint_address self._old_deref_addr_expr = self._deref_addr_expr self._concretizations = {} self._summarized_f = summarized_f self._timeout_triggered = False check_func = null_fun if check_func is None else check_func if init_bss: log.info("init .bss") self._init_bss(state) try: self.flat_explore(state, check_func, [], force_thumb=force_thumb, sinks_info=sinks_info, sources_info=sources_info) except TimeOutException: log.warning("Hard timeout triggered") if self._timeout_triggered: log.debug("Timeout triggered")
compiler_opt/rl/feature_ops.py
google/ml-compiler-opt
130
11180476
<reponame>google/ml-compiler-opt # coding=utf-8 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operations to transform features (observations).""" import os import re from typing import List, Callable, Optional import numpy as np import tensorflow.compat.v2 as tf from tf_agents.typing import types def build_quantile_map(quantile_file_dir: str): """build feature quantile map by reading from files in quantile_file_dir.""" quantile_map = {} pattern = os.path.join(quantile_file_dir, '(.*).buckets') for quantile_file_path in tf.io.gfile.glob( os.path.join(quantile_file_dir, '*.buckets')): m = re.fullmatch(pattern, quantile_file_path) assert m feature_name = m.group(1) with tf.io.gfile.GFile(quantile_file_path, 'r') as quantile_file: raw_quantiles = [float(x) for x in quantile_file] quantile_map[feature_name] = raw_quantiles return quantile_map def discard_fn(obs: types.Float): """discard the input feature by setting it to 0.""" return tf.zeros(shape=obs.shape + [0], dtype=tf.float32) def identity_fn(obs: types.Float): """Return the same value with expanding the last dimension.""" return tf.cast(tf.expand_dims(obs, -1), tf.float32) def get_normalize_fn(quantile: List[float], with_sqrt: bool, with_z_score_normalization: bool, eps: float = 1e-8, preprocessing_fn: Optional[Callable[[types.Tensor], types.Float]] = None): """Return a normalization function to normalize the input feature.""" if not preprocessing_fn: preprocessing_fn = lambda x: x processed_quantile = [preprocessing_fn(x) for x in quantile] mean = np.mean(processed_quantile) std = np.std(processed_quantile) def normalize(obs: types.Float): obs = tf.expand_dims(obs, -1) x = tf.cast( tf.raw_ops.Bucketize(input=obs, boundaries=quantile), tf.float32) / len(quantile) features = [x, x * x] if with_sqrt: features.append(tf.sqrt(x)) if with_z_score_normalization: y = preprocessing_fn(tf.cast(obs, tf.float32)) y = (y - mean) / (std + eps) features.append(y) return tf.concat(features, axis=-1) return normalize
hv6/hv6/spec/kernel/spec/helpers.py
ProKil/OS2018spring-projects-g10
132
11180481
<reponame>ProKil/OS2018spring-projects-g10 # # Copyright 2017 Hyperkernel Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import z3 from libirpy import util import hv6py.kernel.spec.datatypes as dt __all__ = ['is_pid_bounded', 'is_pid_valid', 'is_pn_valid', 'is_dmapn_valid', 'is_fn_valid', 'is_fd_valid', 'is_pcipn_valid', 'is_page_table_type', 'is_iommu_page_table_type', 'is_status_live', 'is_va_valid', 'get_sub_type', 'get_iommu_sub_type', 'pn_has_owner_and_type', 'pgentry2pfn', 'proc_field_equiv', 'page_walk'] def is_pid_bounded(pid): return z3.ULT(pid, dt.NPROC) def is_pid_valid(pid): return z3.And(pid > 0, pid < dt.NPROC) def is_pn_valid(pn): return z3.ULT(pn, dt.NPAGE) def is_dmapn_valid(pn): return z3.ULT(pn, dt.NDMAPAGE) def is_pcipn_valid(pci): return z3.ULT(pci, dt.NPCIPAGE) def is_fn_valid(fn): return z3.And(z3.UGT(fn, 0), z3.ULT(fn, dt.NFILE)) def is_fd_valid(fd): return z3.And(fd >= 0, fd < dt.NOFILE) def is_intremap_valid(index): return z3.ULT(index, dt.NINTREMAP) def is_page_table_type(type): return util.In(type, [ dt.page_type.PAGE_TYPE_X86_PML4, dt.page_type.PAGE_TYPE_X86_PDPT, dt.page_type.PAGE_TYPE_X86_PD, dt.page_type.PAGE_TYPE_X86_PT, ]) def is_iommu_page_table_type(type): return util.In(type, [ dt.page_type.PAGE_TYPE_IOMMU_PML4, dt.page_type.PAGE_TYPE_IOMMU_PDPT, dt.page_type.PAGE_TYPE_IOMMU_PD, dt.page_type.PAGE_TYPE_IOMMU_PT, ]) def is_status_live(status): return util.In(status, [ dt.proc_state.PROC_EMBRYO, dt.proc_state.PROC_RUNNABLE, dt.proc_state.PROC_RUNNING, dt.proc_state.PROC_SLEEPING, ]) def is_va_valid(va): return z3.And(*[z3.ULT(idx, 512) for idx in va]) def get_sub_type(type): return util.If(type == dt.page_type.PAGE_TYPE_X86_PML4, dt.page_type.PAGE_TYPE_X86_PDPT, util.If(type == dt.page_type.PAGE_TYPE_X86_PDPT, dt.page_type.PAGE_TYPE_X86_PD, util.If(type == dt.page_type.PAGE_TYPE_X86_PD, dt.page_type.PAGE_TYPE_X86_PT, util.If(type == dt.page_type.PAGE_TYPE_X86_PT, dt.page_type.PAGE_TYPE_FRAME, util.FreshBitVec('invalid', dt.page_type.PAGE_TYPE_FRAME.size()))))) def get_iommu_sub_type(type): return util.If(type == dt.page_type.PAGE_TYPE_IOMMU_PML4, dt.page_type.PAGE_TYPE_IOMMU_PDPT, util.If(type == dt.page_type.PAGE_TYPE_IOMMU_PDPT, dt.page_type.PAGE_TYPE_IOMMU_PD, util.If(type == dt.page_type.PAGE_TYPE_IOMMU_PD, dt.page_type.PAGE_TYPE_IOMMU_PT, util.If(type == dt.page_type.PAGE_TYPE_IOMMU_PT, dt.page_type.PAGE_TYPE_IOMMU_FRAME, util.FreshBitVec('invalid', dt.page_type.PAGE_TYPE_IOMMU_FRAME.size()))))) def pn_has_owner_and_type(ctx, pn, pid, type): return z3.And(is_pn_valid(pn), util.global_field_element( ctx, '@page_desc_table', 'pid', pn) == pid, util.global_field_element(ctx, '@page_desc_table', 'type', pn) == type) def pgentry2pfn(ks, off, perm, type): res = util.i64(0) res = util.If(type == dt.PGTYPE_PCIPAGE, util.i64(dt.PCI_START), res) res = util.If(type == dt.PGTYPE_IOMMU_FRAME, ks.dmapages_ptr_to_int, res) res = util.If(type == dt.PGTYPE_DEVICES, ks.devices_ptr_to_int, res) res = util.If(type == dt.PGTYPE_FILE_TABLE, ks.file_table_ptr_to_int, res) res = util.If(type == dt.PGTYPE_PAGE_DESC, ks.page_desc_table_ptr_to_int, res) res = util.If(type == dt.PGTYPE_PROC, ks.proc_table_ptr_to_int, res) res = util.If(type == dt.PGTYPE_PAGE, ks.pages_ptr_to_int, res) return ((z3.UDiv(res, util.i64(dt.PAGE_SIZE)) + off) << dt.PTE_PFN_SHIFT) | perm def proc_field_equiv(conj, pid, ctx, kernelstate, field_name): conj.append(z3.ForAll([pid], z3.Implies(is_pid_valid(pid), util.global_field_element(ctx, '@proc_table', field_name, pid) == getattr(kernelstate.procs[pid], field_name)))) def page_walk(state, pml4, idx1, idx2, idx3, idx4): pdpt = state.pages[pml4].pgtable_pn(idx1) pd = state.pages[pdpt].pgtable_pn(idx2) pt = state.pages[pd].pgtable_pn(idx3) frame = state.pages[pt].pgtable_pn(idx4) present = z3.And( # P bit is set on each level down. dt.has_bit(state.pages[pml4].data(idx1), dt.PTE_P), dt.has_bit(state.pages[pdpt].data(idx2), dt.PTE_P), dt.has_bit(state.pages[pd].data(idx3), dt.PTE_P), dt.has_bit(state.pages[pt].data(idx4), dt.PTE_P), # The last level is of type page state.pages[pt].pgtable_type(idx4) == dt.PGTYPE_PAGE) writable = z3.And( # W bit is set on each level down. dt.has_bit(state.pages[pml4].data(idx1), dt.PTE_W), dt.has_bit(state.pages[pdpt].data(idx2), dt.PTE_W), dt.has_bit(state.pages[pd].data(idx3), dt.PTE_W), dt.has_bit(state.pages[pt].data(idx4), dt.PTE_W), # The last level is of type page state.pages[pt].pgtable_type(idx4) == dt.PGTYPE_PAGE ) return frame, writable, present
tests/test_resource_tracker/test_api/test_resource_pool_api_views/test_rp_attribute_definition_api_views/test_delete.py
LaudateCorpus1/squest
112
11180494
<filename>tests/test_resource_tracker/test_api/test_resource_pool_api_views/test_rp_attribute_definition_api_views/test_delete.py from rest_framework import status from rest_framework.reverse import reverse from resource_tracker.models import ResourcePoolAttributeDefinition from tests.test_resource_tracker.test_api.base_test_api import BaseTestAPI class TestResourcePoolAttributeDefinitionDelete(BaseTestAPI): def setUp(self): super(TestResourcePoolAttributeDefinitionDelete, self).setUp() self.to_be_deleted_id = self.rp_vcenter_vcpu_attribute.id self.url = reverse('api_resource_pool_attribute_definition_retrieve_update_delete', args=[self.rp_vcenter.id, self.rp_vcenter_vcpu_attribute.id]) def test_attribute_definition_delete(self): self.assertTrue(ResourcePoolAttributeDefinition.objects.filter(id=self.to_be_deleted_id).exists()) response = self.client.delete(self.url, format='json') self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertFalse(ResourcePoolAttributeDefinition.objects.filter(id=self.to_be_deleted_id).exists()) def test_cannot_delete_attribute_definition_when_wrong_rg(self): url = reverse('api_resource_pool_attribute_definition_retrieve_update_delete', args=[self.rp_ocp_workers.id, self.rp_vcenter_vcpu_attribute.id]) response = self.client.delete(url, format='json') self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND)
dev_utils/memory.py
e-ntro-py/desktop-app
518
11180503
<gh_stars>100-1000 import psutil import sys import pandas as pd import math pid = int(sys.argv[1]) proc = psutil.Process(pid) processes = [proc, ] +proc.children() data = [ { 'name': p.name(), 'pid': p.pid, 'rss': p.memory_info().rss, 'vms': p.memory_info().vms } for p in processes] df = pd.DataFrame(data); df['rss (MB)'] = df['rss'] / math.pow(10, 6) df['vms (MB)'] = df['vms'] / math.pow(10, 6) print df print df.sum()
support/Lab03 - Blockchain4Students/blockchain/consensus.py
RafaelAPB/university-course
125
11180570
<gh_stars>100-1000 from abc import ABC, abstractmethod class Consensus(ABC): def __init__(self, block): self.block = block super().__init__() @abstractmethod def mine_block(self): pass class ProofOfWork(Consensus): def __init__(self, block, difficulty): self.difficulty = difficulty super().__init__(block) def mine_block(self): compare_str = "".join((["0"] * self.difficulty)) while self.block.currentHash[0:self.difficulty] != compare_str: self.block.nonce += 1 self.block.currentHash = self.block.calculate_hash()
hdf_compass/compass_viewer/frame.py
HDFGroup/hdf-compass
124
11180576
############################################################################## # Copyright by The HDF Group. # # All rights reserved. # # # # This file is part of the HDF Compass Viewer. The full HDF Compass # # copyright notice, including terms governing use, modification, and # # terms governing use, modification, and redistribution, is contained in # # the file COPYING, which can be found at the root of the source code # # distribution tree. If you do not have access to this file, you may # # request a copy from <EMAIL>. # ############################################################################## """ Defines wx.Frame subclasses which are the foundation of the various windows displayed by HDFCompass. Much of the common functionality (e.g. "Open File..." menu item) is implemented here. """ from __future__ import absolute_import, division, print_function, unicode_literals import logging import os from datetime import date import wx import wx.richtext as rtc from wx.lib.pubsub import pub log = logging.getLogger(__name__) from .info import InfoPanel ID_OPEN_RESOURCE = wx.NewId() ID_CLOSE_FILE = wx.NewId() ID_PLUGIN_INFO = wx.NewId() MAX_RECENT_FILES = 8 from hdf_compass import compass_model from hdf_compass.utils import __version__, is_darwin, path2url from .events import CompassOpenEvent open_frames = 0 # count the open frames class BaseFrame(wx.Frame): """ Base class for all frames used in HDF Compass. Implements common menus including File and Help, and handles their events. When implementing a new viewer window, you should instead inherit from BaseFrame (below), which adds a left-hand side information panel, and participates in the reference counting that automatically shows the initial window when all other frames are closed. """ icon_folder = os.path.abspath(os.path.join(os.path.dirname(__file__), 'icons')) open_frames = 0 # count the number of frames last_open_path = os.getcwd() def __init__(self, **kwds): """ Constructor; any keywords are passed on to wx.Frame. """ wx.Frame.__init__(self, None, **kwds) BaseFrame.open_frames += 1 log.debug("new frame -> open frames: %s" % BaseFrame.open_frames) # Frame icon ib = wx.IconBundle() icon_32 = wx.EmptyIcon() icon_32.CopyFromBitmap(wx.Bitmap(os.path.join(self.icon_folder, "favicon_32.png"), wx.BITMAP_TYPE_ANY)) ib.AddIcon(icon_32) icon_48 = wx.EmptyIcon() icon_48.CopyFromBitmap(wx.Bitmap(os.path.join(self.icon_folder, "favicon_48.png"), wx.BITMAP_TYPE_ANY)) ib.AddIcon(icon_48) self.SetIcons(ib) # This is needed to display the app icon on the taskbar on Windows 7 if os.name == 'nt': import ctypes ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID('HDFCompass') self.urlhistory = wx.FileHistory(MAX_RECENT_FILES) self.config = wx.Config("HDFCompass", style=wx.CONFIG_USE_LOCAL_FILE) self.urlhistory.Load(self.config) menubar = wx.MenuBar() # File menu fm = wx.Menu() # Open Recent Menu recent = wx.Menu() self.urlhistory.UseMenu(recent) self.urlhistory.AddFilesToMenu() fm.Append(wx.ID_OPEN, "&Open...\tCtrl-O") fm.Append(ID_OPEN_RESOURCE, "Open &Resource...\tCtrl-R") fm.AppendMenu(wx.ID_ANY, "O&pen Recent", recent) fm.AppendSeparator() fm.Append(wx.ID_CLOSE, "&Close Window\tCtrl-W") fm.Append(ID_CLOSE_FILE, "Close &File\tShift-Ctrl-W") fm.Enable(ID_CLOSE_FILE, False) fm.Append(wx.ID_EXIT, "E&xit", " Terminate the program") menubar.Append(fm, "&File") # Help menu; note that on the Mac, the About entry is automatically # moved to the main application menu by wxPython. help_menu = wx.Menu() help_menu.Append(wx.ID_HELP, "Online &Manual", "Open online documentation") help_menu.Append(ID_PLUGIN_INFO, "&Plugin Info", "Information about the available plugins") help_menu.Append(wx.ID_ABOUT, "&About HDFCompass", "Information about this program") menubar.Append(help_menu, "&Help") self.SetMenuBar(menubar) self.Bind(wx.EVT_MENU, self.on_file_open, id=wx.ID_OPEN) self.Bind(wx.EVT_MENU, self.on_resource_open, id=ID_OPEN_RESOURCE) self.Bind(wx.EVT_MENU, self.on_manual, id=wx.ID_HELP) self.Bind(wx.EVT_MENU, self.on_plugin_info, id=ID_PLUGIN_INFO) self.Bind(wx.EVT_MENU, self.on_about, id=wx.ID_ABOUT) self.Bind(wx.EVT_MENU, self.on_exit, id=wx.ID_EXIT) self.Bind(wx.EVT_MENU, self.on_close, id=wx.ID_CLOSE) self.Bind(wx.EVT_CLOSE, self.on_close) self.Bind(wx.EVT_MENU_RANGE, self.on_url_history, id=wx.ID_FILE1, id2=wx.ID_FILE9) def on_close(self, evt): """ Called on frame closing """ BaseFrame.open_frames -= 1 log.debug("close frame -> open frames: %s" % BaseFrame.open_frames) self.Destroy() if isinstance(self, InitFrame): self.on_exit(evt) def on_exit(self, evt): """ Called on "exit" event from the menu """ log.debug("exit app -> closing all open frames: %s" % BaseFrame.open_frames) wx.GetApp().Exit() def on_manual(self, evt): """ Open the url with the online documentation """ import webbrowser webbrowser.open('http://hdf-compass.readthedocs.org/en/stable/') def on_plugin_info(self, evt): """ Open a tabs frame with info about the available plugins """ plug_info = PluginInfoFrame(self) plug_info.Show() def on_about(self, evt): """ Display an "About" dialog """ info = wx.AboutDialogInfo() info.Name = "HDF Compass" info.Version = __version__ info.Copyright = "(c) 2014-%d The HDF Group" % date.today().year icon_48 = wx.EmptyIcon() icon_48.CopyFromBitmap(wx.Bitmap(os.path.join(self.icon_folder, "favicon_48.png"), wx.BITMAP_TYPE_ANY)) info.SetIcon(icon_48) wx.AboutBox(info) def on_file_open(self, evt): """ Request to open a file via the Open entry in the File menu """ def make_filter_string(): """ Make a wxPython dialog filter string segment from dict """ filter_string = [] hdf_filter_string = [] # put HDF filters in the front for store in compass_model.get_stores(): if len(store.file_extensions) == 0: continue for key in store.file_extensions: s = "{name} ({pattern_c})|{pattern_sc}".format( name=key, pattern_c=",".join(store.file_extensions[key]), pattern_sc=";".join(store.file_extensions[key])) if s.startswith("HDF"): hdf_filter_string.append(s) else: filter_string.append(s) filter_string = hdf_filter_string + filter_string filter_string.append('All Files (*.*)|*.*') pipe = "|" return pipe.join(filter_string) wc_string = make_filter_string() dlg = wx.FileDialog(self, "Open Local File", wildcard=wc_string, defaultDir=BaseFrame.last_open_path, style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) if dlg.ShowModal() != wx.ID_OK: return path = dlg.GetPath() BaseFrame.last_open_path = os.path.dirname(path) url = path2url(path) self.open_url(url) def on_url_history(self, evt): """ Opens url from history """ fileNum = evt.GetId() - wx.ID_FILE1 url = self.urlhistory.GetHistoryFile(fileNum) self.open_url(url, fileNum) def on_resource_open(self, evt): """ Request to open a URL via the File menu """ dlg = wx.TextEntryDialog(self, 'Enter resource URL:') if dlg.ShowModal() != wx.ID_OK or dlg.GetValue() == "": dlg.Destroy() return url = dlg.GetValue() url = url.strip() # remove any new lines dlg.Destroy() self.open_url(url) def open_url(self, url, file_num=-1): """ Opens url and saves it to history """ from . import can_open_store, open_store if can_open_store(url): self.urlhistory.AddFileToHistory(url) # add url to top of list self.urlhistory.Save(self.config) self.config.Flush() open_store(url) else: if (file_num >= 0) and (file_num < MAX_RECENT_FILES): self.urlhistory.RemoveFileFromHistory(file_num) self.urlhistory.Save(self.config) self.config.Flush() dlg = wx.MessageDialog(self, 'The following url could not be opened:\n\n%s' % url, 'No handler for url', wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() def add_menu(self, menu, title): """ Add a menu at the appropriate place in the menubar """ mb = self.GetMenuBar() mb.Insert(1, menu, title) class InitFrame(BaseFrame): """ Frame displayed when the application starts up. This includes the menu bar provided by TopFrame. On the Mac, although it still exists (to prevent the application from exiting), the frame is typically not shown. """ def __init__(self): style = wx.DEFAULT_FRAME_STYLE & (~wx.RESIZE_BORDER) & (~wx.MAXIMIZE_BOX) title = "HDF Compass" super(InitFrame, self).__init__(size=(552, 247), title=title, style=style) data = wx.Bitmap(os.path.join(self.icon_folder, "logo.png"), wx.BITMAP_TYPE_ANY) bmp = wx.StaticBitmap(self, wx.ID_ANY, data) # The init frame isn't visible on Mac, so there shouldn't be an # option to close it. "Quit" does the same thing. if is_darwin: mb = self.GetMenuBar() mu = mb.GetMenu(0) mu.Enable(wx.ID_CLOSE, False) self.Center() class NodeFrame(BaseFrame): """ Base class for any frame which displays a Node instance. Provides a "Close file" menu item and manages open data stores. Has three attributes of note: .node: Settable Node instance to display .info: Read-only InfoPanel instance (left-hand sidebar) .view: Settable wx.Panel instance for the right-hand view. In order to coordinate file-close events across multiple frames, a reference-counting system is used. When a new frame that uses a store is created, that store's reference count (in cls._stores) is incremented. When the frame is closed, the store's count is decremented. When the reference count reaches 0 or the "Close File" is selected from the menu, the store is closed and a pubsub notification is sent out to all other frames. They check to see if their .node.store's are valid, and if not, close themselves. """ # --- Store reference-counting methods ------------------------------------ _stores = {} @classmethod def _incref(cls, store): """ Record that a client is using the specified store. """ try: cls._stores[store] += 1 except KeyError: cls._stores[store] = 1 @classmethod def _decref(cls, store): """ Record that a client is finished using the specified store. """ try: val = cls._stores[store] if val == 1: cls._close(store) del cls._stores[store] else: cls._stores[store] = val - 1 except KeyError: pass @classmethod def _close(cls, store): """ Manually close the store, and broadcast a pubsub notification. """ cls._stores.pop(store, None) store.close() pub.sendMessage('store.close') # --- End store reference-counting ---------------------------------------- @property def info(self): """ The InfoPanel object used for the left-hand sidebar. """ return self.__info @property def node(self): """ Node instance displayed by the frame. """ return self.__node @node.setter def node(self, newnode): self.__node = newnode @property def view(self): """ Right-hand view """ return self.__view @view.setter def view(self, window): if self.__view is None: self.__sizer.Add(window, 1, wx.EXPAND) else: self.__sizer.Remove(self.__view) self.__view.Destroy() self.__sizer.Add(window, 1, wx.EXPAND) self.__view = window self.Layout() def __init__(self, node, **kwds): """ Constructor. Keywords are passed on to wx.Frame. node: The compass_model.Node instance to display. """ super(NodeFrame, self).__init__(**kwds) # Enable the "Close File" menu entry fm = self.GetMenuBar().GetMenu(0) fm.Enable(ID_CLOSE_FILE, True) # Create the "window" menu to hold "Reopen As" items. wm = wx.Menu() # Determine a list of handlers which can understand this object. # We exclude the default handler, "Unknown", as it can't do anything. # See also container/list.py. handlers = [x for x in node.store.gethandlers(node.key) if x != compass_model.Unknown] # This will map menu IDs -> Node subclass handlers self._menu_handlers = {} # Note there's guaranteed to be at least one entry: the class # being used for the current frame! for h in handlers: id_ = wx.NewId() self._menu_handlers[id_] = h wm.Append(id_, "Reopen as " + h.class_kind) self.Bind(wx.EVT_MENU, self.on_menu_reopen, id=id_) self.GetMenuBar().Insert(1, wm, "&Window") self.__node = node self.__view = None self.__info = InfoPanel(self) self.__sizer = wx.BoxSizer(wx.HORIZONTAL) self.__sizer.Add(self.__info, 0, wx.EXPAND) self.SetSizer(self.__sizer) self.info.display(node) self.Bind(wx.EVT_CLOSE, self.on_close_evt) self.Bind(wx.EVT_MENU, self.on_menu_closefile, id=ID_CLOSE_FILE) self._incref(node.store) pub.subscribe(self.on_notification_closefile, 'store.close') def on_notification_closefile(self): """ Pubsub notification that a file (any file) has been closed """ if not self.node.store.valid: self.Destroy() def on_close_evt(self, evt): """ Window is about to be closed """ self._decref(self.node.store) evt.Skip() def on_menu_closefile(self, evt): """ "Close File" menu item activated. Note we rely on the pubsub message (above) to actually close the frame. """ self._close(self.node.store) def on_menu_reopen(self, evt): """ Called when one of the "Reopen As" menu items is clicked """ # The "Reopen As" submenu ID id_ = evt.GetId() # Present node node_being_opened = self.node # The requested Node subclass to instantiate. h = self._menu_handlers[id_] log.debug('opening: %s %s' % (node_being_opened.store, node_being_opened.key)) # Brand new Node instance of the requested type node_new = h(node_being_opened.store, node_being_opened.key) # Send off a request for it to be opened in the appropriate viewer # Post it directly to the App, or Container will intercept it! pos = wx.GetTopLevelParent(self).GetPosition() wx.PostEvent(wx.GetApp(), CompassOpenEvent(node_new, pos=pos)) class PluginInfoFrame(wx.Frame): icon_folder = os.path.abspath(os.path.join(os.path.dirname(__file__), 'icons')) def __init__(self, parent): # make that the plugin info is displayed in the middle of the screen frame_w = 320 frame_h = 250 x = wx.SystemSettings.GetMetric(wx.SYS_SCREEN_X) // 2 - frame_w // 2 y = wx.SystemSettings.GetMetric(wx.SYS_SCREEN_Y) // 2 - frame_h // 2 wx.Frame.__init__(self, parent, title="Plugin Info", pos=(x, y), size=(frame_w, frame_h)) # Frame icon ib = wx.IconBundle() icon_32 = wx.EmptyIcon() icon_32.CopyFromBitmap(wx.Bitmap(os.path.join(self.icon_folder, "favicon_32.png"), wx.BITMAP_TYPE_ANY)) ib.AddIcon(icon_32) icon_48 = wx.EmptyIcon() icon_48.CopyFromBitmap(wx.Bitmap(os.path.join(self.icon_folder, "favicon_48.png"), wx.BITMAP_TYPE_ANY)) ib.AddIcon(icon_48) self.SetIcons(ib) p = wx.Panel(self) nb = wx.Notebook(p) for store in compass_model.get_stores(): try: # log.debug(store.plugin_name()) # log.debug(store.plugin_description()) pnl = wx.Panel(nb) t = rtc.RichTextCtrl(pnl, -1, style=wx.TE_READONLY) t.BeginFontSize(9) t.BeginAlignment(wx.TEXT_ALIGNMENT_CENTRE) t.BeginBold() t.WriteText("Name: ") t.EndBold() t.BeginItalic() t.WriteText(store.plugin_name()) t.EndItalic() t.Newline() t.Newline() t.BeginBold() t.WriteText("Description") t.EndBold() t.Newline() t.BeginItalic() t.WriteText(store.plugin_description()) t.EndItalic() t.Newline() # store.plugin_description(), style=wx.TE_MULTILINE|wx.TE_READONLY|wx.TE_CENTER) szr = wx.BoxSizer() szr.Add(t, 1, wx.ALL | wx.EXPAND, 5) pnl.SetSizer(szr) nb.AddPage(pnl, store.plugin_name()) except NotImplementedError: # skip not implemented plugin name/description log.debug("Not implemented name/description for %s" % store) sizer = wx.BoxSizer() sizer.Add(nb, 1, wx.ALL | wx.EXPAND, 3) p.SetSizer(sizer)
contrib/demUtils/test/testCorrect_geoid_i2_srtm.py
vincentschut/isce2
1,133
11180593
<reponame>vincentschut/isce2 #!/usr/bin/env python3 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Copyright 2012 California Institute of Technology. ALL RIGHTS RESERVED. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # United States Government Sponsorship acknowledged. This software is subject to # U.S. export control laws and regulations and has been classified as 'EAR99 NLR' # (No [Export] License Required except when exporting to an embargoed country, # end user, or in support of a prohibited end use). By downloading this software, # the user agrees to comply with all applicable U.S. export laws and regulations. # The user has the responsibility to obtain export licenses, or other export # authority as may be required before exporting this software to any 'EAR99' # embargoed foreign country or citizen of those countries. # # Author: <NAME> #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ from __future__ import print_function import sys import os import math from iscesys.Compatibility import Compatibility Compatibility.checkPythonVersion() from contrib.demUtils.Correct_geoid_i2_srtm import Correct_geoid_i2_srtm def main(): from iscesys.StdOEL.StdOELPy import StdOEL as ST stdWriter = ST() stdWriter.createWriters() stdWriter.configWriter("log","",True,"insar.log") stdWriter.init() obj = Correct_geoid_i2_srtm() obj.setInputFilename(sys.argv[1]) #if outputFilenmae not specified the input one is overwritten obj.setOutputFilename(sys.argv[1] + '.id') obj.setStdWriter(stdWriter) obj.setWidth(int(sys.argv[2])) obj.setStartLatitude(float(sys.argv[3])) obj.setStartLongitude(float(sys.argv[4])) obj.setDeltaLatitude(float(sys.argv[5])) obj.setDeltaLongitude(float(sys.argv[6])) # -1 EGM96 -> WGS84, 1 WGS84 -> EGM96 obj.setConversionType(int(sys.argv[7])) obj.correct_geoid_i2_srtm() if __name__ == "__main__": sys.exit(main())
skbayes/decomposition_models/__init__.py
Habush/sklearn-bayes
478
11180614
<reponame>Habush/sklearn-bayes<filename>skbayes/decomposition_models/__init__.py<gh_stars>100-1000 from .gibbs_lda_cython import GibbsLDA from .rbm import BernoulliRBM __all__ = ['GibbsLDA','BernoulliRBM']
libraries/botframework-streaming/botframework/streaming/transport/disconnected_event_args.py
andreikop/botbuilder-python
388
11180626
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. class DisconnectedEventArgs: def __init__(self, *, reason: str = None): self.reason = reason DisconnectedEventArgs.empty = DisconnectedEventArgs()
autodist/utils/network.py
Ezra-H/autodist
127
11180630
<reponame>Ezra-H/autodist # Copyright 2020 Petuum, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Network utility functions.""" from ipaddress import ip_address import netifaces def is_loopback_address(address): """ Determine whether an address is a loopback address (e.g. 127.0.0.1). Args: address (str): Address (can be IP or IP:port) Returns: Boolean """ ip = _get_ip_from_address(address) return ip.is_loopback def is_local_address(address): """ Determine whether an address is a local (including loopback) IP address. Adapted from stackoverflow.com/questions/166506. Args: address (str): Address (can be IP or IP:port) Returns: Boolean """ ip = _get_ip_from_address(address) # Get all addresses addresses = set() for iface_name in netifaces.interfaces(): for i in netifaces.ifaddresses(iface_name).setdefault(netifaces.AF_INET, [{'addr': None}]): if i['addr']: addresses.add(ip_address(i['addr'])) return ip in addresses def _get_ip_from_address(address): """ Extract an IP Address object from an address string. Args: address (str): Address (can be IP or IP:port) Returns: An IPv4Address or IPv6Address object. """ ip, _, _ = address.rpartition(':') ip = ip or address # If there was no separation, ip will be empty so use original string if ip == 'localhost': # These should be equivalent # `ip_address` will throw an error if given localhost ip = '127.0.0.1' return ip_address(ip.strip("[]")) # IPv6 addresses might contain [] to separate address and port
ghostwriter/commandcenter/migrations/0009_cloudservicesconfiguration_notification_delay.py
bbhunter/Ghostwriter
601
11180677
# Generated by Django 3.0.10 on 2021-09-20 21:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('commandcenter', '0008_remove_namecheapconfiguration_reset_dns'), ] operations = [ migrations.AddField( model_name='cloudservicesconfiguration', name='notification_delay', field=models.IntegerField(default=7, help_text='Number of days to delay cloud monitoring notifications for teardown', verbose_name='Notification Delay'), ), ]
setup.py
aicentral/torchbiomed
106
11180681
#!/usr/bin/env python import os import shutil import sys from setuptools import setup, find_packages readme = open('README.md').read() VERSION = '0.0.1' # same as ./requirements.txt requirements = [ 'numpy', 'torch', 'torchvision', ] setup( # Metadata name='torchbiomed', version=VERSION, author='<NAME>', author_email='<EMAIL>', url='https://github.com/mattmacy/torchbiomed', description='biomedical image datasets, transforms, utilities, and models for torch deep learning', long_description=readme, license='BSD', # Package info packages=find_packages(exclude=('test',)), zip_safe=True, install_requires=requirements, )
ai/sample-model2.py
dekimir/RamFuzz
310
11180691
#!/usr/bin/env python # Copyright 2016-2018 The RamFuzz contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A sample Keras model trainable on the output of ./gencorp.py. It tries to predict the test success or failure based on the logged RamFuzz values during the test run. It consists of N dense layers in parallel whose outputs are multiplied. This is interesting because we know how to translate a fully trained network like this into a feedback mechanism to the RamFuzz generator -- see ./solver.py. Unfortunately, this model can currently only reach ~56% accuracy. Usage: $0 [epochs] [batch_size] [N] Defaults: epochs=1, batch_size=50, N=50 Expects a train/ subdirectory containing the output of ./gencorp.py. """ from keras.constraints import min_max_norm from keras.layers import BatchNormalization, Dense, Dropout, Embedding, Flatten from keras.layers import Input from keras.layers.merge import concatenate, multiply from keras.metrics import mse from keras.models import Model from keras.optimizers import Adam import glob import keras.backend as K import os.path import rfutils import sys gl = glob.glob(os.path.join('train', '*.[sf]')) poscount, locidx = rfutils.count_locpos(gl) embedding_dim = 4 dropout_prob = 0.4 dense_count = int(sys.argv[3]) if len(sys.argv) > 3 else 50 optr = Adam(lr=0.03) K.set_floatx('float64') in_vals = Input((poscount, 1), name='vals', dtype='float64') normd = BatchNormalization( axis=1, gamma_constraint=min_max_norm(), beta_constraint=min_max_norm())(in_vals) in_locs = Input((poscount, ), name='locs', dtype='uint64') embed_locs = Embedding( locidx.watermark, embedding_dim, input_length=poscount)(in_locs) merged = concatenate([embed_locs, normd]) dense_list = [] for i in range(dense_count): dense_list.append( Dropout(dropout_prob)(Dense(1, activation='sigmoid')(Flatten()( merged)))) mult = multiply(dense_list) ml = Model(inputs=[in_locs, in_vals], outputs=mult) ml.compile(optr, metrics=['acc'], loss=mse) locs, vals, labels = rfutils.read_data(gl, poscount, locidx) def fit( eps=int(sys.argv[1]) if len(sys.argv) > 1 else 1, # Large batches tend to cause NaNs in batch normalization. bsz=int(sys.argv[2]) if len(sys.argv) > 2 else 50): ml.fit([locs, vals], labels, batch_size=bsz, epochs=eps) fit()
lintcode/92.backpack.py
geemaple/algorithm
177
11180708
class Solution: """ @param m: An integer m denotes the size of a backpack @param A: Given n items with size A[i] @return: The maximum size """ def backPack(self, m, A): # write your code here table = [False for _ in range(m + 1)] table[0] = True for i in range(len(A)): for w in range(m, -1, -1): value = table[w] if w - A[i] >= 0: value = value or table[w - A[i]] table[w] = value maxsize = 0 for i in range(m, -1, -1): if table[i]: maxsize = i break return maxsize
tensorflow_constrained_optimization/__init__.py
RMKruse/tensorflow_constrained_optimization
276
11180726
<gh_stars>100-1000 # Copyright 2018 The TensorFlow Constrained Optimization Authors. All Rights # Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ============================================================================== """A library for performing constrained optimization in TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow_constrained_optimization.python.candidates import find_best_candidate_distribution from tensorflow_constrained_optimization.python.candidates import find_best_candidate_index from tensorflow_constrained_optimization.python.constrained_minimization_problem import ConstrainedMinimizationProblem from tensorflow_constrained_optimization.python.rates.binary_rates import inverse_precision_at_recall from tensorflow_constrained_optimization.python.rates.binary_rates import pr_auc from tensorflow_constrained_optimization.python.rates.binary_rates import precision_at_recall from tensorflow_constrained_optimization.python.rates.binary_rates import recall_at_precision from tensorflow_constrained_optimization.python.rates.binary_rates import roc_auc from tensorflow_constrained_optimization.python.rates.estimator_head import HeadV2 from tensorflow_constrained_optimization.python.rates.general_rates import accuracy_rate from tensorflow_constrained_optimization.python.rates.general_rates import error_rate from tensorflow_constrained_optimization.python.rates.general_rates import f_score from tensorflow_constrained_optimization.python.rates.general_rates import f_score_ratio from tensorflow_constrained_optimization.python.rates.general_rates import false_negative_proportion from tensorflow_constrained_optimization.python.rates.general_rates import false_negative_rate from tensorflow_constrained_optimization.python.rates.general_rates import false_positive_proportion from tensorflow_constrained_optimization.python.rates.general_rates import false_positive_rate from tensorflow_constrained_optimization.python.rates.general_rates import negative_prediction_rate from tensorflow_constrained_optimization.python.rates.general_rates import positive_prediction_rate from tensorflow_constrained_optimization.python.rates.general_rates import precision from tensorflow_constrained_optimization.python.rates.general_rates import precision_ratio from tensorflow_constrained_optimization.python.rates.general_rates import true_negative_proportion from tensorflow_constrained_optimization.python.rates.general_rates import true_negative_rate from tensorflow_constrained_optimization.python.rates.general_rates import true_positive_proportion from tensorflow_constrained_optimization.python.rates.general_rates import true_positive_rate from tensorflow_constrained_optimization.python.rates.keras import KerasLayer from tensorflow_constrained_optimization.python.rates.keras import KerasMetricWrapper from tensorflow_constrained_optimization.python.rates.keras import KerasPlaceholder from tensorflow_constrained_optimization.python.rates.loss import BinaryClassificationLoss from tensorflow_constrained_optimization.python.rates.loss import HingeLoss from tensorflow_constrained_optimization.python.rates.loss import Loss from tensorflow_constrained_optimization.python.rates.loss import MulticlassLoss from tensorflow_constrained_optimization.python.rates.loss import SoftmaxCrossEntropyLoss from tensorflow_constrained_optimization.python.rates.loss import SoftmaxLoss from tensorflow_constrained_optimization.python.rates.loss import ZeroOneLoss from tensorflow_constrained_optimization.python.rates.operations import lower_bound from tensorflow_constrained_optimization.python.rates.operations import upper_bound from tensorflow_constrained_optimization.python.rates.operations import wrap_rate from tensorflow_constrained_optimization.python.rates.rate_minimization_problem import RateMinimizationProblem from tensorflow_constrained_optimization.python.rates.subsettable_context import multiclass_rate_context from tensorflow_constrained_optimization.python.rates.subsettable_context import multiclass_split_rate_context from tensorflow_constrained_optimization.python.rates.subsettable_context import rate_context from tensorflow_constrained_optimization.python.rates.subsettable_context import split_rate_context from tensorflow_constrained_optimization.python.train.constrained_optimizer import ConstrainedOptimizerV1 from tensorflow_constrained_optimization.python.train.constrained_optimizer import ConstrainedOptimizerV2 from tensorflow_constrained_optimization.python.train.lagrangian_model_optimizer import create_lagrangian_model_loss from tensorflow_constrained_optimization.python.train.lagrangian_optimizer import create_lagrangian_loss from tensorflow_constrained_optimization.python.train.lagrangian_optimizer import LagrangianOptimizerV1 from tensorflow_constrained_optimization.python.train.lagrangian_optimizer import LagrangianOptimizerV2 from tensorflow_constrained_optimization.python.train.proxy_lagrangian_optimizer import create_proxy_lagrangian_loss from tensorflow_constrained_optimization.python.train.proxy_lagrangian_optimizer import ProxyLagrangianOptimizerV1 from tensorflow_constrained_optimization.python.train.proxy_lagrangian_optimizer import ProxyLagrangianOptimizerV2 # The "true positive rate" is the same thing as the "recall", so we allow it to # be accessed by either name. recall = true_positive_rate # By default, we use V2 optimizers. These aliases are purely for convenience: in # general, you should prefer to explicitly specify either a V1 or a V2 optimizer # (in case there's ever a V3, we'll update these aliases). ConstrainedOptimizer = ConstrainedOptimizerV2 LagrangianOptimizer = LagrangianOptimizerV2 ProxyLagrangianOptimizer = ProxyLagrangianOptimizerV2 # We allow "HeadV2" to be also accessed by "Head". If there's a V3 at some # point, we'll update this alias accordingly. Head = HeadV2
python/tests/json/json_dictionary_test.py
vvucetic/keyvi
199
11180733
<filename>python/tests/json/json_dictionary_test.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # Usage: py.test tests import sys import os from keyvi.compiler import JsonDictionaryCompiler root = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(root, "../")) from test_tools import tmp_dictionary def test_simple(): c = JsonDictionaryCompiler({"memory_limit_mb":"10"}) c.Add("abc", '{"a" : 2}') c.Add("abd", '{"a" : 3}') # use python syntax ala __setitem__ c["abd"] = '{"a" : 3}' with tmp_dictionary(c, 'simple_json.kv') as d: assert len(d) == 2 assert d["abc"].GetValueAsString() == '{"a":2}' assert d["abd"].GetValueAsString() == '{"a":3}' def test_simple_zlib(): c = JsonDictionaryCompiler({"memory_limit_mb":"10", 'compression': 'z', 'compression_threshold': '0'}) c.Add("abc", '{"a" : 2}') c.Add("abd", '{"a" : 3}') with tmp_dictionary(c, 'simple_json_z.kv') as d: assert len(d) == 2 assert d["abc"].GetValueAsString() == '{"a":2}' assert d["abd"].GetValueAsString() == '{"a":3}' m = d.GetStatistics()['Value Store'] assert m['__compression'] == "zlib" def test_simple_snappy(): c = JsonDictionaryCompiler({"memory_limit_mb":"10", 'compression': 'snappy', 'compression_threshold': '0'}) c.Add("abc", '{"a" : 2}') c.Add("abd", '{"a" : 3}') with tmp_dictionary(c, 'simple_json_snappy.kv') as d: assert len(d) == 2 assert d["abc"].GetValueAsString() == '{"a":2}' assert d["abd"].GetValueAsString() == '{"a":3}' m = d.GetStatistics()['Value Store'] assert m['__compression'] == "snappy" def test_unicode_compile(): c = JsonDictionaryCompiler({"memory_limit_mb":"10"}) c.Add("üöä", '{"y" : 2}') c.Add("üüüüüüabd", '{"a" : 3}') c.Add(u"ääääädäd", '{"b" : 33}') with tmp_dictionary(c, 'simple_json.kv') as d: assert len(d) == 3 assert d["üöä"].GetValueAsString() == '{"y":2}' assert d[u"üöä"].GetValueAsString() == '{"y":2}' assert d["üüüüüüabd"].GetValueAsString() == '{"a":3}' assert d["ääääädäd"].GetValueAsString() == '{"b":33}' def test_float_compaction(): cs = JsonDictionaryCompiler({"memory_limit_mb":"10", 'floating_point_precision': 'single'}) cd = JsonDictionaryCompiler({"memory_limit_mb":"10"}) # add a couple of floats to both cs.Add('aa', '[1.7008715758978892, 1.8094465532317732, 1.6098250864350536, 1.6369107966501981, 1.7736887965234107, 1.606682751740542, 1.6186427703265525, 1.7939763843449683, 1.5973550162469434, 1.6799721708726192, 1.8199786239525833, 1.7956178070065245, 1.7269879953863045]') cd.Add('aa', '[1.7008715758978892, 1.8094465532317732, 1.6098250864350536, 1.6369107966501981, 1.7736887965234107, 1.606682751740542, 1.6186427703265525, 1.7939763843449683, 1.5973550162469434, 1.6799721708726192, 1.8199786239525833, 1.7956178070065245, 1.7269879953863045]') with tmp_dictionary(cs, 'json_single_precision_float.kv') as ds: with tmp_dictionary(cd, 'json_double_precision_float.kv') as dd: # first some basic checks assert len(ds) == 1 assert len(dd) == 1 # simple test the length of the value store which shall be smaller for single floats stats_s = ds.GetStatistics() stats_d = dd.GetStatistics() assert int(stats_s['Value Store']['size']) < int(stats_d['Value Store']['size'])
draft-3/salad/setup.py
hmenager/common-workflow-language
1,365
11180738
#!/usr/bin/env python import os import sys import setuptools.command.egg_info as egg_info_cmd import shutil from setuptools import setup, find_packages SETUP_DIR = os.path.dirname(__file__) README = os.path.join(SETUP_DIR, 'README.rst') try: import gittaggers tagger = gittaggers.EggInfoFromGit except ImportError: tagger = egg_info_cmd.egg_info setup(name='schema-salad', version='1.5', description='Schema Annotations for Linked Avro Data (SALAD)', long_description=open(README).read(), author='Common workflow language working group', author_email='<EMAIL>', url="https://github.com/common-workflow-language/common-workflow-language", download_url="https://github.com/common-workflow-language/common-workflow-language", license='Apache 2.0', packages=["schema_salad"], package_data={'schema_salad': ['metaschema/*']}, install_requires=[ 'requests', 'PyYAML', 'avro', 'rdflib >= 4.2.0', 'rdflib-jsonld >= 0.3.0', 'mistune' ], test_suite='tests', tests_require=[], entry_points={ 'console_scripts': [ "schema-salad-tool=schema_salad.main:main" ] }, zip_safe=True, cmdclass={'egg_info': tagger}, )
concern/__init__.py
CelineWang1027/PSGAN
570
11180746
<gh_stars>100-1000 from .image import load_image
k-distribution/tests/pyk/unit-test.py
nrdxp/k
404
11180778
<reponame>nrdxp/k<filename>k-distribution/tests/pyk/unit-test.py #!/usr/bin/env python3 import sys import unittest from functools import reduce # From K's pyk-library from pyk import * class TestPyk(unittest.TestCase): def test_newLines(self): self.assertEqual(newLines(['aaa', 'bbb']), 'aaa\nbbb') self.assertEqual(newLines(['aaa']), 'aaa') def test_splitConfigFrom(self): k_cell = KSequence([KConstant('foo'), KConstant('bar')]) term = KApply('<k>', [k_cell]) (config, subst) = splitConfigFrom(term) self.assertEqual(config, KApply('<k>', [KVariable('K_CELL')])) self.assertEqual(subst, {'K_CELL': k_cell}) map_item_cell = KApply('<mapItem>', [KConstant('foo')]) map_cell = KApply('<mapCell>', [KApply('map_join', [map_item_cell, map_item_cell])]) (config, subst) = splitConfigFrom(map_cell) self.assertEqual(config, KApply('<mapCell>', [KVariable('MAPCELL_CELL')])) self.assertEqual(subst, {'MAPCELL_CELL': KApply('map_join', [map_item_cell, map_item_cell])}) if __name__ == '__main__': unittest.main()
examples/t_entries.py
tgolsson/appJar
666
11180793
import sys sys.path.append("../") from appJar import gui def changer(btn): print(btn, app.entry(btn), "changed") def submit(btn): print(btn, app.entry(btn), "submitted") def validater(btn): if btn == "A": app.setEntryBg("e1", "red") app.setEntryBg("le1", "red") app.setEntryBg("ld1", "red") app.setEntryBg("lv1", "red") app.setLabelBg("le1", "red") app.setEntryValid("v1") app.setEntryValid("lv1") app.setEntryValid("lsv1") app.setLabelBg("lsv1", "red") app.setEntryValid("sv1") elif btn == "B": app.setEntryBg("e1", "green") app.setEntryBg("le1", "green") app.setEntryBg("ld1", "green") app.setEntryBg("lv1", "green") app.setEntryInvalid("v1") app.setEntryInvalid("lv1") app.setEntryInvalid("lsv1") app.setEntryInvalid("sv1") elif btn == "C": app.setEntryBg("e1", "orange") app.setEntryBg("le1", "orange") app.setEntryBg("ld1", "orange") app.setEntryBg("lv1", "orange") app.setEntryWaitingValidation("v1") app.setEntryWaitingValidation("lv1") app.setEntryWaitingValidation("lsv1") app.setEntryWaitingValidation("sv1") elif btn == "D": app.hideEntry("e1") app.hideEntry("le1") app.hideEntry("d1") app.hideEntry("ld1") app.hideEntry("v1") app.hideEntry("lv1") elif btn == "E": app.showEntry("e1") app.showEntry("le1") app.showEntry("d1") app.showEntry("ld1") app.showEntry("v1") app.showEntry("lv1") elif btn == "F": app.removeEntry("e1") app.removeEntry("f1") app.removeEntry("le1") app.removeEntry("d1") app.removeEntry("ld1") app.removeEntry("v1") app.removeEntry("lv1") elif btn == "G": app.debug("Adding entry: e1") app.addEntry("e1", row=1) app.debug("Adding val entry: v1") app.addValidationEntry("v1",row=2) app.debug("Adding file entry: f1") app.addFileEntry("f1", row=3) app.debug("Adding dir entry: d1") app.addDirectoryEntry("d1", row=4) app.debug("Adding lab entry: l1") app.addLabelEntry("le1", row=9) app.debug("Adding lab dir entry: ld1") app.addLabelDirectoryEntry("ld1", row=11) app.debug("Adding lab val entry: lv1") app.addLabelValidationEntry("lv1", row=15) elif btn == "0": app.addLabelEntry("long", row=16) app=gui() app.addButtons(["0", "A", "B", "C", "D", "E", "F", "G"], validater, colspan=2) app.setBg("green") app.setLabelFont(size=20) app.addEntry("e1") app.addValidationEntry("v1") app.addFileEntry("f1") app.addDirectoryEntry("d1") app.addNumericEntry("n1") app.addAutoEntry("a1", ["a", "b", "bb", "bbb"]) app.addSecretEntry("s1") app.separator(colspan=2) app.addLabelEntry("le1") app.setEntryDefault("le1", "aaa") app.setEntryDefault("le1", "bbb") app.addLabelFileEntry("lf1") app.addLabelDirectoryEntry("ld1") app.addLabelNumericEntry("ln1") app.addLabelAutoEntry("la1", ["a", "b", "bb", "bbb"]) app.addLabelSecretEntry("ls1") app.addLabelValidationEntry("lv1") app.entry("sv1", row=1, column=1, kind="validation", default="validation", submit=submit, change=changer, limit=5, case="upper", rows=3) app.entry("se1", row=2, column=1, default="standard", submit=submit, change=changer, limit=5, case="upper", rows=3) app.entry("sf1", row=3, column=1, kind="file", default="file", submit=submit, change=changer, limit=5, case="upper", rows=3) app.entry("sd1", row=4, column=1, kind="directory", default="directory", submit=submit, change=changer, limit=5, case="upper", rows=3) app.entry("sn1", row=5, column=1, kind="numeric", default="numeric", submit=submit, change=changer, limit=5, case="upper", rows=3) app.entry("sa1", ["a", "b", "bb", "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb:bbb"], row=6, column=1, kind="auto", submit=submit, change=changer, limit=5, case="upper", rows=3, default="big auto") app.entry("ss1", row=7, column=1, secret=True, default="secret", submit=submit, change=changer, limit=5, case="upper", rows=3) app.entry("lse1", row=9, column=1,label="lText", default="standerder") app.entry("lsf1", row=10, column=1, kind="file",label="lText", default="filer") app.entry("lsd1", row=11, column=1, kind="directory",label="lText", default="directoryer") app.entry("lsn1", row=12, column=1, kind="numeric",label="lText", default="numericer") app.entry("lsa1", ["a", "b", "bb", "bbb"], row=13, column=1, kind="auto",label=True, default="autoer") app.entry("lss1", row=14, column=1, secret=True,label=True, default="secreter") app.entry("lsv1", row=15, column=1, kind="validation",label=True, default="validationer") app.grip() app.setBg("blue") app.setBg("yellow") #app.ttkStyle.configure("BW.TEntry", foreground="yellow", background="pink") #app.ttkStyle.configure("TButton", foreground="pink", background="yellow") #app.ttkStyle.configure("TLabel", background="blue") #app.ttkStyle.configure("TFrame", background="blue") #app.setEntryStyle("e1", "BW.TEntry") app.go()
bookwyrm/tests/models/test_import_model.py
mouse-reeve/fedireads
270
11180801
<filename>bookwyrm/tests/models/test_import_model.py """ testing models """ import datetime import json import pathlib from unittest.mock import patch from django.utils import timezone from django.test import TestCase import responses from bookwyrm import models from bookwyrm.book_search import SearchResult from bookwyrm.connectors import connector_manager class ImportJob(TestCase): """this is a fancy one!!!""" def setUp(self): """data is from a goodreads export of The Raven Tower""" with patch("bookwyrm.suggested_users.rerank_suggestions_task.delay"), patch( "bookwyrm.activitystreams.populate_stream_task.delay" ), patch("bookwyrm.lists_stream.populate_lists_task.delay"): self.local_user = models.User.objects.create_user( "mouse", "<EMAIL>", "password", local=True ) self.job = models.ImportJob.objects.create(user=self.local_user, mappings={}) def test_isbn(self): """it unquotes the isbn13 field from data""" item = models.ImportItem.objects.create( index=1, job=self.job, data={}, normalized_data={ "isbn_13": '="9780356506999"', }, ) self.assertEqual(item.isbn, "9780356506999") def test_shelf(self): """converts to the local shelf typology""" item = models.ImportItem.objects.create( index=1, job=self.job, data={}, normalized_data={ "isbn_13": '="9780356506999"', "shelf": "reading", }, ) self.assertEqual(item.shelf, "reading") def test_date_added(self): """converts to the local shelf typology""" expected = datetime.datetime(2019, 4, 9, 0, 0, tzinfo=timezone.utc) item = models.ImportItem.objects.create( index=1, job=self.job, data={}, normalized_data={ "isbn_13": '="9780356506999"', "shelf": "reading", "date_added": "2019/04/09", }, ) self.assertEqual(item.date_added, expected) def test_date_read(self): """converts to the local shelf typology""" expected = datetime.datetime(2019, 4, 12, 0, 0, tzinfo=timezone.utc) item = models.ImportItem.objects.create( index=1, job=self.job, data={}, normalized_data={ "isbn_13": '="9780356506999"', "shelf": "reading", "date_added": "2019/04/09", "date_finished": "2019/04/12", }, ) self.assertEqual(item.date_read, expected) def test_currently_reading_reads(self): """infer currently reading dates where available""" expected = [ models.ReadThrough( start_date=datetime.datetime(2019, 4, 9, 0, 0, tzinfo=timezone.utc) ) ] item = models.ImportItem.objects.create( index=1, job=self.job, data={}, normalized_data={ "isbn_13": '="9780356506999"', "shelf": "reading", "date_added": "2019/04/09", }, ) self.assertEqual(item.reads[0].start_date, expected[0].start_date) self.assertIsNone(item.reads[0].finish_date) def test_read_reads(self): """infer read dates where available""" item = models.ImportItem.objects.create( index=1, job=self.job, data={}, normalized_data={ "isbn_13": '="9780356506999"', "shelf": "reading", "date_added": "2019/04/09", "date_finished": "2019/04/12", }, ) self.assertEqual( item.reads[0].start_date, datetime.datetime(2019, 4, 9, 0, 0, tzinfo=timezone.utc), ) self.assertEqual( item.reads[0].finish_date, datetime.datetime(2019, 4, 12, 0, 0, tzinfo=timezone.utc), ) def test_unread_reads(self): """handle books with no read dates""" expected = [] item = models.ImportItem.objects.create( index=1, job=self.job, data={}, normalized_data={ "isbn_13": '="9780356506999"', "shelf": "reading", }, ) self.assertEqual(item.reads, expected) @responses.activate def test_get_book_from_identifier(self): """search and load books by isbn (9780356506999)""" item = models.ImportItem.objects.create( index=1, job=self.job, data={}, normalized_data={ "isbn_13": '="9780356506999"', }, ) connector_info = models.Connector.objects.create( identifier="openlibrary.org", name="OpenLibrary", connector_file="openlibrary", base_url="https://openlibrary.org", books_url="https://openlibrary.org", covers_url="https://covers.openlibrary.org", search_url="https://openlibrary.org/search?q=", priority=3, ) connector = connector_manager.load_connector(connector_info) result = SearchResult( title="Test Result", key="https://openlibrary.org/works/OL1234W", author="<NAME>", year="1980", connector=connector, ) datafile = pathlib.Path(__file__).parent.joinpath("../data/ol_edition.json") bookdata = json.loads(datafile.read_bytes()) responses.add( responses.GET, "https://openlibrary.org/works/OL1234W", json=bookdata, status=200, ) responses.add( responses.GET, "https://openlibrary.org/works/OL15832982W", json=bookdata, status=200, ) responses.add( responses.GET, "https://openlibrary.org/authors/OL382982A", json={"name": "<NAME>"}, status=200, ) with patch("bookwyrm.connectors.abstract_connector.load_more_data.delay"): with patch( "bookwyrm.connectors.connector_manager.first_search_result" ) as search: search.return_value = result with patch( "bookwyrm.connectors.openlibrary.Connector.get_authors_from_data" ): book = item.get_book_from_identifier() self.assertEqual(book.title, "Sabriel")
src/datashare/azext_datashare/vendored_sdks/datashare/aio/_data_share_management_client_async.py
Mannan2812/azure-cli-extensions
207
11180808
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Optional from azure.core import AsyncPipelineClient from msrest import Deserializer, Serializer from ._configuration_async import DataShareManagementClientConfiguration from .operations_async import AccountOperations from .operations_async import ConsumerInvitationOperations from .operations_async import DataSetOperations from .operations_async import DataSetMappingOperations from .operations_async import InvitationOperations from .operations_async import OperationOperations from .operations_async import ShareOperations from .operations_async import ProviderShareSubscriptionOperations from .operations_async import ShareSubscriptionOperations from .operations_async import ConsumerSourceDataSetOperations from .operations_async import SynchronizationSettingOperations from .operations_async import TriggerOperations from .. import models class DataShareManagementClient(object): """Creates a Microsoft.DataShare management client. :ivar account: AccountOperations operations :vartype account: data_share_management_client.aio.operations_async.AccountOperations :ivar consumer_invitation: ConsumerInvitationOperations operations :vartype consumer_invitation: data_share_management_client.aio.operations_async.ConsumerInvitationOperations :ivar data_set: DataSetOperations operations :vartype data_set: data_share_management_client.aio.operations_async.DataSetOperations :ivar data_set_mapping: DataSetMappingOperations operations :vartype data_set_mapping: data_share_management_client.aio.operations_async.DataSetMappingOperations :ivar invitation: InvitationOperations operations :vartype invitation: data_share_management_client.aio.operations_async.InvitationOperations :ivar operation: OperationOperations operations :vartype operation: data_share_management_client.aio.operations_async.OperationOperations :ivar share: ShareOperations operations :vartype share: data_share_management_client.aio.operations_async.ShareOperations :ivar provider_share_subscription: ProviderShareSubscriptionOperations operations :vartype provider_share_subscription: data_share_management_client.aio.operations_async.ProviderShareSubscriptionOperations :ivar share_subscription: ShareSubscriptionOperations operations :vartype share_subscription: data_share_management_client.aio.operations_async.ShareSubscriptionOperations :ivar consumer_source_data_set: ConsumerSourceDataSetOperations operations :vartype consumer_source_data_set: data_share_management_client.aio.operations_async.ConsumerSourceDataSetOperations :ivar synchronization_setting: SynchronizationSettingOperations operations :vartype synchronization_setting: data_share_management_client.aio.operations_async.SynchronizationSettingOperations :ivar trigger: TriggerOperations operations :vartype trigger: data_share_management_client.aio.operations_async.TriggerOperations :param credential: Credential needed for the client to connect to Azure. :type credential: azure.core.credentials.TokenCredential :param subscription_id: The subscription identifier. :type subscription_id: str :param str base_url: Service URL """ def __init__( self, credential: "TokenCredential", subscription_id: str, base_url: Optional[str] = None, **kwargs: Any ) -> None: if not base_url: base_url = 'https://management.azure.com' self._config = DataShareManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = AsyncPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self.account = AccountOperations( self._client, self._config, self._serialize, self._deserialize) self.consumer_invitation = ConsumerInvitationOperations( self._client, self._config, self._serialize, self._deserialize) self.data_set = DataSetOperations( self._client, self._config, self._serialize, self._deserialize) self.data_set_mapping = DataSetMappingOperations( self._client, self._config, self._serialize, self._deserialize) self.invitation = InvitationOperations( self._client, self._config, self._serialize, self._deserialize) self.operation = OperationOperations( self._client, self._config, self._serialize, self._deserialize) self.share = ShareOperations( self._client, self._config, self._serialize, self._deserialize) self.provider_share_subscription = ProviderShareSubscriptionOperations( self._client, self._config, self._serialize, self._deserialize) self.share_subscription = ShareSubscriptionOperations( self._client, self._config, self._serialize, self._deserialize) self.consumer_source_data_set = ConsumerSourceDataSetOperations( self._client, self._config, self._serialize, self._deserialize) self.synchronization_setting = SynchronizationSettingOperations( self._client, self._config, self._serialize, self._deserialize) self.trigger = TriggerOperations( self._client, self._config, self._serialize, self._deserialize) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "DataShareManagementClient": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
thespian/test/test_HAConvention.py
godaddy/Thespian
210
11180810
<reponame>godaddy/Thespian from thespian.test import * from time import sleep import pytest from thespian.actors import * from datetime import timedelta class PreRegActor(ActorTypeDispatcher): def receiveMsg_str(self, regaddr, sender): self.preRegisterRemoteSystem(regaddr, {}) self.send(sender, 'Registered') @pytest.fixture(params=['simpleSystemBase', 'multiprocQueueBase', 'multiprocUDPBase', 'multiprocTCPBase', 'multiprocTCPBase-AdminRouting', 'multiprocTCPBase-AdminRoutingTXOnly', ]) def testsystems(request): sysbase = request.param.partition('-')[0] adminRouting = request.param.endswith('-AdminRouting') txOnly = request.param.endswith('-AdminRoutingTXOnly') victoria_port = get_free_admin_port() leicester_port = get_free_admin_port() picadilly_port = get_free_admin_port() tottenham_port = get_free_admin_port() convaddrs = [ 'localhost:%d' % victoria_port, 'localhost:%d' % leicester_port, 'localhost:%d' % picadilly_port, # tottenham cannot be a leader ] basecaps = { 'Convention Address.IPv4': convaddrs, 'Admin Routing': adminRouting, } victoria_caps = basecaps.copy() victoria_caps.update({ 'Cyan': 19, 'Yellow': 11, 'Green': 11, 'Admin Port': victoria_port, }) leicester_caps = basecaps.copy() leicester_caps.update({ 'Blue': 4, 'Black': 8, 'Admin Port': leicester_port, }) picadilly_caps = basecaps.copy() picadilly_caps.update({ 'Blue': 6, 'Brown': 12, 'Admin Port': picadilly_port, }) tottenham_caps = basecaps.copy() tottenham_caps.update({ 'Brown': 7, 'Red': 10, 'Admin Port': tottenham_port, }) victoria = ActorSystem(systemBase=sysbase, transientUnique=True, logDefs=simpleActorTestLogging(), capabilities=victoria_caps) victoria.base_name = request.param victoria.port_num = victoria_port leicester = ActorSystem(systemBase=sysbase, transientUnique=True, logDefs=simpleActorTestLogging(), capabilities=leicester_caps) leicester.base_name = request.param leicester.port_num = leicester_port picadilly = ActorSystem(systemBase=sysbase, transientUnique=True, logDefs=simpleActorTestLogging(), capabilities=picadilly_caps) picadilly.base_name = request.param picadilly.port_num = picadilly_port tottenham = ActorSystem(systemBase=sysbase, transientUnique=True, logDefs=simpleActorTestLogging(), capabilities=tottenham_caps) tottenham.base_name = request.param tottenham.port_num = tottenham_port request.addfinalizer(lambda victoria=victoria, leicester=leicester, picadilly=picadilly, tottenham=tottenham: tottenham.shutdown() or leicester.shutdown() or picadilly.shutdown() or victoria.shutdown()) if txOnly: assert 'Registered' == victoria.ask(victoria.createActor(PreRegActor), 'localhost:%d'%victoria.port_num, timedelta(seconds=3)) assert 'Registered' == leicester.ask(leicester.createActor(PreRegActor), 'localhost:%d'%leicester.port_num, timedelta(seconds=3)) assert 'Registered' == picadilly.ask(picadilly.createActor(PreRegActor), 'localhost:%d'%picadilly.port_num, timedelta(seconds=3)) assert 'Registered' == tottenham.ask(tottenham.createActor(PreRegActor), 'localhost:%d'%tottenham.port_num, timedelta(seconds=3)) sleep(1.25) # allow all systems to join the Convention return convaddrs, victoria, leicester, picadilly, tottenham class Sean(Actor): @staticmethod def actorSystemCapabilityCheck(capabilities, actorRequirements): return (capabilities.get('Blue', 0) + capabilities.get('Green', 0)) > 3; def receiveMessage(self, message, sender): if isinstance(message, str): self.send(sender, '%s is not enough' % message) class Roger(Actor): @staticmethod def actorSystemCapabilityCheck(capabilities, actorRequirements): return capabilities.get('Cyan', 0) > 0 def receiveMessage(self, message, sender): if isinstance(message, str): self.send(sender, "Don't count on it, %s" % message) class M(Actor): @staticmethod def actorSystemCapabilityCheck(capabilities, actorRequirements): return capabilities.get('Red', 0) > 0 def receiveMessage(self, message, sender): if isinstance(message, str): if message == 'Sean': self.send(sender, self.createActor(Sean)) if message == 'Roger': self.send(sender, self.createActor(Roger)) class TestFuncHAConvention(): def test01_systems_can_start(self, testsystems): convaddrs, victoria, leicester, picadilly, tottenham = testsystems actor_system_unsupported(victoria, 'simpleSystemBase', 'multiprocQueueBase') pass def test02_actors_can_start(self, testsystems): convaddrs, victoria, leicester, picadilly, tottenham = testsystems actor_system_unsupported(victoria, 'simpleSystemBase', 'multiprocQueueBase') sean = victoria.createActor(Sean) roger = victoria.createActor(Roger) m = picadilly.createActor(M) sleep(1) # wait for things to settle r = victoria.ask(sean, "diamonds", 0.25) assert r == "diamonds is not enough" r = victoria.ask(roger, "zorin", 0.25) assert r == "Don't count on it, zorin" bond1 = leicester.ask(m, "Sean", 0.25) assert bond1 r = leicester.ask(bond1, "forever", 0.25) assert r == "forever is not enough" bond2 = leicester.ask(m, "Roger", 0.25) assert bond2 r = leicester.ask(bond2, "jaws", 0.25) assert r == "Don't count on it, jaws" def test03_actor_create_failure_on_leader_exit(self, testsystems): convaddrs, victoria, leicester, picadilly, tottenham = testsystems actor_system_unsupported(victoria, 'simpleSystemBase', 'multiprocQueueBase') sean = victoria.createActor(Sean) roger = victoria.createActor(Roger) m = picadilly.createActor(M) sleep(1) # wait for things to settle bond1 = leicester.ask(m, "Sean", 0.25) assert bond1 r = leicester.ask(bond1, "forever", 0.25) assert r == "forever is not enough" bond2 = leicester.ask(m, "Roger", 0.25) assert bond2 r = leicester.ask(bond2, "jaws", 0.25) assert r == "Don't count on it, jaws" victoria.shutdown() sleep(2) bond3 = leicester.ask(m, "Sean", 0.25) assert bond3 r = leicester.ask(bond3, "forever", 0.25) assert r == "forever is not enough" bond4 = leicester.ask(m, "Roger", 0.25) assert (bond4 is None) def test04_actor_create_on_leader_re_enter(self, testsystems): convaddrs, victoria, leicester, picadilly, tottenham = testsystems actor_system_unsupported(victoria, 'simpleSystemBase', 'multiprocQueueBase') sean = victoria.createActor(Sean) roger = victoria.createActor(Roger) m = picadilly.createActor(M) sleep(1) # wait for things to settle bond1 = leicester.ask(m, "Sean", 0.25) assert bond1 r = leicester.ask(bond1, "forever", 0.25) assert r == "forever is not enough" bond2 = leicester.ask(m, "Roger", 0.25) assert bond2 r = leicester.ask(bond2, "jaws", 0.25) assert r == "Don't count on it, jaws" victoria.shutdown() sleep(2) bond3 = leicester.ask(m, "Sean", 0.25) assert bond3 r = leicester.ask(bond3, "forever", 0.25) assert r == "forever is not enough" bond4 = leicester.ask(m, "Roger", 0.25) assert (bond4 is None) # --- same as test03 up to this point --- victoria2 = ActorSystem(systemBase=victoria.base_name.partition('-')[0], transientUnique=True, logDefs=simpleActorTestLogging(), capabilities={ 'Cyan': 12, 'Admin Port': victoria.port_num, 'Convention Address.IPv4': convaddrs }) victoria2.base_name = victoria.base_name victoria2.port_num = victoria.port_num sleep(2) # wait for victoria to become try: bond5 = leicester.ask(m, "Sean", 0.25) assert bond5 r = leicester.ask(bond5, "money", 0.25) assert r == "money is not enough" bond6 = leicester.ask(m, "Roger", 0.25) assert bond6 r = leicester.ask(bond6, "sharks", 0.25) assert r == "Don't count on it, sharks" finally: victoria2.shutdown()
hs_core/tests.py
tommac7/hydroshare
178
11180831
<filename>hs_core/tests.py """Empty. See tests/ folder."""
tests/machines/merge_overlapping_intervals/merge_overlapping_intervals_test.py
ealter/vim_turing_machine
149
11180844
from unittest import mock import pytest import vim_turing_machine.machines.merge_overlapping_intervals.merge_overlapping_intervals import vim_turing_machine.struct import vim_turing_machine.turing_machine from vim_turing_machine.constants import INITIAL_STATE from vim_turing_machine.constants import NO_FINAL_STATE from vim_turing_machine.constants import YES_FINAL_STATE from vim_turing_machine.machines.merge_overlapping_intervals.decode_intervals import decode_intervals from vim_turing_machine.machines.merge_overlapping_intervals.encode_intervals import encode_intervals from vim_turing_machine.machines.merge_overlapping_intervals.merge_overlapping_intervals import invert_bit from vim_turing_machine.machines.merge_overlapping_intervals.merge_overlapping_intervals import invert_direction from vim_turing_machine.machines.merge_overlapping_intervals.merge_overlapping_intervals import MergeOverlappingIntervalsGenerator from vim_turing_machine.struct import BACKWARDS from vim_turing_machine.struct import FORWARDS from vim_turing_machine.turing_machine import TuringMachine @pytest.yield_fixture(autouse=True) def mock_blank_character(): """Change the blank character to be a space so that it's easier to write test cases.""" with mock.patch.object( vim_turing_machine.turing_machine, 'BLANK_CHARACTER', ' ', ): with mock.patch.object( vim_turing_machine.struct, 'VALID_CHARACTERS', ('0', '1', ' '), ): with mock.patch.object( vim_turing_machine.machines.merge_overlapping_intervals.merge_overlapping_intervals, 'BLANK_CHARACTER', ' ', ): with mock.patch.object( vim_turing_machine.machines.merge_overlapping_intervals.merge_overlapping_intervals, 'VALID_CHARACTERS', ('0', '1', ' '), ): yield @pytest.fixture def merger(): return MergeOverlappingIntervalsGenerator(num_bits=3) def run_machine(transitions, tape, initial_position=0, assert_tape_not_changed=False): machine = TuringMachine(list(transitions), quiet=True) machine.run(tape[:], max_steps=10000, initial_cursor_position=initial_position) if assert_tape_not_changed: assert_tape(machine, tape) return machine def assert_cursor_at_end_of_output(machine): end = len(machine.tape) - 1 while end > 0 and machine.tape[end] == ' ': end -= 1 assert machine.cursor_position == end def assert_cursor_is_at_beginning_of_input(machine): i = 0 while i < len(machine.tape) and machine.tape[i] == ' ': i += 1 assert machine.cursor_position == i def assert_tape(machine, expected_tape): # Ignore any blanks at the end assert expected_tape == ''.join(machine.tape).rstrip() def test_invert_bit(): assert invert_bit('0') == '1' assert invert_bit('1') == '0' with pytest.raises(AssertionError): invert_bit('not_valid') def test_invert_direction(): assert invert_direction(FORWARDS) == BACKWARDS assert invert_direction(BACKWARDS) == FORWARDS with pytest.raises(AssertionError): invert_direction('not_valid') def test_move_n_bits(merger): machine = run_machine( merger.move_n_bits( initial_state=INITIAL_STATE, direction=FORWARDS, final_state=YES_FINAL_STATE, num_bits=4, ), tape='01010111', assert_tape_not_changed=True, ) assert machine.cursor_position == 4 def test_move_to_blank_spaces(merger): machine = run_machine( merger.move_to_blank_spaces( initial_state=INITIAL_STATE, direction=FORWARDS, final_state=YES_FINAL_STATE, final_character=' ', final_direction=BACKWARDS, num_blanks=2, ), tape='01 1111 10', assert_tape_not_changed=True, ) assert machine.cursor_position == 6 # End of the 1111 def test_copy_bits_to_end_of_output(merger): machine = run_machine( merger.copy_bits_to_end_of_output( initial_state=INITIAL_STATE, num_bits=3, final_state=YES_FINAL_STATE, ), tape='10111 01', ) assert_tape(machine, ' 11 01101') assert_cursor_at_end_of_output(machine) @pytest.mark.parametrize('tape, final_state', [ ('101 100110', NO_FINAL_STATE), ('101 100100', YES_FINAL_STATE), ('101 111100', YES_FINAL_STATE), ]) def test_compare_two_sequential_numbers(merger, tape, final_state): machine = run_machine( merger.compare_two_sequential_numbers( initial_state=INITIAL_STATE, greater_than_or_equal_to_state=YES_FINAL_STATE, less_than_state=NO_FINAL_STATE, ), tape=tape, initial_position=len(tape) - 1, assert_tape_not_changed=True, ) assert_cursor_at_end_of_output(machine) assert machine.current_state == final_state def test_erase_number(merger): machine = run_machine( merger.erase_number( initial_state=INITIAL_STATE, final_state=YES_FINAL_STATE, ), tape='100101110', initial_position=5, # end of 101 ) assert machine.cursor_position == 2 assert_tape(machine, '100 110') def test_replace_number(merger): tape = '100101110' machine = run_machine( merger.replace_number( initial_state=INITIAL_STATE, final_state=YES_FINAL_STATE, ), tape=tape, initial_position=len(tape) - 1, ) assert_tape(machine, '100110') assert_cursor_at_end_of_output(machine) @pytest.mark.parametrize('tape, final_state', [ (' 100 101101', NO_FINAL_STATE), (' 100101101', YES_FINAL_STATE), ]) def test_check_if_there_is_any_input_left(merger, tape, final_state): machine = run_machine( merger.check_if_there_is_any_input_left( initial_state=INITIAL_STATE, final_state=NO_FINAL_STATE, # The machine exits with Yes if there is no input left. ), tape=tape, initial_position=len(tape) - 1, assert_tape_not_changed=True, ) assert_cursor_is_at_beginning_of_input(machine) assert machine.current_state == final_state @pytest.mark.parametrize('initial_tape, final_tape', [ (' 100 001010001', ' 001100'), # 2nd pair's closing value is larger (' 010 001110001', ' 001110'), # 2nd pair's closing value is smaller (' 110 001110001', ' 001110'), # 2nd pair's closing value is equal ]) def test_copy_closing_value_and_merge(merger, initial_tape, final_tape): machine = run_machine( merger.copy_closing_value_and_merge( initial_state=INITIAL_STATE, final_state=YES_FINAL_STATE, ), tape=initial_tape, initial_position=len(initial_tape) - 1, ) assert_cursor_at_end_of_output(machine) assert_tape(machine, final_tape) def test_copy_closing_value_without_merging(merger): tape = ' 111 000010110' machine = run_machine( merger.copy_closing_value_without_merging( initial_state=INITIAL_STATE, final_state=YES_FINAL_STATE, ), tape=tape, initial_position=len(tape) - 1, ) assert_cursor_at_end_of_output(machine) assert_tape(machine, ' 000010110111') @pytest.mark.parametrize( 'initial_intervals, final_intervals', [ ( [[0, 1]], [[0, 1]], ), ( [[0, 1], [5, 6]], [[0, 1], [5, 6]], ), ( [[0, 5], [2, 3]], [[0, 5]], ), ( [[1, 3], [3, 4], [4, 5], [6, 7]], [[1, 5], [6, 7]], ) ] ) def test_merge_overlapping_intervals(merger, initial_intervals, final_intervals): """The true integration test!""" tape = encode_intervals(initial_intervals, num_bits=3) machine = run_machine( merger.merge_overlapping_intervals_transitions(), tape=tape, ) assert final_intervals == decode_intervals(''.join(machine.tape), num_bits=3)
scripts/eval_mesh.py
isabella232/lasr
128
11180847
<reponame>isabella232/lasr # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys, os sys.path.insert(0,'third_party') sys.path.append(os.path.dirname(os.path.dirname(sys.path[0]))) os.environ["PYOPENGL_PLATFORM"] = "egl" #opengl seems to only work with TPU import chamfer3D.dist_chamfer_3D import subprocess import pytorch3d.ops import pytorch3d.loss import imageio import torch import glob import matplotlib.pyplot as plt import numpy as np import torch import cv2 import pdb import soft_renderer as sr import argparse import trimesh from nnutils.geom_utils import obj_to_cam, pinhole_cam import pyrender from pyrender import IntrinsicsCamera,Mesh, Node, Scene,OffscreenRenderer import configparser import matplotlib.pyplot as plt import imageio parser = argparse.ArgumentParser(description='BADJA') parser.add_argument('--testdir', default='', help='path to test dir') parser.add_argument('--gtdir', default='', help='path to gt dir') parser.add_argument('--method', default='lasr', help='method to evaluate') args = parser.parse_args() gt_meshes = [trimesh.load(i, process=False) for i in sorted( glob.glob('%s/*.obj'%(args.gtdir)) )] if args.method=='vibe' or args.method=='pifuhd': pred_meshes = [i for i in sorted( glob.glob('%s/*.obj'%(args.testdir)) )] elif args.method=='lasr': pred_meshes = [i for i in sorted( glob.glob('%s/pred*.ply'%(args.testdir)),key=lambda x: int(x.split('pred')[1].split('.ply')[0]) )] elif args.method=='smplify-x': pred_meshes = [i for i in sorted( glob.glob('%s/*/*.obj'%(args.testdir)) )] elif args.method=='smalify': pred_meshes = [i for i in sorted( glob.glob('%s/*/st10*.ply'%(args.testdir)) )] else:exit() assert(len(gt_meshes) == len(pred_meshes)) # pytorch3d from pytorch3d.renderer.mesh import TexturesAtlas, TexturesUV, TexturesVertex from pytorch3d.structures.meshes import Meshes from pytorch3d.renderer.mesh.shader import ( BlendParams, ) from pytorch3d.renderer import ( PointLights, RasterizationSettings, MeshRenderer, MeshRasterizer, SoftPhongShader, SoftSilhouetteShader, ) from pytorch3d.renderer.cameras import OrthographicCameras device = torch.device("cuda:0") cameras = OrthographicCameras(device = device) lights = PointLights( device=device, ambient_color=((1.0, 1.0, 1.0),), diffuse_color=((1.0, 1.0, 1.0),), specular_color=((1.0, 1.0, 1.0),), ) renderer_softtex = MeshRenderer( rasterizer=MeshRasterizer(cameras=cameras, raster_settings=RasterizationSettings(image_size=512,cull_backfaces=True)), shader=SoftPhongShader(device = device,cameras=cameras, lights=lights) ) chamLoss = chamfer3D.dist_chamfer_3D.chamfer_3DDist() cds = [] norms=[] frames=[] for i in range(len(gt_meshes)): # remesh mesh1 = trimesh.load(pred_meshes[i], process=False) # load remeshed if args.method=='lasr': import subprocess mesh1.export('tmp/input.obj') print(subprocess.check_output(['Manifold/build/manifold', 'tmp/input.obj', 'tmp/output.obj', '10000'])) mesh1 = trimesh.load('tmp/output.obj') mesh2 = gt_meshes[i] trimesh.repair.fix_inversion(mesh1) trimesh.repair.fix_inversion(mesh2) X0 = torch.Tensor(mesh1.vertices[None] ).cuda() Y0 = torch.Tensor(mesh2.vertices[None] ).cuda() ## top down view #theta = -3*np.pi/9 #init_pose = torch.Tensor([[1,0,0],[0,np.cos(theta),-np.sin(theta)],[0,np.sin(theta),np.cos(theta)]]).cuda() #X0[0] = X0.matmul(init_pose) #Y0[0] = Y0.matmul(init_pose) ## rotateview #theta = 9*np.pi/9 #init_pose = torch.Tensor([[np.cos(theta),0,-np.sin(theta)],[0,1,0],[np.sin(theta),0,np.cos(theta)]]).cuda() #X0[0] = X0.matmul(init_pose) if args.method=='lasr': cam = np.loadtxt('%s/cam%d.txt'%(args.testdir,i)) Rmat = torch.Tensor(cam[None,:3,:3]).cuda() X0 = X0.matmul(Rmat) elif args.method=='smalify': X0[:,:,1:] *= -1 X0[:,:,1:] *= -1 if 'sdog' in args.testdir or 'shorse' in args.testdir or 'spot' in args.testdir or 'sgolem' in args.testdir: Y0[:,:,1:] *= -1 # normalize to have extent 10 Y0 = Y0 - Y0.mean(1,keepdims=True) max_dis = (Y0 - Y0.permute(1,0,2)).norm(2,-1).max() Y0 = 10* Y0 / max_dis X0 = X0 - X0.mean(1,keepdims=True) if args.method=='pifuhd' or args.method=='lasr': meshtmp = pytorch3d.structures.meshes.Meshes(verts=X0, faces=torch.Tensor(mesh1.faces[None]).cuda()) Xtmp = pytorch3d.ops.sample_points_from_meshes(meshtmp, 10000) max_dis = (Xtmp - Xtmp.permute(1,0,2)).norm(2,-1).max() else: max_dis = (X0 - X0.permute(1,0,2)).norm(2,-1).max() X0 = 10* X0 / max_dis meshx = pytorch3d.structures.meshes.Meshes(verts=X0, faces=torch.Tensor(mesh1.faces[None]).cuda()) meshy = pytorch3d.structures.meshes.Meshes(verts=Y0, faces=torch.Tensor(mesh2.faces[None]).cuda()) X = pytorch3d.ops.sample_points_from_meshes(meshx, 10000) Y = pytorch3d.ops.sample_points_from_meshes(meshy, 10000) sol1 = pytorch3d.ops.iterative_closest_point(X,Y,estimate_scale=False,max_iterations=10000) #sol2 = pytorch3d.ops.iterative_closest_point(sol1.Xt,Y,estimate_scale=True,max_iterations=10000) X0 = (sol1.RTs.s*X0).matmul(sol1.RTs.R)+sol1.RTs.T[:,None] # evaluation meshx = pytorch3d.structures.meshes.Meshes(verts=X0, faces=torch.Tensor(mesh1.faces[None]).cuda()) meshy = pytorch3d.structures.meshes.Meshes(verts=Y0, faces=torch.Tensor(mesh2.faces[None]).cuda()) X, nx= pytorch3d.ops.sample_points_from_meshes(meshx, 10000,return_normals=True) Y, ny= pytorch3d.ops.sample_points_from_meshes(meshy, 10000,return_normals=True) cd,norm = pytorch3d.loss.chamfer_distance(X,Y, x_normals=nx,y_normals=ny) raw_cd,_,_,_ = chamLoss(X,Y0) # this returns distance squared # error render cm = plt.get_cmap('plasma') color_cd = torch.Tensor(cm(2*np.asarray(raw_cd.cpu()[0]))).cuda()[:,:3][None] verts = Y0/(1.05*Y0.abs().max()); verts[:,:,0] *= -1; verts[:,:,-1] *= -1; verts[:,:,-1] -= (verts[:,:,-1].min()-1) mesh = Meshes(verts=verts, faces=torch.Tensor(mesh2.faces[None]).cuda(),textures=TexturesVertex(verts_features=color_cd)) errimg = renderer_softtex(mesh)[0,:,:,:3] # shape render color_shape = torch.zeros_like(color_cd); color_shape += 0.5 mesh = Meshes(verts=verts, faces=torch.Tensor(mesh2.faces[None]).cuda(),textures=TexturesVertex(verts_features=color_shape)) imgy = renderer_softtex(mesh)[0,:,:,:3] # shape render color_shape = torch.zeros_like(X0); color_shape += 0.5 verts = X0/(1.05*Y0.abs().max()); verts[:,:,0] *= -1; verts[:,:,-1] *= -1; verts[:,:,-1] -= (verts[:,:,-1].min()-1) mesh = Meshes(verts=verts, faces=torch.Tensor(mesh1.faces[None]).cuda(),textures=TexturesVertex(verts_features=color_shape)) imgx = renderer_softtex(mesh)[0,:,:,:3] img = np.clip(255*np.asarray(torch.cat([imgy, imgx,errimg],1).cpu()),0,255).astype(np.uint8) #cv2.imwrite('%s/cd-%06d.png'%(args.testdir,i),img[:,:,::-1]) cv2.imwrite('%s/gt-%06d.png'%(args.testdir,i),img[:,:512,::-1]) cv2.imwrite('%s/pd-%06d.png'%(args.testdir,i),img[:,512:1024,::-1]) cv2.imwrite('%s/cd-%06d.png'%(args.testdir,i),img[:,1024:,::-1]) #trimesh.Trimesh(vertices=np.asarray(Y0[0].cpu()/10), faces=mesh2.faces,vertex_colors=np.asarray(color_cd[0].cpu())).export('0.obj') cds.append(np.asarray(cd.cpu())) norms.append(np.asarray(norm.cpu())) frames.append(img) print('%04d: %.2f, %.2f'%(i, cd,1-norm)) print('ALL: %.2f, %.2f'%(np.mean(cds),1-np.mean(norms))) imageio.mimsave('tmp/output.gif', frames, duration=5./len(frames))
tempest/tests/lib/services/identity/v2/test_tenants_client.py
mail2nsrajesh/tempest
254
11180861
# Copyright 2016 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib.services.identity.v2 import tenants_client from tempest.tests.lib import fake_auth_provider from tempest.tests.lib.services import base class TestTenantsClient(base.BaseServiceTest): FAKE_TENANT_INFO = { "tenant": { "id": "1", "name": "test", "description": "test_description", "enabled": True } } FAKE_LIST_TENANTS = { "tenants": [ { "id": "1", "name": "test", "description": "test_description", "enabled": True }, { "id": "2", "name": "test2", "description": "test2_description", "enabled": True } ] } def setUp(self): super(TestTenantsClient, self).setUp() fake_auth = fake_auth_provider.FakeAuthProvider() self.client = tenants_client.TenantsClient(fake_auth, 'identity', 'regionOne') def _test_create_tenant(self, bytes_body=False): self.check_service_client_function( self.client.create_tenant, 'tempest.lib.common.rest_client.RestClient.post', self.FAKE_TENANT_INFO, bytes_body, name="test", description="test_description") def _test_show_tenant(self, bytes_body=False): self.check_service_client_function( self.client.show_tenant, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_TENANT_INFO, bytes_body, tenant_id="1") def _test_update_tenant(self, bytes_body=False): self.check_service_client_function( self.client.update_tenant, 'tempest.lib.common.rest_client.RestClient.post', self.FAKE_TENANT_INFO, bytes_body, tenant_id="1", name="test", description="test_description") def _test_list_tenants(self, bytes_body=False): self.check_service_client_function( self.client.list_tenants, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_LIST_TENANTS, bytes_body) def _test_list_tenant_users(self, bytes_body=False): self.check_service_client_function( self.client.list_tenant_users, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_LIST_TENANTS, bytes_body, tenant_id="1") def test_create_tenant_with_str_body(self): self._test_create_tenant() def test_create_tenant_with_bytes_body(self): self._test_create_tenant(bytes_body=True) def test_show_tenant_with_str_body(self): self._test_show_tenant() def test_show_tenant_with_bytes_body(self): self._test_show_tenant(bytes_body=True) def test_update_tenant_with_str_body(self): self._test_update_tenant() def test_update_tenant_with_bytes_body(self): self._test_update_tenant(bytes_body=True) def test_list_tenants_with_str_body(self): self._test_list_tenants() def test_list_tenants_with_bytes_body(self): self._test_list_tenants(bytes_body=True) def test_delete_tenant(self): self.check_service_client_function( self.client.delete_tenant, 'tempest.lib.common.rest_client.RestClient.delete', {}, tenant_id="1", status=204) def test_list_tenant_users_with_str_body(self): self._test_list_tenant_users() def test_list_tenant_users_with_bytes_body(self): self._test_list_tenant_users(bytes_body=True)
stores/apps/payments/taxes.py
diassor/CollectorCity-Market-Place
135
11180890
import decimal, logging from django.db import models from shops.models import Shop from preferences.models import Preference, TaxState class TaxCalculator(): @classmethod def get_tax(cls, shop, state, city=None): try: tax_rate = TaxState.objects.filter(shop=shop).filter(state=state).get() logging.debug("Shop %s have a tax rate of %s%% for state %s" % (shop, tax_rate.tax, state)) return tax_rate.tax / 100 except TaxState.DoesNotExist: logging.debug("No tax specified for state %s on shop %s" % (state, shop)) return decimal.Decimal("0.0")
tests/data/test_mixins.py
arvindmuralie77/gradsflow
253
11180907
# Copyright (c) 2021 GradsFlow. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from gradsflow.data.mixins import DataMixin from gradsflow.utility import default_device class DataTest(DataMixin): device = default_device() datamixin = DataTest() def test_send_to_device(): # data as primitive assert datamixin.send_to_device(1) == 1 assert datamixin.send_to_device(1.5) == 1.5 # data as Tensor x = torch.randn(4, 1) assert isinstance(datamixin.send_to_device(x), torch.Tensor) # data as list batch = torch.randn(4, 16), [1] * 4 assert datamixin.send_to_device(batch) # data as dict batch = {"inputs": torch.randn(4, 16), "targets": [1] * 4} assert datamixin.send_to_device(batch) # catch error with pytest.raises(NotImplementedError): datamixin.send_to_device(set(batch))
clients/python_client/simplest_client.py
jnclt/simple_tensorflow_serving
771
11180925
<reponame>jnclt/simple_tensorflow_serving<filename>clients/python_client/simplest_client.py #!/usr/bin/env python # -*- encoding: utf-8 -*- import requests def main(): endpoint = "http://127.0.0.1:8500" print("Request for raw model signature") input_data = {"data": {"keys": [1, 2]}} result = requests.post(endpoint, json=input_data) print(result.text) print("Request with preprocess") input_data = {"preprocess": True, "data": {"keys": ["你好世界", "机器学习预处理模型"]}} result = requests.post(endpoint, json=input_data) print(result.text) print("Request with preprocess and postprocess") input_data = { "preprocess": True, "postprocess": True, "data": { "keys": ["你好世界", "机器学习预处理模型"] } } result = requests.post(endpoint, json=input_data) print(result.text) if __name__ == "__main__": main()
examples/swat-s1/plc3.py
pgaulon/minicps
119
11180952
""" swat-s1 plc3 """ from minicps.devices import PLC from utils import PLC3_DATA, STATE, PLC3_PROTOCOL from utils import PLC_SAMPLES, PLC_PERIOD_SEC from utils import IP import time PLC1_ADDR = IP['plc1'] PLC2_ADDR = IP['plc2'] PLC3_ADDR = IP['plc3'] LIT301_3 = ('LIT301', 3) class SwatPLC3(PLC): def pre_loop(self, sleep=0.1): print 'DEBUG: swat-s1 plc3 enters pre_loop' print time.sleep(sleep) def main_loop(self): """plc3 main loop. - read UF tank level from the sensor - update internal enip server """ print 'DEBUG: swat-s1 plc3 enters main_loop.' print count = 0 while(count <= PLC_SAMPLES): lit301 = float(self.get(LIT301_3)) print "DEBUG PLC3 - get lit301: %f" % lit301 self.send(LIT301_3, lit301, PLC3_ADDR) time.sleep(PLC_PERIOD_SEC) count += 1 print 'DEBUG swat plc3 shutdown' if __name__ == "__main__": # notice that memory init is different form disk init plc3 = SwatPLC3( name='plc3', state=STATE, protocol=PLC3_PROTOCOL, memory=PLC3_DATA, disk=PLC3_DATA)
src/dataloaders/prepare/eeg/constants.py
dumpmemory/state-spaces
513
11180981
INCLUDED_CHANNELS = [ "EEG FP1", "EEG FP2", "EEG F3", "EEG F4", "EEG C3", "EEG C4", "EEG P3", "EEG P4", "EEG O1", "EEG O2", "EEG F7", "EEG F8", "EEG T3", "EEG T4", "EEG T5", "EEG T6", "EEG FZ", "EEG CZ", "EEG PZ", ] INCLUDED_CHANNELS_STANFORD = [ "EEG Fp1", "EEG Fp2", "EEG F3", "EEG F4", "EEG C3", "EEG C4", "EEG P3", "EEG P4", "EEG O1", "EEG O2", "EEG F7", "EEG F8", "EEG T3", "EEG T4", "EEG T5", "EEG T6", "EEG Fz", "EEG Cz", "EEG Pz", ] FREQUENCY = 200
perma_web/perma/tests/test_urls.py
rachelaus/perma
317
11181010
from django.urls import reverse from perma.urls import urlpatterns from .utils import PermaTestCase class UrlsTestCase(PermaTestCase): def test_url_status_codes(self): """ A really simple test for 500 errors. We test all views that don't take parameters (it's not easy to guess what params they want). """ exclude = { 'archive_error': 'because it returns 500 by default' } for urlpattern in urlpatterns: if '?P<' not in urlpattern.pattern._regex \ and urlpattern.name \ and urlpattern.name not in exclude: response = self.client.get(reverse(urlpattern.name)) self.assertNotEqual(response.status_code, 500) response = self.client.post(reverse(urlpattern.name)) self.assertNotEqual(response.status_code, 500)
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/a/assignment_from_no_return.py
ciskoinch8/vimrc
463
11181032
# pylint: disable=missing-docstring def some_func(): pass def decorate(func): """Decorate *fn* to return ``self`` to enable chained method calls.""" def wrapper(self, *args, **kw): func(self, *args, **kw) return 42 return wrapper class Class: def some_method(self): pass @decorate def some_other_decorated_method(self): pass def some_other_method(self): value = self.some_method() # [assignment-from-no-return] other_value = self.some_other_decorated_method() return value + other_value VALUE = some_func() # [assignment-from-no-return] class Parent: """Parent class""" def compute(self): """This isn't supported by all child classes""" # pylint: disable=no-self-use raise ValueError('Not supported for this object') def test(self): """Test""" result = self.compute() return result class Child(Parent): """Child class""" def compute(self): """This is supported for this child class""" return 42
app/demo/countries/migrations/0018_person_time.py
sesostris/django-material-admin
270
11181074
# Generated by Django 3.0 on 2020-01-03 08:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('countries', '0017_country1_country2_country3_country4_country5_country6'), ] operations = [ migrations.AddField( model_name='person', name='time', field=models.TimeField(null=True, verbose_name='Birth Time'), ), ]
tools/mo/openvino/tools/mo/front/mxnet/crop_ext.py
ryanloney/openvino-1
1,127
11181087
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from openvino.tools.mo.front.extractor import FrontExtractorOp from openvino.tools.mo.front.mxnet.extractors.utils import get_mxnet_layer_attrs from openvino.tools.mo.ops.crop import Crop class CropFrontExtractor(FrontExtractorOp): op = 'Crop' enabled = True @classmethod def extract(cls, node): attrs = get_mxnet_layer_attrs(node.symbol_dict) offset = attrs.tuple("offset", int, ()) axis = attrs.int("num_args", 0) node_attrs = { 'axis': axis, 'offset': list(offset), 'dim': None, } Crop.update_node_stat(node, node_attrs) return cls.enabled
recommends/storages/mongodb/managers.py
coagulant/django-recommends
142
11181109
<reponame>coagulant/django-recommends from recommends.managers import DictStorageManager class MongoStorageManager(DictStorageManager): def filter_for_object(self, obj): ctype_id = self.get_ctype_id_for_obj(obj) return {'object_ctype': ctype_id, 'object_id': obj.id} def filter_for_related_object(self, related_obj): ctype_id = self.get_ctype_id_for_obj(related_obj) return {'related_object_ctype': ctype_id, 'related_object_id': related_obj.id}
data_management/importers/idaho-camera-traps.py
dnarqq/WildHack
402
11181141
# # idaho-camera-traps.py # # Prepare the Idaho Camera Traps dataset for release on LILA. # #%% Imports and constants import json import os import numpy as np import dateutil import pandas as pd import datetime import shutil from tqdm import tqdm from bson import json_util from collections import defaultdict # Multi-threading for .csv file comparison and image existence validation from multiprocessing.pool import Pool as Pool from multiprocessing.pool import ThreadPool as ThreadPool n_threads = 14 n_threads_file_copy = 20 input_base = r'i:\idfg-images' output_base = r'h:\idaho-camera-traps' output_image_base = r'j:\idaho-camera-traps-output' assert os.path.isdir(input_base) assert os.path.isdir(output_base) assert os.path.isdir(output_image_base) output_image_base_public = os.path.join(output_image_base,'public') output_image_base_private = os.path.join(output_image_base,'private') # We are going to map the original filenames/locations to obfuscated strings, but once # we've done that, we will re-use the mappings every time we run this script. force_generate_mappings = False # This is the file to which mappings get saved id_mapping_file = os.path.join(output_base,'id_mapping.json') # The maximum time (in seconds) between images within which two images are considered the # same sequence. max_gap_within_sequence = 30 # This is a two-column file, where each line is [string in the original metadata],[category name we want to map it to] category_mapping_file = os.path.join(output_base,'category_mapping.csv') # The output file, using the original strings output_json_original_strings = os.path.join(output_base,'idaho-camera-traps-original-strings.json') # The output file, using obfuscated strings for everything but filenamed output_json_remapped_ids = os.path.join(output_base,'idaho-camera-traps-remapped-ids.json') # The output file, using obfuscated strings and obfuscated filenames output_json = os.path.join(output_base,'idaho-camera-traps.json') # One time only, I ran MegaDetector on the whole dataset... megadetector_results_file = r'H:\idaho-camera-traps\idfg-2021-07-26idaho-camera-traps_detections.json' # ...then set aside any images that *may* have contained humans that had not already been # annotated as such. Those went in this folder... human_review_folder = os.path.join(output_base,'human_review') # ...and the ones that *actually* had humans (identified via manual review) got # copied to this folder... human_review_selection_folder = os.path.join(output_base,'human_review_selections') # ...which was enumerated to this text file, which is a manually-curated list of # images that were flagged as human. human_review_list = os.path.join(output_base,'human_flagged_images.txt') # Unopinionated .json conversion of the .csv metadata sequence_info_cache = os.path.join(output_base,'sequence_info.json') valid_opstates = ['normal','maintenance','snow on lens','foggy lens','foggy weather', 'malfunction','misdirected','snow on lense','poop/slobber','sun','tilted','vegetation obstruction'] opstate_mappings = {'snow on lense':'snow on lens','poop/slobber':'lens obscured','maintenance':'human'} survey_species_presence_columns = ['elkpresent','deerpresent','prongpresent'] presence_to_count_columns = { 'otherpresent':['MooseAntlerless','MooseCalf','MooseOther','MooseBull','MooseUnkn','BlackBearAdult','BlackBearCub','LionAdult', 'LionKitten','WolfAdult','WolfPup','CattleCow','CattleCalf','other'], 'elkpresent':['ElkSpike','ElkAntlerless','ElkCalf','ElkRaghorn','ElkMatBull','ElkUnkn','ElkPedNub'], 'deerpresent':['MDbuck','MDantlerless','MDfawn','WTDbuck','WTDantlerless','WTDfawn','WTDunkn','MDunkn'], 'prongpresent':['PronghornBuck','PronghornFawn','PHunkn'] } required_columns = ['File','Folder','Date','Time','otherpresent','other','otherwhat','opstate'] expected_presence_columns = ['elkpresent','deerpresent','prongpresent','humanpresent','otherpresent'] expected_count_columns = set() for presence_column in presence_to_count_columns.keys(): count_columns = presence_to_count_columns[presence_column] for count_column in count_columns: expected_count_columns.add(count_column) def list_is_sorted(l): return all(l[i] <= l[i+1] for i in range(len(l)-1)) #%% List files (images + .csv) def get_files(): all_files_list = os.path.join(output_base,'all_files.json') force_file_enumeration = False if (os.path.isfile(all_files_list) and (not force_file_enumeration)): print('File list exists, bypassing enumeration') with open(all_files_list,'r') as f: all_files = json.load(f) else: from pathlib import Path all_files = [] for path in Path(input_base).rglob('*.*'): path = str(path) path = os.path.relpath(path,input_base) all_files.append(path) with open(all_files_list,'w') as f: json.dump(all_files,f,indent=1) print('Enumerated {} files'.format(len(all_files))) image_files = [s for s in all_files if (s.lower().endswith('.jpg') or s.lower().endswith('.jpeg'))] csv_files = [s for s in all_files if (\ (s.lower().endswith('.csv')) and \ ('Backups' not in s) and \ ('Metadata.csv' not in s) and \ ('ExportedDataFiles' not in s) and \ ('CSV Files' not in s) )] print('{} image files, {} .csv files'.format(len(image_files),len(csv_files))) # Ignore .csv files in folders with multiple .csv files # ...which would require some extra work to decipher. csv_files_to_ignore = [] folder_to_csv_files = defaultdict(list) # fn = csv_files[0] for fn in csv_files: folder_name = os.path.dirname(fn) folder_to_csv_files[folder_name].append(fn) for folder_name in folder_to_csv_files.keys(): if len(folder_to_csv_files[folder_name]) > 1: print('Multiple .csv files for {}:'.format(folder_name)) for csv_file in folder_to_csv_files[folder_name]: print(csv_file) csv_files_to_ignore.append(csv_file) print('') n_csv_original = len(csv_files) csv_files = [s for s in csv_files if s not in csv_files_to_ignore] print('Processing {} of {} csv files'.format(len(csv_files),n_csv_original)) return image_files,csv_files #%% Parse each .csv file into sequences (function) # csv_file = csv_files[-1] def csv_to_sequences(csv_file): print('Processing {}'.format(csv_file)) csv_file_absolute = os.path.join(input_base,csv_file) # os.startfile(csv_file_absolute) sequences = [] # survey = csv_file.split('\\')[0] # Sample paths from which we need to derive locations: # # St.Joe_elk\AM99\Trip 1\100RECNX\TimelapseData.csv # Beaverhead_elk\AM34\Trip 1\100RECNX\TimelapseData.csv # # ClearCreek_mustelids\Winter2015-16\FS-001-P\FS-001-P.csv # ClearCreek_mustelids\Summer2015\FS-001\FS-001.csv # ClearCreek_mustelids\Summer2016\IDFG-016\IDFG-016.csv # # I:\idfg-images\ClearCreek_mustelids\Summer2016\IDFG-017b # I:\idfg-images\ClearCreek_mustelids\Summer2016\IDFG-017a if 'St.Joe_elk' in csv_file or 'Beaverhead_elk' in csv_file: location_name = '_'.join(csv_file.split('\\')[0:2]).replace(' ','') else: assert 'ClearCreek_mustelids' in csv_file tokens = csv_file.split('\\') assert 'FS-' in tokens[2] or 'IDFG-' in tokens[2] location_name = '_'.join([tokens[0],tokens[2]]).replace('-P','') if location_name.endswith('017a') or location_name.endswith('017b'): location_name = location_name[:-1] # Load .csv file df = pd.read_csv(csv_file_absolute) df['datetime'] = None df['seq_id'] = None df['synthetic_frame_number'] = None # Validate the opstate column opstates = set(df['opstate']) for s in opstates: if isinstance(s,str): s = s.strip() if len(s) > 0: assert s in valid_opstates,'Invalid opstate: {}'.format(s) column_names = list(df.columns) for s in required_columns: assert s in column_names count_columns = [s for s in column_names if s in expected_count_columns] presence_columns = [s for s in column_names if s.endswith('present')] for s in presence_columns: if s not in expected_presence_columns: assert 'Unexpected presence column {} in {}'.format(s,csv_file) for s in expected_presence_columns: if s not in presence_columns: assert 'Missing presence column {} in {}'.format(s,csv_file) if False: for s in expected_count_columns: if s not in count_columns: print('Missing count column {} in {}'.format(s,csv_file)) ## Create datetimes # print('Creating datetimes') # i_row = 0; row = df.iloc[i_row] for i_row,row in df.iterrows(): date = row['Date'] time = row['Time'] datestring = date + ' ' + time dt = dateutil.parser.parse(datestring) assert dt.year >= 2015 and dt.year <= 2019 df.loc[i_row,'datetime'] = dt # Make sure data are sorted chronologically # # In odd circumstances, they are not... so sort them first, but warn datetimes = list(df['datetime']) if not list_is_sorted(datetimes): print('Datetimes not sorted for {}'.format(csv_file)) df = df.sort_values('datetime') df.reset_index(drop=True, inplace=True) datetimes = list(df['datetime']) assert list_is_sorted(datetimes) # Debugging when I was trying to see what was up with the unsorted dates if False: for i in range(0,len(datetimes)-1): dt = datetimes[i+1] prev_dt = datetimes[i] delta = dt - prev_dt assert delta >= datetime.timedelta(0) ## Parse into sequences # print('Creating sequences') current_sequence_id = None next_frame_number = 0 previous_datetime = None sequence_id_to_rows = defaultdict(list) # i_row = 0; row = df.iloc[i_row] for i_row,row in df.iterrows(): dt = row['datetime'] assert dt is not None and isinstance(dt,datetime.datetime) # Start a new sequence if: # # * This image has no timestamp # * This image has a frame number of zero # * We have no previous image timestamp # if previous_datetime is None: delta = None else: delta = (dt - previous_datetime).total_seconds() # Start a new sequence if necessary if delta is None or delta > max_gap_within_sequence: next_frame_number = 0 current_sequence_id = location_name + '_seq_' + str(dt) # str(uuid.uuid1()) assert current_sequence_id is not None sequence_id_to_rows[current_sequence_id].append(i_row) df.loc[i_row,'seq_id'] = current_sequence_id df.loc[i_row,'synthetic_frame_number'] = next_frame_number next_frame_number = next_frame_number + 1 previous_datetime = dt # ...for each row location_sequences = list(set(list(df['seq_id']))) location_sequences.sort() inconsistent_sequences = [] ## Parse labels for each sequence # sequence_id = location_sequences[0] for sequence_id in location_sequences: sequence_row_indices = sequence_id_to_rows[sequence_id] assert len(sequence_row_indices) > 0 # Row indices in a sequence should be adjacent if len(sequence_row_indices) > 1: d = np.diff(sequence_row_indices) assert(all(d==1)) # sequence_df = df[df['seq_id']==sequence_id] sequence_df = df.iloc[sequence_row_indices] ## Determine what's present presence_columns_marked = [] survey_species = [] other_species = [] # Be conservative; assume humans are present in all maintenance images opstates = set(sequence_df['opstate']) assert all([ ( (isinstance(s,float)) or (len(s.strip())== 0) or (s.strip() in valid_opstates)) for s in opstates]),\ 'Invalid optstate in: {}'.format(' | '.join(opstates)) for presence_column in presence_columns: presence_values = list(sequence_df[presence_column]) # The presence columns are *almost* always identical for all images in a sequence single_presence_value = (len(set(presence_values)) == 1) # assert single_presence_value if not single_presence_value: # print('Warning: presence value for {} is inconsistent for {}'.format(presence_column,sequence_id)) inconsistent_sequences.append(sequence_id) if any(presence_values): presence_columns_marked.append(presence_column) # ...for each presence column # Tally up the standard (survey) species survey_species = [s.replace('present','') for s in presence_columns_marked if s != 'otherpresent'] for opstate in opstates: if not isinstance(opstate,str): continue opstate = opstate.strip() if len(opstate) == 0: continue if opstate in opstate_mappings: opstate = opstate_mappings[opstate] if (opstate != 'normal') and (opstate not in survey_species): survey_species.append(opstate) # If no presence columns are marked, all counts should be zero if len(presence_columns_marked) == 0: # count_column = count_columns[0] for count_column in count_columns: values = list(set(list(sequence_df[count_column]))) # Occasionally a count gets entered (correctly) without the presence column being marked # assert len(values) == 1 and values[0] == 0, 'Non-zero counts with no presence columns marked for sequence {}'.format(sequence_id) if (not(len(values) == 1 and values[0] == 0)): print('Warning: presence and counts are inconsistent for {}'.format(sequence_id)) # Handle this by virtually checking the "right" box for presence_column in presence_to_count_columns.keys(): count_columns_this_species = presence_to_count_columns[presence_column] if count_column in count_columns_this_species: if presence_column not in presence_columns_marked: presence_columns_marked.append(presence_column) # Make sure we found a match assert len(presence_columns_marked) > 0 # Handle 'other' tags if 'otherpresent' in presence_columns_marked: sequence_otherwhats = set() sequence_comments = set() for i,r in sequence_df.iterrows(): otherwhat = r['otherwhat'] if isinstance(otherwhat,str): otherwhat = otherwhat.strip() if len(otherwhat) > 0: sequence_otherwhats.add(otherwhat) comment = r['comment'] if isinstance(comment,str): comment = comment.strip() if len(comment) > 0: sequence_comments.add(comment) freetext_species = [] for s in sequence_otherwhats: freetext_species.append(s) for s in sequence_comments: freetext_species.append(s) counted_species = [] otherpresent_columns = presence_to_count_columns['otherpresent'] # column_name = otherpresent_columns[0] for column_name in otherpresent_columns: if column_name in sequence_df and column_name != 'other': column_counts = list(sequence_df[column_name]) column_count_positive = any([c > 0 for c in column_counts]) if column_count_positive: # print('Found non-survey counted species column: {}'.format(column_name)) counted_species.append(column_name) # ...for each non-empty presence column # Very rarely, the "otherpresent" column is checked, but no more detail is available if not ( (len(freetext_species) > 0) or (len(counted_species) > 0) ): other_species.append('unknown') other_species += freetext_species other_species += counted_species # ...handling non-survey species all_species = other_species + survey_species # Build the sequence data images = [] # i_row = 0; row = sequence_df.iloc[i_row] for i_row,row in sequence_df.iterrows(): im = {} # Only one folder used a single .csv file for two subfolders if ('RelativePath' in row) and (isinstance(row['RelativePath'],str)) and (len(row['RelativePath'].strip()) > 0): assert 'IDFG-028' in location_name im['file_name'] = os.path.join(row['RelativePath'],row['File']) else: im['file_name'] = row['File'] im['datetime'] = row['datetime'] images.append(im) sequence = {} sequence['csv_source'] = csv_file sequence['sequence_id'] = sequence_id sequence['images'] = images sequence['species_present'] = all_species sequence['location'] = location_name sequences.append(sequence) # ...for each sequence return sequences # ...def csv_to_sequences() #%% Parse each .csv file into sequences (loop) if __name__ == "__main__": #%% import multiprocessing multiprocessing.freeze_support() image_files,csv_files = get_files() #%% if n_threads == 1: # i_file = -1; csv_file = csv_files[i_file] sequences_by_file = [] for i_file,csv_file in enumerate(csv_files): print('Processing file {} of {}'.format(i_file,len(csv_files))) sequences = csv_to_sequences(csv_file) sequences_by_file.append(sequences) else: pool = Pool(n_threads) sequences_by_file = list(pool.imap(csv_to_sequences,csv_files)) #%% Save sequence data with open(sequence_info_cache,'w') as f: json.dump(sequences_by_file,f,indent=2,default=json_util.default) #%% Load sequence data if False: #%% with open(sequence_info_cache,'r') as f: sequences_by_file = json.load(f,object_hook=json_util.object_hook) #%% Validate file mapping (based on the existing enumeration) missing_images = [] image_files_set = set(image_files) n_images_in_sequences = 0 sequence_ids = set() # sequences = sequences_by_file[0] for i_sequences,sequences in enumerate(tqdm(sequences_by_file)): assert len(sequences) > 0 csv_source = sequences[0]['csv_source'] csv_file_absolute = os.path.join(input_base,csv_source) csv_folder = os.path.dirname(csv_file_absolute) assert os.path.isfile(csv_file_absolute) # sequence = sequences[0] for i_sequence,sequence in enumerate(sequences): assert sequence['csv_source'] == csv_source sequence_id = sequence['sequence_id'] if sequence_id in sequence_ids: print('Warning: duplicate sequence for {}, creating new sequence'.format(sequence_id)) sequence['sequence_id'] = sequence['sequence_id'] + '_' + str(i_sequences) + '_' + str(i_sequence) sequence_id = sequence['sequence_id'] assert sequence_id not in sequence_ids sequence_ids.add(sequence_id) species_present = sequence['species_present'] images = sequence['images'] for im in images: n_images_in_sequences += 1 image_file_relative = im['file_name'] # Actually, one folder has relative paths # assert '\\' not in image_file_relative and '/' not in image_file_relative image_file_absolute = os.path.join(csv_folder,image_file_relative) image_file_container_relative = os.path.relpath(image_file_absolute,input_base) # os.startfile(csv_folder) # assert os.path.isfile(image_file_absolute) # found_file = os.path.isfile(image_file_absolute) found_file = image_file_container_relative in image_files_set if not found_file: print('Warning: can\'t find image {}'.format(image_file_absolute)) missing_images.append(image_file_absolute) # ...for each image # ...for each sequence # ...for each .csv file print('{} of {} images missing ({} on disk)'.format(len(missing_images),n_images_in_sequences, len(image_files))) #%% Load manual category mappings with open(category_mapping_file,'r') as f: category_mapping_lines = f.readlines() category_mapping_lines = [s.strip() for s in category_mapping_lines] category_mappings = {} for s in category_mapping_lines: tokens = s.split(',',1) category_name = tokens[0].strip() category_value = tokens[1].strip().replace('"','').replace(',','+') assert ',' not in category_name assert ',' not in category_value # The second column is blank when the first column already represents the category name if len(category_value) == 0: category_value = category_name category_mappings[category_name] = category_value #%% Convert to CCT .json (original strings) human_flagged_images = [] with open(human_review_list,'r') as f: human_flagged_images = f.readlines() human_flagged_images = [s.strip().replace('/','\\') for s in human_flagged_images] human_flagged_images = set(human_flagged_images) print('Read {} human flagged images'.format(len(human_flagged_images))) annotations = [] image_id_to_image = {} category_name_to_category = {} # Force the empty category to be ID 0 empty_category_id = 0 empty_category = {} empty_category['id'] = empty_category_id empty_category['name'] = 'empty' category_name_to_category['empty'] = empty_category human_category_id = 1 human_category = {} human_category['id'] = human_category_id human_category['name'] = 'human' category_name_to_category['human'] = human_category next_category_id = 2 annotation_ids = set() if False: target_folder = r'ClearCreek_mustelids\Summer2015\FS-035' for sequences in sequences_by_file: if target_folder in sequences[0]['csv_source']: break # For each .csv file... # # sequences = sequences_by_file[0] for sequences in tqdm(sequences_by_file): # For each sequence... # # sequence = sequences[0] for sequence in sequences: species_present = sequence['species_present'] species_present = [s.lower().strip().replace(',',';') for s in species_present] sequence_images = sequence['images'] location = sequence['location'].lower().strip() sequence_id = sequence['sequence_id'] csv_source = sequence['csv_source'] csv_folder_relative = os.path.dirname(csv_source) sequence_category_ids = set() # Find categories for this image if len(species_present) == 0: sequence_category_ids.add(0) assert category_name_to_category['empty']['id'] == list(sequence_category_ids)[0] else: # When 'unknown' is used in combination with another label, use that # label; the "unknown" here doesn't mean "another unknown species", it means # there is some other unknown property about the main species. if 'unknown' in species_present and len(species_present) > 1: assert all([((s in category_mappings) or (s in valid_opstates) or (s in opstate_mappings.values()))\ for s in species_present if s != 'unknown']) species_present = [s for s in species_present if s != 'unknown'] # category_name_string = species_present[0] for category_name_string in species_present: # This piece of text had a lot of complicated syntax in it, and it would have # been too complicated to handle in a general way if 'coyotoes' in category_name_string: # print('Ignoring category {}'.format(category_name_string)) continue if category_name_string not in category_mappings: assert category_name_string in valid_opstates or category_name_string in opstate_mappings.values() else: category_name_string = category_mappings[category_name_string] assert ',' not in category_name_string category_names = category_name_string.split('+') assert len(category_names) <= 2 # Don't process redundant labels category_names = set(category_names) # category_name = category_names[0] for category_name in category_names: if category_name == 'ignore': continue category_name = category_name.replace('"','') # If we've seen this category before... if category_name in category_name_to_category: category = category_name_to_category[category_name] category_id = category['id'] # If this is a new category... else: # print('Adding new category for {}'.format(category_name)) category_id = next_category_id category = {} category['id'] = category_id category['name'] = category_name category_name_to_category[category_name] = category next_category_id += 1 sequence_category_ids.add(category_id) # ...for each category (inner) # ...for each category (outer) # ...if we do/don't have species in this sequence # We should have at least one category assigned (which may be "empty" or "unknown") assert len(sequence_category_ids) > 0 # assert len(sequence_category_ids) > 0 # Was any image in this sequence manually flagged as human? for i_image,im in enumerate(sequence_images): file_name_relative = os.path.join(csv_folder_relative,im['file_name']) if file_name_relative in human_flagged_images: # print('Flagging sequence {} as human based on manual review'.format(sequence_id)) assert human_category_id not in sequence_category_ids sequence_category_ids.add(human_category_id) break # For each image in this sequence... # # i_image = 0; im = images[i_image] for i_image,im in enumerate(sequence_images): image_id = sequence_id + '_' + im['file_name'] assert image_id not in image_id_to_image output_im = {} output_im['id'] = image_id output_im['file_name'] = os.path.join(csv_folder_relative,im['file_name']) output_im['seq_id'] = sequence_id output_im['seq_num_frames'] = len(sequence) output_im['frame_num'] = i_image output_im['datetime'] = str(im['datetime']) output_im['location'] = location image_id_to_image[image_id] = output_im # Create annotations for this image for i_ann,category_id in enumerate(sequence_category_ids): ann = {} ann['id'] = 'ann_' + image_id + '_' + str(i_ann) assert ann['id'] not in annotation_ids annotation_ids.add(ann['id']) ann['image_id'] = image_id ann['category_id'] = category_id ann['sequence_level_annotation'] = True annotations.append(ann) # ...for each image in this sequence # ...for each sequence # ...for each .csv file images = list(image_id_to_image.values()) categories = list(category_name_to_category.values()) print('Loaded {} annotations in {} categories for {} images'.format( len(annotations),len(categories),len(images))) # Verify that all images have annotations image_id_to_annotations = defaultdict(list) # ann = ict_data['annotations'][0] # For debugging only categories_to_counts = defaultdict(int) for ann in tqdm(annotations): image_id_to_annotations[ann['image_id']].append(ann) categories_to_counts[ann['category_id']] = categories_to_counts[ann['category_id']] + 1 for im in tqdm(images): image_annotations = image_id_to_annotations[im['id']] assert len(image_annotations) > 0 #%% Create output (original strings) info = {} info['contributor'] = 'Idaho Department of Fish and Game' info['description'] = 'Idaho Camera traps' info['version'] = '2021.07.19' output_data = {} output_data['images'] = images output_data['annotations'] = annotations output_data['categories'] = categories output_data['info'] = info with open(output_json_original_strings,'w') as f: json.dump(output_data,f,indent=1) #%% Validate .json file from data_management.databases import sanity_check_json_db options = sanity_check_json_db.SanityCheckOptions() options.baseDir = input_base options.bCheckImageSizes = False options.bCheckImageExistence = False options.bFindUnusedImages = False _, _, _ = sanity_check_json_db.sanity_check_json_db(output_json_original_strings, options) #%% Preview labels from visualization import visualize_db viz_options = visualize_db.DbVizOptions() viz_options.num_to_visualize = 1000 viz_options.trim_to_images_with_bboxes = False viz_options.add_search_links = False viz_options.sort_by_filename = False viz_options.parallelize_rendering = True viz_options.include_filename_links = True viz_options.classes_to_exclude = ['empty','deer','elk'] html_output_file, _ = visualize_db.process_images(db_path=output_json_original_strings, output_dir=os.path.join( output_base,'preview'), image_base_dir=input_base, options=viz_options) os.startfile(html_output_file) #%% Look for humans that were found by MegaDetector that haven't already been identified as human # This whole step only needed to get run once if False: pass #%% human_confidence_threshold = 0.5 # Load MD results with open(megadetector_results_file,'r') as f: md_results = json.load(f) # Get a list of filenames that MD tagged as human human_md_categories =\ [category_id for category_id in md_results['detection_categories'] if \ ((md_results['detection_categories'][category_id] == 'person') or \ (md_results['detection_categories'][category_id] == 'vehicle'))] assert len(human_md_categories) == 2 # im = md_results['images'][0] md_human_images = set() for im in md_results['images']: if 'detections' not in im: continue if im['max_detection_conf'] < human_confidence_threshold: continue for detection in im['detections']: if detection['category'] not in human_md_categories: continue elif detection['conf'] < human_confidence_threshold: continue else: md_human_images.add(im['file']) break # ...for each detection # ...for each image print('MD found {} potential human images (of {})'.format(len(md_human_images),len(md_results['images']))) # Map images to annotations in ICT with open(output_json_original_strings,'r') as f: ict_data = json.load(f) category_id_to_name = {c['id']:c['name'] for c in categories} image_id_to_annotations = defaultdict(list) # ann = ict_data['annotations'][0] for ann in tqdm(ict_data['annotations']): image_id_to_annotations[ann['image_id']].append(ann) human_ict_categories = ['human'] manual_human_images = set() # For every image # im = ict_data['images'][0] for im in tqdm(ict_data['images']): # Does this image already have a human annotation? manual_human = False annotations = image_id_to_annotations[im['id']] assert len(annotations) > 0 for ann in annotations: category_name = category_id_to_name[ann['category_id']] if category_name in human_ict_categories: manual_human_images.add(im['file_name'].replace('\\','/')) # ...for each annotation # ...for each image print('{} images identified as human in source metadata'.format(len(manual_human_images))) missing_human_images = [] for fn in md_human_images: if fn not in manual_human_images: missing_human_images.append(fn) print('{} potentially untagged human images'.format(len(missing_human_images))) #%% Copy images for review to a new folder os.makedirs(human_review_folder,exist_ok=True) missing_human_images.sort() # fn = missing_human_images[0] for i_image,fn in enumerate(tqdm(missing_human_images)): input_fn_absolute = os.path.join(input_base,fn).replace('\\','/') assert os.path.isfile(input_fn_absolute) output_path = os.path.join(human_review_folder,str(i_image).zfill(4) + '_' + fn.replace('/','~')) shutil.copyfile(input_fn_absolute,output_path) #%% Manual step... # Copy any images from that list that have humans in them to... human_review_selection_folder = r'H:\idaho-camera-traps\human_review_selections' assert os.path.isdir(human_review_selection_folder) #%% Create a list of the images we just manually flagged human_tagged_filenames = os.listdir(human_review_selection_folder) human_tagged_relative_paths = [] # fn = human_tagged_filenames[0] for fn in human_tagged_filenames: # E.g. '0000_Beaverhead_elk~AM174~Trip 1~100RECNX~IMG_1397.JPG' relative_path = fn[5:].replace('~','/') human_tagged_relative_paths.append(relative_path) with open(human_review_list,'w') as f: for s in human_tagged_relative_paths: f.write(s + '\n') #%% Translate location, image, sequence IDs # Load mappings if available if (not force_generate_mappings) and (os.path.isfile(id_mapping_file)): print('Loading ID mappings from {}'.format(id_mapping_file)) with open(id_mapping_file,'r') as f: mappings = json.load(f) image_id_mappings = mappings['image_id_mappings'] annotation_id_mappings = mappings['annotation_id_mappings'] location_id_mappings = mappings['location_id_mappings'] sequence_id_mappings = mappings['sequence_id_mappings'] else: # Generate mappings mappings = {} next_location_id = 0 location_id_string_to_n_sequences = defaultdict(int) location_id_string_to_n_images = defaultdict(int) image_id_mappings = {} annotation_id_mappings = {} location_id_mappings = {} sequence_id_mappings = {} for im in tqdm(images): # If we've seen this location before... if im['location'] in location_id_mappings: location_id = location_id_mappings[im['location']] else: # Otherwise assign a string-formatted int as the ID location_id = str(next_location_id) location_id_mappings[im['location']] = location_id next_location_id += 1 # If we've seen this sequence before... if im['seq_id'] in sequence_id_mappings: sequence_id = sequence_id_mappings[im['seq_id']] else: # Otherwise assign a string-formatted int as the ID n_sequences_this_location = location_id_string_to_n_sequences[location_id] sequence_id = 'loc_{}_seq_{}'.format(location_id.zfill(4),str(n_sequences_this_location).zfill(6)) sequence_id_mappings[im['seq_id']] = sequence_id n_sequences_this_location += 1 location_id_string_to_n_sequences[location_id] = n_sequences_this_location assert im['id'] not in image_id_mappings # Assign an image ID n_images_this_location = location_id_string_to_n_images[location_id] image_id_mappings[im['id']] = 'loc_{}_im_{}'.format(location_id.zfill(4),str(n_images_this_location).zfill(6)) n_images_this_location += 1 location_id_string_to_n_images[location_id] = n_images_this_location # ...for each image # Assign annotation mappings for i_ann,ann in enumerate(tqdm(annotations)): assert ann['image_id'] in image_id_mappings assert ann['id'] not in annotation_id_mappings annotation_id_mappings[ann['id']] = 'ann_{}'.format(str(i_ann).zfill(8)) mappings['image_id_mappings'] = image_id_mappings mappings['annotation_id_mappings'] = annotation_id_mappings mappings['location_id_mappings'] = location_id_mappings mappings['sequence_id_mappings'] = sequence_id_mappings # Save mappings with open(id_mapping_file,'w') as f: json.dump(mappings,f,indent=2) print('Saved ID mappings to {}'.format(id_mapping_file)) # Back this file up, lest we should accidentally re-run this script with force_generate_mappings = True # and overwrite the mappings we used. datestr = str(datetime.datetime.now()).replace(':','-') backup_file = id_mapping_file.replace('.json','_' + datestr + '.json') shutil.copyfile(id_mapping_file,backup_file) # ...if we are/aren't re-generating mappings #%% Apply mappings for im in images: im['id'] = image_id_mappings[im['id']] im['seq_id'] = sequence_id_mappings[im['seq_id']] im['location'] = location_id_mappings[im['location']] for ann in annotations: ann['id'] = annotation_id_mappings[ann['id']] ann['image_id'] = image_id_mappings[ann['image_id']] print('Applied mappings') #%% Write new dictionaries (modified strings, original files) output_data = {} output_data['images'] = images output_data['annotations'] = annotations output_data['categories'] = categories output_data['info'] = info with open(output_json_remapped_ids,'w') as f: json.dump(output_data,f,indent=2) #%% Validate .json file (modified strings, original files) from data_management.databases import sanity_check_json_db options = sanity_check_json_db.SanityCheckOptions() options.baseDir = input_base options.bCheckImageSizes = False options.bCheckImageExistence = False options.bFindUnusedImages = False _, _, _ = sanity_check_json_db.sanity_check_json_db(output_json_remapped_ids, options) #%% Preview labels (original files) from visualization import visualize_db viz_options = visualize_db.DbVizOptions() viz_options.num_to_visualize = 1000 viz_options.trim_to_images_with_bboxes = False viz_options.add_search_links = False viz_options.sort_by_filename = False viz_options.parallelize_rendering = True viz_options.include_filename_links = True # viz_options.classes_to_exclude = ['empty','deer','elk'] # viz_options.classes_to_include = ['bobcat'] viz_options.classes_to_include = [viz_options.multiple_categories_tag] html_output_file, _ = visualize_db.process_images(db_path=output_json_remapped_ids, output_dir=os.path.join( output_base,'preview'), image_base_dir=input_base, options=viz_options) os.startfile(html_output_file) #%% Copy images to final output folder (prep) force_copy = False with open(output_json_remapped_ids,'r') as f: d = json.load(f) images = d['images'] private_categories = ['human','domestic dog','vehicle'] private_image_ids = set() category_id_to_name = {c['id']:c['name'] for c in d['categories']} # ann = d['annotations'][0] for ann in d['annotations']: category_name = category_id_to_name[ann['category_id']] if category_name in private_categories: private_image_ids.add(ann['image_id']) print('Moving {} of {} images to the private folder'.format(len(private_image_ids),len(images))) def process_image(im): input_relative_path = im['file_name'] input_absolute_path = os.path.join(input_base,input_relative_path) if not os.path.isfile(input_absolute_path): print('Warning: file {} is not available'.format(input_absolute_path)) return location = im['location'] image_id = im['id'] location_folder = 'loc_' + location.zfill(4) assert location_folder in image_id output_relative_path = location_folder + '/' + image_id + '.jpg' # Is this a public or private image? private_image = (image_id in private_image_ids) # Generate absolute path if private_image: output_absolute_path = os.path.join(output_image_base_private,output_relative_path) else: output_absolute_path = os.path.join(output_image_base_public,output_relative_path) # Copy to output output_dir = os.path.dirname(output_absolute_path) os.makedirs(output_dir,exist_ok=True) if force_copy or (not os.path.isfile(output_absolute_path)): shutil.copyfile(input_absolute_path,output_absolute_path) # Update the filename reference im['file_name'] = output_relative_path # ...def process_image(im) #%% Copy images to final output folder (execution) # For each image if n_threads_file_copy == 1: # im = images[0] for im in tqdm(images): process_image(im) else: pool = ThreadPool(n_threads_file_copy) pool.map(process_image,images) print('Finished copying, writing .json output') # Write output .json with open(output_json,'w') as f: json.dump(d,f,indent=1) #%% Make sure the right number of images got there from pathlib import Path all_output_files = [] all_output_files_list = os.path.join(output_base,'all_output_files.json') for path in Path(output_image_base).rglob('*.*'): path = str(path) path = os.path.relpath(path,output_image_base) all_output_files.append(path) with open(all_output_files_list,'w') as f: json.dump(all_output_files,f,indent=1) print('Enumerated {} output files (of {} images)'.format(len(all_output_files),len(images))) #%% Validate .json file (final filenames) from data_management.databases import sanity_check_json_db options = sanity_check_json_db.SanityCheckOptions() options.baseDir = input_base options.bCheckImageSizes = False options.bCheckImageExistence = False options.bFindUnusedImages = False _, _, _ = sanity_check_json_db.sanity_check_json_db(output_json, options) #%% Preview labels (final filenames) from visualization import visualize_db viz_options = visualize_db.DbVizOptions() viz_options.num_to_visualize = 1500 viz_options.trim_to_images_with_bboxes = False viz_options.add_search_links = False viz_options.sort_by_filename = False viz_options.parallelize_rendering = True viz_options.include_filename_links = True # viz_options.classes_to_exclude = ['empty','deer','elk'] viz_options.classes_to_include = ['bear','mountain lion'] # viz_options.classes_to_include = ['horse'] # viz_options.classes_to_include = [viz_options.multiple_categories_tag] # viz_options.classes_to_include = ['human','vehicle','domestic dog'] html_output_file, _ = visualize_db.process_images(db_path=output_json, output_dir=os.path.join( output_base,'final-preview-01'), image_base_dir=output_image_base_public, options=viz_options) os.startfile(html_output_file) #%% Create zipfiles #%% List public files from pathlib import Path all_public_output_files = [] all_public_output_files_list = os.path.join(output_base,'all_public_output_files.json') if not os.path.isfile(all_public_output_files_list): for path in Path(output_image_base_public).rglob('*.*'): path = str(path) path = os.path.relpath(path,output_image_base) all_public_output_files.append(path) with open(all_public_output_files_list,'w') as f: json.dump(all_public_output_files,f,indent=1) else: with open(all_public_output_files_list,'r') as f: all_public_output_files = json.load(f) print('Enumerated {} public output files'.format(len(all_public_output_files))) #%% Find the size of each file filename_to_size = {} all_public_output_sizes_list = os.path.join(output_base,'all_public_output_sizes.json') if not os.path.isfile(all_public_output_sizes_list): # fn = all_public_output_files[0] for fn in tqdm(all_public_output_files): p = os.path.join(output_image_base,fn) assert os.path.isfile(p) filename_to_size[fn] = os.path.getsize(p) with open(all_public_output_sizes_list,'w') as f: json.dump(filename_to_size,f,indent=1) else: with open(all_public_output_sizes_list,'r') as f: filename_to_size = json.load(f) assert len(filename_to_size) == len(all_public_output_files) #%% Split into chunks of approximately-equal size import humanfriendly total_size = sum(filename_to_size.values()) print('{} in {} files'.format(humanfriendly.format_size(total_size),len(all_public_output_files))) bytes_per_part = 320e9 file_lists = [] current_file_list = [] n_bytes_current_file_list = 0 for fn in all_public_output_files: size = filename_to_size[fn] current_file_list.append(fn) n_bytes_current_file_list += size if n_bytes_current_file_list > bytes_per_part: file_lists.append(current_file_list) current_file_list = [] n_bytes_current_file_list = 0 # ...for each file file_lists.append(current_file_list) assert sum([len(l) for l in file_lists]) == len(all_public_output_files) print('List sizes:') for l in file_lists: print(len(l)) #%% Create a zipfile for each chunk from zipfile import ZipFile import zipfile import os def create_zipfile(i_file_list): file_list = file_lists[i_file_list] zipfile_name = os.path.join('k:\\idaho-camera-traps-images.part_{}.zip'.format(i_file_list)) print('Processing archive {} to file {}'.format(i_file_list,zipfile_name)) with ZipFile(zipfile_name, 'w') as zipObj: for filename_relative in file_list: assert filename_relative.startswith('public') filename_absolute = os.path.join(output_image_base,filename_relative) zipObj.write(filename_absolute.replace('\\','/'), filename_relative, compress_type=zipfile.ZIP_STORED) # ...for each filename # with ZipFile() # ...def create_zipfile() # i_file_list = 0; file_list = file_lists[i_file_list] n_zip_threads = 1 # len(file_lists) if n_zip_threads == 1: for i_file_list in range(0,len(file_lists)): create_zipfile(i_file_list) else: pool = ThreadPool(n_zip_threads) indices = list(range(0,len(file_lists))) pool.map(create_zipfile,indices)
exercises/list-ops/example.py
kishankj/python
1,177
11181142
<gh_stars>1000+ def append(list1, list2): return concat([list1, list2]) def concat(lists): return [element for list in lists for element in list] def filter(function, list): return [item for item in list if function(item)] def length(list): return sum(1 for _ in list) def map(function, list): return [function(element) for element in list] def foldl(function, list, initial): if len(list) == 0: return initial else: return foldl(function, list[1:], function(initial, list[0])) def foldr(function, list, initial): if len(list) == 0: return initial else: return function(list[0], foldr(function, list[1:], initial)) def reverse(list): return list[::-1]
tests/test_http.py
avivazran/UnrealEnginePython
2,350
11181210
import unittest import unreal_engine as ue from unreal_engine import IHttpRequest import json class TestHttp(unittest.TestCase): def test_user_agent(self): request = IHttpRequest('GET', 'http://httpbin.org/user-agent') request.set_header('User-Agent', 'UnrealEnginePython_test') request.process_request() while request.get_status() < 2: request.tick(0.01) j = json.loads(request.get_response().get_content_as_string()) self.assertEqual(j['user-agent'], 'UnrealEnginePython_test') def test_post_data(self): request = IHttpRequest('POST', 'http://httpbin.org/post') request.set_content('test') request.process_request() while request.get_status() < 2: request.tick(0.01) response = request.get_response() self.assertEqual(response.get_response_code(), 200) j = json.loads(response.get_content_as_string()) self.assertEqual(j['form']['test'], '') def test_headers(self): request = IHttpRequest() request.set_header('One', 'Two') request.set_header('Test1', 'Test2') self.assertEqual(request.get_all_headers(), ['One: Two', 'Test1: Test2']) def test_get_url(self): request = IHttpRequest() self.assertEqual(request.get_url(), '') request.set_url('http://unrealengine.com') self.assertEqual(request.get_url(), 'http://unrealengine.com') def test_get_url_parameter(self): request = IHttpRequest() request.set_url('http://unrealengine.com/?test=17&bar=30') self.assertEqual(request.get_url_parameter('bar'), '30') # fail ! (maybe a bug ?) #self.assertEqual(request.get_url_parameter('test'), '17') if __name__ == '__main__': unittest.main(exit=False)
test/layers/test_common.py
wconnell/torchdrug
772
11181211
import unittest import torch from torch import nn from torchdrug import layers class CommonTest(unittest.TestCase): def setUp(self): self.a = torch.randn(10) self.b = torch.randn(10) self.g = torch.randn(10) def test_sequential(self): layer1 = nn.Module() layer2 = nn.Module() layer3 = nn.Module() layer1.forward = lambda a, b: (a + 1, b + 2) layer2.forward = lambda a, b: a * b layer = layers.Sequential(layer1, layer2) result = layer(self.a, self.b) truth = layer2(*layer1(self.a, self.b)) self.assertTrue(torch.allclose(result, truth), "Incorrect sequential layer") layer1.forward = lambda g, a: g + a layer2.forward = lambda b: b * 2 layer3.forward = lambda g, c: g * c layer = layers.Sequential(layer1, layer2, layer3, global_args=("g",)) result = layer(self.g, self.a) truth = layer3(self.g, layer2(layer1(self.g, self.a))) self.assertTrue(torch.allclose(result, truth), "Incorrect sequential layer") layer1.forward = lambda a: {"b": a + 1, "c": a + 2} layer2.forward = lambda b: b * 2 layer = layers.Sequential(layer1, layer2, allow_unused=True) result = layer(self.a) truth = layer2(layer1(self.a)["b"]) self.assertTrue(torch.allclose(result, truth), "Incorrect sequential layer") layer1.forward = lambda g, a: {"g": g + 1, "b": a + 2} layer2.forward = lambda g, b: g * b layer = layers.Sequential(layer1, layer2, global_args=("g",)) result = layer(self.g, self.a) truth = layer2(**layer1(self.g, self.a)) self.assertTrue(torch.allclose(result, truth), "Incorrect sequential layer") if __name__ == "__main__": unittest.main()
entity/cards/LETL_037H/LETL_282.py
x014/lushi_script
102
11181217
# -*- coding: utf-8 -*- from hearthstone.entities import Entity from entity.spell_entity import SpellEntity class LETL_282(SpellEntity): """ 顶级捕食者5 <b>攻击</b>生命值最低的敌人。<b>击杀:</b>重复此效果。 """ def __init__(self, entity: Entity): super().__init__(entity) self.damage = 0 self.range = -1 self.is_attack = 1 def play(self, game, hero, target): # 伤害为攻击伤害 damage = hero.dmg # 攻击生命最低 while True: h = game.find_min_health(not hero.own()) if h is None: break h.got_damage(game, damage * self.damage_advantage[self.lettuce_role][h.lettuce_role]) # 自己受到伤害 hero.got_damage(game, h.dmg) if not h.is_alive(): break
ckan/migration/versions/051_a4fb0d85ced6_add_tag_vocabulary.py
ziveo/ckan
2,805
11181223
<gh_stars>1000+ # encoding: utf-8 """051 Add tag vocabulary Revision ID: a4fb0d85ced6 Revises: <KEY> Create Date: 2018-09-04 18:49:06.480087 """ from alembic import op import sqlalchemy as sa from ckan.migration import skip_based_on_legacy_engine_version # revision identifiers, used by Alembic. revision = 'a4fb0d85ced6' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): if skip_based_on_legacy_engine_version(op, __name__): return op.drop_constraint('tag_name_key', 'tag') op.create_table( 'vocabulary', sa.Column('id', sa.UnicodeText, nullable=False), sa.Column('name', sa.String(100), nullable=False) ) op.add_column('tag', sa.Column('vocabulary_id', sa.String(100))) op.create_primary_key('vocabulary_pkey', 'vocabulary', ['id']) op.create_unique_constraint( 'tag_name_vocabulary_id_key', 'tag', ['name', 'vocabulary_id'] ) op.create_foreign_key( 'tag_vocabulary_id_fkey', 'tag', 'vocabulary', ['vocabulary_id'], ['id'] ) op.create_unique_constraint('vocabulary_name_key', 'vocabulary', ['name']) def downgrade(): op.drop_constraint('tag_name_vocabulary_id_key', 'tag') op.drop_constraint('tag_vocabulary_id_fkey', 'tag') op.drop_column('tag', 'vocabulary_id') op.drop_table('vocabulary') op.create_unique_constraint('tag_name_key', 'tag', ['name'])
glue/formats/scss.py
glensc/glue
514
11181248
import os from css import CssFormat class ScssFormat(CssFormat): extension = 'scss' @classmethod def populate_argument_parser(cls, parser): group = parser.add_argument_group("SCSS format options") group.add_argument("--scss", dest="scss_dir", nargs='?', const=True, default=os.environ.get('GLUE_SCSS', False), metavar='DIR', help="Generate SCSS files and optionally where") group.add_argument("--scss-template", dest="scss_template", default=os.environ.get('GLUE_SCSS_TEMPLATE', None), metavar='DIR', help="Template to use to generate the SCSS output.")
app/core/admin/forms.py
tutengfei/flaskblog
204
11181272
from wtforms import form from wtforms import StringField, PasswordField, BooleanField from wtforms.validators import DataRequired from wtforms import validators from werkzeug.security import generate_password_hash, check_password_hash import hashlib from app.core.models import db, User class LoginForm(form.Form): username = StringField('username', validators=[DataRequired()]) password = PasswordField('password', validators=[DataRequired()]) def validate_username(self, field): user = self.get_user() if user is None: raise validators.ValidationError('Invalid user') # we're comparing the plaintext pw with the the hash from the db if not check_password_hash(user.password, self.password.data): # to compare plain text passwords use # if user.password != self.password.data: raise validators.ValidationError('Invalid password') def get_user(self): return db.session.query(User).filter_by(user_name=self.username.data).first()
explorer/urls.py
Patil2099/django-sql-explorer
1,729
11181275
from django.urls import path, re_path from explorer.views import ( QueryView, CreateQueryView, PlayQueryView, DeleteQueryView, ListQueryView, ListQueryLogView, DownloadFromSqlView, DownloadQueryView, StreamQueryView, EmailCsvQueryView, SchemaView, format_sql, ) urlpatterns = [ path( '<int:query_id>/', QueryView.as_view(), name='query_detail' ), path( '<int:query_id>/download', DownloadQueryView.as_view(), name='download_query' ), path( '<int:query_id>/stream', StreamQueryView.as_view(), name='stream_query' ), path('download', DownloadFromSqlView.as_view(), name='download_sql'), path( '<int:query_id>/email_csv', EmailCsvQueryView.as_view(), name='email_csv_query' ), path( '<int:pk>/delete', DeleteQueryView.as_view(), name='query_delete' ), path('new/', CreateQueryView.as_view(), name='query_create'), path('play/', PlayQueryView.as_view(), name='explorer_playground'), re_path( r'schema/(?P<connection>.+)$', SchemaView.as_view(), name='explorer_schema' ), path('logs/', ListQueryLogView.as_view(), name='explorer_logs'), path('format/', format_sql, name='format_sql'), path('', ListQueryView.as_view(), name='explorer_index'), ]
examples/pytorch/GNN-FiLM/main.py
ketyi/dgl
9,516
11181289
<reponame>ketyi/dgl import torch import torch.nn as nn import torch.nn.functional as F import dgl import dgl.function as fn from utils import evaluate_f1_score from data_loader import load_PPI import argparse import numpy as np import os class GNNFiLMLayer(nn.Module): def __init__(self, in_size, out_size, etypes, dropout=0.1): super(GNNFiLMLayer, self).__init__() self.in_size = in_size self.out_size = out_size #weights for different types of edges self.W = nn.ModuleDict({ name : nn.Linear(in_size, out_size, bias = False) for name in etypes }) #hypernets to learn the affine functions for different types of edges self.film = nn.ModuleDict({ name : nn.Linear(in_size, 2*out_size, bias = False) for name in etypes }) #layernorm before each propogation self.layernorm = nn.LayerNorm(out_size) #dropout layer self.dropout = nn.Dropout(dropout) def forward(self, g, feat_dict): #the input graph is a multi-relational graph, so treated as hetero-graph. funcs = {} #message and reduce functions dict #for each type of edges, compute messages and reduce them all for srctype, etype, dsttype in g.canonical_etypes: messages = self.W[etype](feat_dict[srctype]) #apply W_l on src feature film_weights = self.film[etype](feat_dict[dsttype]) #use dst feature to compute affine function paras gamma = film_weights[:,:self.out_size] #"gamma" for the affine function beta = film_weights[:,self.out_size:] #"beta" for the affine function messages = gamma * messages + beta #compute messages messages = F.relu_(messages) g.nodes[srctype].data[etype] = messages #store in ndata funcs[etype] = (fn.copy_u(etype, 'm'), fn.sum('m', 'h')) #define message and reduce functions g.multi_update_all(funcs, 'sum') #update all, reduce by first type-wisely then across different types feat_dict={} for ntype in g.ntypes: feat_dict[ntype] = self.dropout(self.layernorm(g.nodes[ntype].data['h'])) #apply layernorm and dropout return feat_dict class GNNFiLM(nn.Module): def __init__(self, etypes, in_size, hidden_size, out_size, num_layers, dropout=0.1): super(GNNFiLM, self).__init__() self.film_layers = nn.ModuleList() self.film_layers.append( GNNFiLMLayer(in_size, hidden_size, etypes, dropout) ) for i in range(num_layers-1): self.film_layers.append( GNNFiLMLayer(hidden_size, hidden_size, etypes, dropout) ) self.predict = nn.Linear(hidden_size, out_size, bias = True) def forward(self, g, out_key): h_dict = {ntype : g.nodes[ntype].data['feat'] for ntype in g.ntypes} #prepare input feature dict for layer in self.film_layers: h_dict = layer(g, h_dict) h = self.predict(h_dict[out_key]) #use the final embed to predict, out_size = num_classes h = torch.sigmoid(h) return h def main(args): # Step 1: Prepare graph data and retrieve train/validation/test dataloader ============================= # if args.gpu >= 0 and torch.cuda.is_available(): device = 'cuda:{}'.format(args.gpu) else: device = 'cpu' if args.dataset == 'PPI': train_set, valid_set, test_set, etypes, in_size, out_size = load_PPI(args.batch_size, device) # Step 2: Create model and training components=========================================================== # model = GNNFiLM(etypes, in_size, args.hidden_size, out_size, args.num_layers).to(device) criterion = nn.BCELoss() optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.step_size, gamma=args.gamma) # Step 4: training epoches ============================================================================== # lastf1 = 0 cnt = 0 best_val_f1 = 0 for epoch in range(args.max_epoch): train_loss = [] train_f1 = [] val_loss = [] val_f1 = [] model.train() for batch in train_set: g = batch.graph g = g.to(device) logits = model.forward(g, '_N') labels = batch.label loss = criterion(logits, labels) f1 = evaluate_f1_score(logits.detach().cpu().numpy(), labels.detach().cpu().numpy()) optimizer.zero_grad() loss.backward() optimizer.step() train_loss.append(loss.item()) train_f1.append(f1) train_loss = np.mean(train_loss) train_f1 = np.mean(train_f1) scheduler.step() model.eval() with torch.no_grad(): for batch in valid_set: g = batch.graph g = g.to(device) logits = model.forward(g, '_N') labels = batch.label loss = criterion(logits, labels) f1 = evaluate_f1_score(logits.detach().cpu().numpy(), labels.detach().cpu().numpy()) val_loss.append(loss.item()) val_f1.append(f1) val_loss = np.mean(val_loss) val_f1 = np.mean(val_f1) print('Epoch {:d} | Train Loss {:.4f} | Train F1 {:.4f} | Val Loss {:.4f} | Val F1 {:.4f} |'.format(epoch + 1, train_loss, train_f1, val_loss, val_f1)) if val_f1 > best_val_f1: best_val_f1 = val_f1 torch.save(model.state_dict(), os.path.join(args.save_dir, args.name)) if val_f1 < lastf1: cnt += 1 if cnt == args.early_stopping: print('Early stop.') break else: cnt = 0 lastf1 = val_f1 model.eval() test_loss = [] test_f1 = [] model.load_state_dict(torch.load(os.path.join(args.save_dir, args.name))) with torch.no_grad(): for batch in test_set: g = batch.graph g = g.to(device) logits = model.forward(g, '_N') labels = batch.label loss = criterion(logits, labels) f1 = evaluate_f1_score(logits.detach().cpu().numpy(), labels.detach().cpu().numpy()) test_loss.append(loss.item()) test_f1.append(f1) test_loss = np.mean(test_loss) test_f1 = np.mean(test_f1) print("Test F1: {:.4f} | Test loss: {:.4f}".format(test_f1, test_loss)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GNN-FiLM') parser.add_argument("--dataset", type=str, default="PPI", help="DGL dataset for this GNN-FiLM") parser.add_argument("--gpu", type=int, default=-1, help="GPU Index. Default: -1, using CPU.") parser.add_argument("--in_size", type=int, default=50, help="Input dimensionalities") parser.add_argument("--hidden_size", type=int, default=320, help="Hidden layer dimensionalities") parser.add_argument("--out_size", type=int, default=121, help="Output dimensionalities") parser.add_argument("--num_layers", type=int, default=4, help="Number of GNN layers") parser.add_argument("--batch_size", type=int, default=5, help="Batch size") parser.add_argument("--max_epoch", type=int, default=1500, help="The max number of epoches. Default: 500") parser.add_argument("--early_stopping", type=int, default=80, help="Early stopping. Default: 50") parser.add_argument("--lr", type=float, default=0.001, help="Learning rate. Default: 3e-1") parser.add_argument("--wd", type=float, default=0.0009, help="Weight decay. Default: 3e-1") parser.add_argument('--step-size', type=int, default=40, help='Period of learning rate decay.') parser.add_argument('--gamma', type=float, default=0.8, help='Multiplicative factor of learning rate decay.') parser.add_argument("--dropout", type=float, default=0.1, help="Dropout rate. Default: 0.9") parser.add_argument('--save_dir', type=str, default='./out', help='Path to save the model.') parser.add_argument("--name", type=str, default='GNN-FiLM', help="Saved model name.") args = parser.parse_args() print(args) if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) main(args)
model/components/DenseNet.py
lianxiaolei/LaTeX_OCR
290
11181311
<reponame>lianxiaolei/LaTeX_OCR from torchvision.models import densenet169 # import *=all the models from torchvision DenseNet169 = densenet169
Dragon/python/dragon/vm/tensorflow/layers/convolutional.py
neopenx/Dragon
212
11181326
<filename>Dragon/python/dragon/vm/tensorflow/layers/convolutional.py # -------------------------------------------------------- # TensorFlow @ Dragon # Copyright(c) 2017 SeetaTech # Written by <NAME> # -------------------------------------------------------- from dragon.vm.tensorflow.framework import tensor_shape from dragon.vm.tensorflow.layers import base, utils from dragon.vm.tensorflow.ops import init_ops from dragon.vm.tensorflow.ops import nn class _Conv(base.Layer): def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, **kwargs): super(_Conv, self).__init__(trainable=trainable, name=name, **kwargs) self.rank = rank self.filters = filters self.kernel_size = utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = utils.normalize_tuple(strides, rank, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.dilation_rate = utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.activity_regularizer = activity_regularizer self.input_spec = base.InputSpec(ndim=self.rank + 2) def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis].value is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis].value if self.data_format == 'channels_first': # For channels first: (n_out, n_in, k_h, k_w) kernel_shape = (self.filters, input_dim) + self.kernel_size else: # For channels last: (k_h, k_w, n_in, n_out) kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_variable(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, trainable=True, dtype=self.dtype) else: self.bias = None self.input_spec = base.InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True def call(self, inputs): tf_data_format = \ utils.convert_data_format(self.data_format, self.rank + 2) outputs = nn.convolution( input=inputs, filter=self.kernel, dilation_rate=self.dilation_rate, strides=self.strides, padding=self.padding.upper(), data_format=tf_data_format) if self.bias is not None: outputs = nn.bias_add(outputs, self.bias, data_format=tf_data_format) if self.activation is not None: return self.activation(outputs) return outputs class Conv2D(_Conv): def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, **kwargs): super(Conv2D, self).__init__( rank=2, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, trainable=trainable, name=name, **kwargs) def conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None): layer = Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, trainable=trainable, name=name, _reuse=reuse, _scope=name) return layer.apply(inputs)
FinMind/crawler/government_bonds.py
vishalbelsare/FinMind
1,106
11181333
<reponame>vishalbelsare/FinMind """ 政府債券 G8-俄羅斯、美國、加拿大、英國、法國、德國、義大利及日本 """ import datetime import os import re import sys import pandas as pd import requests from lxml import etree from FinMind.crawler.base import BaseCrawler, USER_AGENT PATH = "/".join(os.path.abspath(__file__).split("/")[:-2]) sys.path.append(PATH) class GovernmentBondsCrawler(BaseCrawler): @staticmethod def create_loop_list(): def get_data_id_name(url): headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7", "Connection": "keep-alive", "Host": "www.investing.com", "Referer": url, "User-Agent": USER_AGENT, "X-Requested-With": "XMLHttpRequest", } res = requests.get(url, verify=True, headers=headers) tem_data_id = re.findall('data-id="[0-9]+"', res.text) tem_data_id = [di.replace("data-id=", "") for di in tem_data_id] page = etree.HTML(res.text) _data_id = [] _data_name = [] for di in tem_data_id: tem = page.xpath("//span[@data-id={}]".format(di)) if len(tem) > 0: _data_id.append(tem[0].attrib["data-id"]) _data_name.append(tem[0].attrib["data-name"]) return _data_id, _data_name def get_country_url(): index_url = "https://www.investing.com/rates-bonds/" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7", "Cache-Control": "max-age=0", "Connection": "keep-alive", "Host": "www.investing.com", "Upgrade-Insecure-Requests": "1", "User-Agent": USER_AGENT, } res = requests.get(index_url, verify=True, headers=headers) data_country_id = re.findall('data-country-id="[0-9]+"', res.text) data_country_id = [ dci.replace("data-country-id=", "") for dci in data_country_id ] page = etree.HTML(res.text) tem = [] for dci in data_country_id: tem.append( page.xpath("//option[@data-country-id={}]".format(dci))[0] ) url = [ "https://www.investing.com" + te.attrib["value"] for te in tem ] # G8 and china select = [ "canada", "china", "france", "germany", "japan", "russia", "uk", "usa", "italy", ] countries_url = [] for url_index in range(len(url)): tem = url[url_index].replace( "https://www.investing.com/rates-bonds/", "" ) tem = tem.replace("-government-bonds", "") if tem in select: countries_url.append(url[url_index]) return countries_url # main country_url = get_country_url() loop_list = [] for curl in country_url: # curl = country_url[0] print(curl) data_id, data_name = get_data_id_name(curl) for i in range(len(data_id)): loop_list.append([data_id[i], data_name[i]]) return loop_list @staticmethod def get_end_date(): end_date = datetime.datetime.now().date() end_date = end_date + datetime.timedelta(-1) y = str(end_date.year) m = ( str(end_date.month) if end_date.month > 9 else "0" + str(end_date.month) ) d = str(end_date.day) if end_date.day > 9 else "0" + str(end_date.day) return "{}/{}/{}".format(m, d, y) def crawler(self, loop): # loop = ['23681', 'Germany 3 Month'] def get_value(template): date = int(template[0].attrib["data-real-value"]) date = int(date / 60 / 60 / 24) date = str( datetime.date(1970, 1, 1) + datetime.timedelta(days=date) ) v = [ float(template[template_index].text) for template_index in range(1, 5) if template[template_index].text is not None ] if len(v) == 0: return pd.DataFrame() _price, _open, _high, _low = v change = ( float(template[5].text.replace("%", "").replace(",", "")) / 100 ) return pd.DataFrame([date, _price, _open, _high, _low, change]).T cid, data_name = loop header = data_name + " Bond Yield Historical data" st_date, end_date = ( "01/01/1970", self.get_end_date(), ) bonds_url = "https://www.investing.com/instruments/HistoricalDataAjax" form_data = { "curr_id": cid, "header": header, "st_date": st_date, "end_date": end_date, "interval_sec": "Daily", "sort_col": "date", "sort_ord": "DESC", "action": "historical_data", } headers = { "Accept": "text/plain, */*; q=0.01", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7", "Connection": "keep-alive", "Content-Length": "192", "Content-Type": "application/x-www-form-urlencoded", "Host": "www.investing.com", "Origin": "https://www.investing.com", "Referer": "https://www.investing.com/rates-bonds/france-1-month-bond-yield-historical-data", "User-Agent": USER_AGENT, "X-Requested-With": "XMLHttpRequest", } print("requests post") res = requests.post( bonds_url, verify=True, headers=headers, data=form_data ) print("data clean") page = etree.HTML(res.text) tr_path = page.xpath("//tr") col_name = [col.text for col in tr_path[0].xpath("//th")] col_name = [c.replace(" %", "Percent") for c in col_name] col_name = ["date" if c == "Date" else c for c in col_name] data = pd.DataFrame() td_path = page.xpath("//tr//td") for i in range(0, len(td_path) - 6, 6): tem = td_path[i : i + 6] value = get_value(tem) if len(value) > 0: data = data.append(value) if len(data) > 0: data.columns = col_name data["name"] = "{}".format(data_name) # data['data_id'] = cid data = data.sort_values("date") data.index = range(len(data)) return data
insights/tests/core/test_marshalling.py
mglantz/insights-core
121
11181372
import pytest from insights.core import marshalling def mar_unmar(o, use_value_list=False): marshalled = marshalling.marshal(o, use_value_list) unmarshalled = marshalling.unmarshal(marshalled) return marshalled, unmarshalled def test_string_marshal(): flag = "TEST_FLAG" _, unmarshalled = mar_unmar(flag) assert unmarshalled == {flag: True} def test_dict_marshal(): doc = {"foo": "bar"} _, unmarshalled = mar_unmar(doc) assert unmarshalled == doc def test_bad_returns(): with pytest.raises(TypeError): marshalling.marshal(True) with pytest.raises(TypeError): marshalling.marshal(1) with pytest.raises(TypeError): marshalling.marshal(1.0) with pytest.raises(TypeError): marshalling.marshal([]) with pytest.raises(TypeError): marshalling.marshal(()) with pytest.raises(TypeError): marshalling.marshal(set()) def test_none_marshal(): ma, um = mar_unmar(None) assert um is None def test_value_list(): ma, um = mar_unmar("test", use_value_list=True) assert um == {"test": [True]}
niftynet/io/__init__.py
tdml13/NiftyNet
1,403
11181409
""" .. module:: niftynet.io :synopsis: High-level input / output operations. """
uuv_control/uuv_control_cascaded_pids/scripts/VelocityControl.py
hust-arms/uuv_simulator-armsauv
470
11181411
<reponame>hust-arms/uuv_simulator-armsauv<gh_stars>100-1000 #!/usr/bin/env python # Copyright (c) 2016 The UUV Simulator Authors. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy import rospy from dynamic_reconfigure.server import Server import geometry_msgs.msg as geometry_msgs from nav_msgs.msg import Odometry import tf.transformations as trans from rospy.numpy_msg import numpy_msg # Modules included in this package from PID import PIDRegulator from uuv_control_cascaded_pid.cfg import VelocityControlConfig class VelocityControllerNode: def __init__(self): print('VelocityControllerNode: initializing node') self.config = {} self.v_linear_des = numpy.zeros(3) self.v_angular_des = numpy.zeros(3) # Initialize pids with default parameters self.pid_angular = PIDRegulator(1, 0, 0, 1) self.pid_linear = PIDRegulator(1, 0, 0, 1) # ROS infrastructure self.sub_cmd_vel = rospy.Subscriber('cmd_vel', numpy_msg(geometry_msgs.Twist), self.cmd_vel_callback) self.sub_odometry = rospy.Subscriber('odom', numpy_msg(Odometry), self.odometry_callback) self.pub_cmd_accel = rospy.Publisher('cmd_accel', geometry_msgs.Accel, queue_size=10) self.srv_reconfigure = Server(VelocityControlConfig, self.config_callback) def cmd_vel_callback(self, msg): """Handle updated set velocity callback.""" # Just store the desired velocity. The actual control runs on odometry callbacks v_l = msg.linear v_a = msg.angular self.v_linear_des = numpy.array([v_l.x, v_l.y, v_l.z]) self.v_angular_des = numpy.array([v_a.x, v_a.y, v_a.z]) def odometry_callback(self, msg): """Handle updated measured velocity callback.""" if not bool(self.config): return linear = msg.twist.twist.linear angular = msg.twist.twist.angular v_linear = numpy.array([linear.x, linear.y, linear.z]) v_angular = numpy.array([angular.x, angular.y, angular.z]) if self.config['odom_vel_in_world']: # This is a temp. workaround for gazebo's pos3d plugin not behaving properly: # Twist should be provided wrt child_frame, gazebo provides it wrt world frame # see http://docs.ros.org/api/nav_msgs/html/msg/Odometry.html xyzw_array = lambda o: numpy.array([o.x, o.y, o.z, o.w]) q_wb = xyzw_array(msg.pose.pose.orientation) R_bw = trans.quaternion_matrix(q_wb)[0:3, 0:3].transpose() v_linear = R_bw.dot(v_linear) v_angular = R_bw.dot(v_angular) # Compute compute control output: t = msg.header.stamp.to_sec() e_v_linear = (self.v_linear_des - v_linear) e_v_angular = (self.v_angular_des - v_angular) a_linear = self.pid_linear.regulate(e_v_linear, t) a_angular = self.pid_angular.regulate(e_v_angular, t) # Convert and publish accel. command: cmd_accel = geometry_msgs.Accel() cmd_accel.linear = geometry_msgs.Vector3(*a_linear) cmd_accel.angular = geometry_msgs.Vector3(*a_angular) self.pub_cmd_accel.publish(cmd_accel) def config_callback(self, config, level): """Handle updated configuration values.""" # config has changed, reset PID controllers self.pid_linear = PIDRegulator(config['linear_p'], config['linear_i'], config['linear_d'], config['linear_sat']) self.pid_angular = PIDRegulator(config['angular_p'], config['angular_i'], config['angular_d'], config['angular_sat']) self.config = config return config if __name__ == '__main__': print('starting VelocityControl.py') rospy.init_node('velocity_control') try: node = VelocityControllerNode() rospy.spin() except rospy.ROSInterruptException: print('caught exception') print('exiting')
atest/testdata/cli/dryrun/vars.py
phil-davis/robotframework
7,073
11181423
RESOURCE_PATH_FROM_VARS = 'resource.robot'
mediasoup-client/deps/webrtc/src/build/config/fuchsia/build_symbol_archive.py
skgwazap/mediasoup-client-android
128
11181514
#!/usr/bin/env python # # Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Creates a compressed archive of binary symbols derived from the unstripped executables and libraries cataloged by "ids.txt".""" import argparse import os import subprocess import sys import tarfile import tempfile def main(args): parser = argparse.ArgumentParser() parser.add_argument('ids_txt', type=str, nargs=1, help='Path to the ids.txt file.') parser.add_argument('output_tarball', nargs=1, type=str, help='Path which the tarball will be written to.') parser.add_argument('--eu-strip', required=True, type=str, help='Path to the the eu-strip tool.') args = parser.parse_args(args) stripped_tempfile = tempfile.NamedTemporaryFile() ids_txt = args.ids_txt[0] build_ids_archive = tarfile.open(args.output_tarball[0], 'w:bz2') for line in open(ids_txt, 'r'): # debug_tempfile: The path which debug symbols will be written to. # stripped_tempfile: The path which the stripped executable will be written # to. This file is ignored and immediately deleted. with tempfile.NamedTemporaryFile() as debug_tempfile, \ tempfile.NamedTemporaryFile() as stripped_tempfile: build_id, binary_path = line.strip().split(' ') binary_abspath = os.path.abspath( os.path.join(os.path.dirname(ids_txt), binary_path)) # Extract debugging symbols from the binary into their own file. # The stripped executable binary is written to |debug_tempfile| and # deleted. Writing to /dev/null would be preferable, but eu-strip # disallows writing output to /dev/null. subprocess.check_call([args.eu_strip, '-g', binary_abspath, '-f', debug_tempfile.name, '-o', stripped_tempfile.name]) # An empty result means that the source binary (most likely a prebuilt) # didn't have debugging data to begin with. if os.path.getsize(debug_tempfile.name) == 0: continue # Archive the debugging symbols, placing them in a hierarchy keyed to the # GNU build ID. The symbols reside in directories whose names are the # first two characters of the build ID, with the symbol files themselves # named after the remaining characters of the build ID. So, a symbol file # with the build ID "deadbeef" would be located at the path 'de/adbeef'. build_ids_archive.add(debug_tempfile.name, '%s/%s' % (build_id[:2], build_id[2:])) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
tests/test_packages/test_skills/test_simple_oracle_client/test_behaviours.py
bryanchriswhite/agents-aea
126
11181525
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests of the behaviour classes of the simple oracle client skill.""" import logging from pathlib import Path from typing import cast from unittest.mock import patch from aea.test_tools.test_skill import BaseSkillTestCase from packages.fetchai.contracts.fet_erc20.contract import PUBLIC_ID as ERC20_PUBLIC_ID from packages.fetchai.contracts.oracle_client.contract import ( PUBLIC_ID as CLIENT_CONTRACT_PUBLIC_ID, ) from packages.fetchai.protocols.contract_api.message import ContractApiMessage from packages.fetchai.skills.simple_oracle_client.behaviours import ( SimpleOracleClientBehaviour, ) from packages.fetchai.skills.simple_oracle_client.strategy import Strategy from tests.conftest import ROOT_DIR DEFAULT_ADDRESS = "0x0000000000000000000000000000000000000000" ETHEREUM_LEDGER_ID = "ethereum" FETCHAI_LEDGER_ID = "fetchai" class TestSkillBehaviour(BaseSkillTestCase): """Test behaviours of simple oracle client.""" path_to_skill = Path( ROOT_DIR, "packages", "fetchai", "skills", "simple_oracle_client" ) @classmethod def setup(cls, **kwargs): """Setup the test class.""" super().setup() cls.simple_oracle_client_behaviour = cast( SimpleOracleClientBehaviour, cls._skill.skill_context.behaviours.simple_oracle_client_behaviour, ) def test_setup(self): """Test the setup method of the simple_oracle_client behaviour.""" strategy = cast(Strategy, self.simple_oracle_client_behaviour.context.strategy) strategy.oracle_contract_address = DEFAULT_ADDRESS strategy.erc20_address = DEFAULT_ADDRESS strategy.is_oracle_contract_set = True strategy._ledger_id = ETHEREUM_LEDGER_ID self.simple_oracle_client_behaviour.setup() self.assert_quantity_in_outbox(1) msg = cast(ContractApiMessage, self.get_message_from_outbox()) has_attributes, error_str = self.message_has_attributes( actual_message=msg, message_type=ContractApiMessage, performative=ContractApiMessage.Performative.GET_DEPLOY_TRANSACTION, contract_id=str(CLIENT_CONTRACT_PUBLIC_ID), callable="get_deploy_transaction", ) assert has_attributes, error_str def test_setup_with_contract_set(self): """Test the setup method of the simple_oracle_client behaviour for existing contract.""" strategy = cast(Strategy, self.simple_oracle_client_behaviour.context.strategy) strategy.client_contract_address = DEFAULT_ADDRESS strategy.oracle_contract_address = DEFAULT_ADDRESS strategy.erc20_address = DEFAULT_ADDRESS strategy.is_client_contract_deployed = True strategy.is_oracle_contract_set = True strategy._ledger_id = ETHEREUM_LEDGER_ID with patch.object( self.simple_oracle_client_behaviour.context.logger, "log" ) as mock_logger: self.simple_oracle_client_behaviour.setup() mock_logger.assert_any_call( logging.INFO, "Fetch oracle client contract address already added", ) self.assert_quantity_in_outbox(0) def test_act_pre_deploy(self): """Test the act method of the simple_oracle_client behaviour before contract is deployed.""" with patch.object( self.simple_oracle_client_behaviour.context.logger, "log" ) as mock_logger: self.simple_oracle_client_behaviour.act() mock_logger.assert_any_call( logging.INFO, "Oracle client contract not yet deployed", ) self.assert_quantity_in_outbox(0) def test_act_approve_transactions(self): """Test the act method of the simple_oracle_client behaviour before transactions are approved.""" strategy = cast(Strategy, self.simple_oracle_client_behaviour.context.strategy) strategy.client_contract_address = DEFAULT_ADDRESS strategy.oracle_contract_address = DEFAULT_ADDRESS strategy.erc20_address = DEFAULT_ADDRESS strategy.is_client_contract_deployed = True strategy.is_oracle_contract_set = True strategy._ledger_id = ETHEREUM_LEDGER_ID self.simple_oracle_client_behaviour.act() self.assert_quantity_in_outbox(1) msg = cast(ContractApiMessage, self.get_message_from_outbox()) has_attributes, error_str = self.message_has_attributes( actual_message=msg, message_type=ContractApiMessage, performative=ContractApiMessage.Performative.GET_RAW_TRANSACTION, contract_id=str(ERC20_PUBLIC_ID), contract_address=strategy.client_contract_address, callable="get_approve_transaction", ) assert has_attributes, error_str def test_act_query(self): """Test the act method of the simple_oracle_client behaviour for normal querying.""" strategy = cast(Strategy, self.simple_oracle_client_behaviour.context.strategy) strategy.client_contract_address = DEFAULT_ADDRESS strategy.oracle_contract_address = DEFAULT_ADDRESS strategy.erc20_address = DEFAULT_ADDRESS strategy.is_client_contract_deployed = True strategy.is_oracle_transaction_approved = True strategy.is_oracle_contract_set = True strategy._ledger_id = ETHEREUM_LEDGER_ID self.simple_oracle_client_behaviour.act() self.assert_quantity_in_outbox(1) assert strategy.is_oracle_contract_set msg = cast(ContractApiMessage, self.get_message_from_outbox()) has_attributes, error_str = self.message_has_attributes( actual_message=msg, message_type=ContractApiMessage, performative=ContractApiMessage.Performative.GET_RAW_TRANSACTION, contract_id=str(CLIENT_CONTRACT_PUBLIC_ID), contract_address=strategy.client_contract_address, callable="get_query_transaction", ) assert has_attributes, error_str def test__request_contract_deploy_transaction(self): """Test that the _request_contract_deploy_transaction function sends the right message to the contract_api for ethereum ledger.""" strategy = cast(Strategy, self.simple_oracle_client_behaviour.context.strategy) strategy.oracle_contract_address = "some_address" strategy._ledger_id = ETHEREUM_LEDGER_ID self.simple_oracle_client_behaviour._request_contract_deploy_transaction() self.assert_quantity_in_outbox(1) kwargs = strategy.get_deploy_kwargs() assert "fetchOracleContractAddress" in kwargs.body msg = cast(ContractApiMessage, self.get_message_from_outbox()) has_attributes, error_str = self.message_has_attributes( actual_message=msg, message_type=ContractApiMessage, performative=ContractApiMessage.Performative.GET_DEPLOY_TRANSACTION, contract_id=str(CLIENT_CONTRACT_PUBLIC_ID), callable="get_deploy_transaction", kwargs=kwargs, ) assert has_attributes, error_str def test__request_contract_store_transaction(self): """Test that the _request_contract_deploy_transaction function sends the right message to the contract_api for fetchai ledger.""" strategy = cast(Strategy, self.simple_oracle_client_behaviour.context.strategy) strategy.oracle_contract_address = "some_address" strategy._ledger_id = FETCHAI_LEDGER_ID self.simple_oracle_client_behaviour._request_contract_deploy_transaction() self.assert_quantity_in_outbox(1) kwargs = strategy.get_deploy_kwargs() assert "fetchOracleContractAddress" not in kwargs.body msg = cast(ContractApiMessage, self.get_message_from_outbox()) has_attributes, error_str = self.message_has_attributes( actual_message=msg, message_type=ContractApiMessage, performative=ContractApiMessage.Performative.GET_DEPLOY_TRANSACTION, contract_id=str(CLIENT_CONTRACT_PUBLIC_ID), callable="get_deploy_transaction", kwargs=kwargs, ) assert has_attributes, error_str def test_teardown(self): """Test that the teardown method of the simple_oracle_client behaviour leaves no messages in the outbox.""" assert self.simple_oracle_client_behaviour.teardown() is None self.assert_quantity_in_outbox(0)
transformer/__init__.py
richarai9/FastSpeech2
753
11181559
from .Models import Encoder, Decoder from .Layers import PostNet
data/transforms/arguement.py
donnyyou/centerX
350
11181575
import cv2 import numpy as np import random import torch import imgaug as ia import imgaug.augmenters as iaa import copy # points = [ # [(10.5, 20.5)], # points on first image # [(50.5, 50.5), (60.5, 60.5), (70.5, 70.5)] # points on second image # ] # image = cv2.imread('000000472375.jpg') # inp_bbox = [np.array([124.71,196.18,124.71+372.85,196.18+356.81])] ''' points = np.array([[ 80.90703725, 126.08039874, 0. ], [ 72.72988313, 127.2840341, 0. ], [ 86.29191076, 160.56158147, 0. ], [ 80.87585772, 159.50228059, 0. ], [ 81.09376061, 190.41214379, 0. ], [ 77.63778624, 192.15852308, 0. ], [ 84.55893103, 190.83034651, 0. ], [ 88.24699688, 192.76283703, 0. ], [ 70.1611101, 235.95892525, 0. ], [106.62995965, 239.87347792, 0. ], [ 66.48005009, 286.62669707, 0. ], [128.05848894, 280.34743948, 0. ]]) image = cv2.imread('demo.jpg') def show(image,points): for i in points: cv2.circle(image,(int(i[0]), int(i[1])), 5, (0,255,0), -1) return image ''' # def arguementation(image, dataset_dict, p=0.5): def arguementation(image, p=0.5): if random.random() > p: return image # ,dataset_dict # H,W,C = image.shape # inp_bbox = [anno['bbox'] for anno in dataset_dict['annotations']] # ia_bbox = [] # for bbox in inp_bbox: # tmp_bbox = ia.BoundingBox(x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3]) # ia_bbox.append(tmp_bbox) # ia_bbox = [ia_bbox] images = np.array([image]).astype(np.uint8) # image = random_flip(image) # image = random_scale(image) # image = random_angle_rotate(image) # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases, # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image. sometimes = lambda aug: iaa.Sometimes(0.5, aug) # Define our sequence of augmentation steps that will be applied to every image # All augmenters with per_channel=0.5 will sample one value _per image_ # in 50% of all cases. In all other cases they will sample new values # _per channel_. seq = iaa.Sequential( [ # apply the following augmenters to most images # iaa.Fliplr(0.5), # horizontally flip 50% of all images # iaa.Flipud(0.2), # vertically flip 20% of all images # crop images by -5% to 10% of their height/width # iaa.CropAndPad( # percent=(-0.3, 0.3), # pad_mode='constant', # pad_cval=(0, 0) # ), # iaa.Affine( # scale={"x": (0.6, 1.4), "y": (0.6, 1.4)}, # # scale images to 80-120% of their size, individually per axis # translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis) # fit_output=False, # True # order=[0, 1], # use nearest neighbour or bilinear interpolation (fast) # cval=(0, 0), # if mode is constant, use a cval between 0 and 255 # mode='constant' # use any of scikit-image's warping modes (see 2nd image from the top for examples) # ), # execute 0 to 5 of the following (less important) augmenters per image # don't execute all of them, as that would often be way too strong iaa.SomeOf((0, 5), [ sometimes(iaa.Superpixels(p_replace=(0, 0.1), n_segments=(200, 300))), # convert images into their superpixel representation iaa.OneOf([ iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0 iaa.AverageBlur(k=(2, 4)), # blur image using local means with kernel sizes between 2 and 7 iaa.MedianBlur(k=(1, 5)), # blur image using local medians with kernel sizes between 2 and 7 ]), iaa.Sharpen(alpha=(0, 0.75), lightness=(0.1, 1.9)), # sharpen images iaa.Emboss(alpha=(0, 0.75), strength=(0, 1.0)), # emboss images # search either for all edges or for directed edges, # blend the result with the original image using a blobby mask # iaa.SimplexNoiseAlpha(iaa.OneOf([ # iaa.EdgeDetect(alpha=(0, 0.25)), # iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)), # ])), # iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images # iaa.OneOf([ # iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels # #iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2), # ]), # iaa.Invert(0.05, per_channel=True), # invert color channels iaa.Add((-20, 20), per_channel=0.5), # change brightness of images (by -10 to 10 of original value) # iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation # either change the brightness of the whole image (sometimes # per channel) or change the brightness of subareas iaa.OneOf([ iaa.Multiply((0.5, 1.5), per_channel=0.5), # iaa.FrequencyNoiseAlpha( # exponent=(-4, 0), # first=iaa.Multiply((0.5, 1.5), per_channel=True), # second=iaa.LinearContrast((0.5, 2.0)) # ) ]), iaa.LinearContrast((0.75, 1.5), per_channel=0.5), # improve or worsen the contrast iaa.Grayscale(alpha=(0.0, 0.3)), # sometimes(iaa.ElasticTransformation(alpha=(0.5, 1.5), sigma=0.25)), # move pixels locally around (with random strengths) # sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.03))), # sometimes move parts of the image around sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1))) ], random_order=True ) ], random_order=True ) # images_aug, bbox_aug = seq(images=images, bounding_boxes=ia_bbox) images_aug = seq(images=images) # for k, bbox in enumerate(bbox_aug[0]): # dataset_dict['annotations'][k]['bbox'][0] = max(min(bbox.x1,W-1),0) # dataset_dict['annotations'][k]['bbox'][1] = max(min(bbox.y1,H-1),0) # dataset_dict['annotations'][k]['bbox'][2] = max(min(bbox.x2,W-1),0) # dataset_dict['annotations'][k]['bbox'][3] = max(min(bbox.y2,H-1),0) # image = show(image,keypoints) # cv2.imwrite('source.jpg',image) # for k,i in enumerate(points_aug[0]): # keypoints[k,0] = i[0] # keypoints[k,1] = i[1] # image_a = show(images_aug[0],keypoints) # cv2.imwrite('result.jpg',image_a) # images_aug_tensor_list = [torch.from_tensor(image).type(_dtype) for image in images_aug] return images_aug[0] # , dataset_dict # rst_image,bbox = arguementation(image,inp_bbox) # cv2.rectangle(rst_image,(int(bbox[0][0]),int(bbox[0][1])),(int(bbox[0][2]),int(bbox[0][3])),(0,255,0),2) # cv2.imwrite('demo.jpg',rst_image) # print(image.shape,rst_image.shape)
src/anyconfig/processors/utils.py
ssato/python-anyconfig
213
11181591
<reponame>ssato/python-anyconfig # # Copyright (C) 2018 - 2021 <NAME> <<EMAIL>> # SPDX-License-Identifier: MIT # # pylint: disable=unidiomatic-typecheck r"""Utility functions for anyconfig.processors. """ import operator import typing import warnings import pkg_resources from .. import common, ioinfo, models, utils from .datatypes import ( ProcT, ProcsT, ProcClsT, MaybeProcT ) def sort_by_prio(prs: typing.Iterable[ProcT]) -> ProcsT: """ Sort an iterable of processor classes by each priority. :param prs: A list of :class:`anyconfig.models.processor.Processor` classes :return: Sambe as above but sorted by priority """ return sorted(prs, key=operator.methodcaller('priority'), reverse=True) def select_by_key(items: typing.Iterable[ typing.Tuple[typing.List[str], typing.Any] ], sort_fn: typing.Callable[..., typing.Any] = sorted ) -> typing.List[typing.Tuple[str, typing.List[typing.Any]]]: """ :param items: A list of tuples of keys and values, [([key], val)] :return: A list of tuples of key and values, [(key, [val])] >>> select_by_key([(['a', 'aaa'], 1), (['b', 'bb'], 2), (['a'], 3)]) [('a', [1, 3]), ('aaa', [1]), ('b', [2]), ('bb', [2])] """ itr = utils.concat(((k, v) for k in ks) for ks, v in items) return list((k, sort_fn(t[1] for t in g)) for k, g in utils.groupby(itr, operator.itemgetter(0))) def list_by_x(prs: typing.Iterable[ProcT], key: str ) -> typing.List[typing.Tuple[str, ProcsT]]: """ :param key: Grouping key, 'type' or 'extensions' :return: A list of :class:`Processor` or its children classes grouped by given 'item', [(cid, [:class:`Processor`)]] by default """ if key == 'type': kfn = operator.methodcaller(key) res = sorted(((k, sort_by_prio(g)) for k, g in utils.groupby(prs, kfn)), key=operator.itemgetter(0)) elif key == 'extensions': res: typing.List[ # type: ignore typing.Tuple[str, ProcsT] ] = select_by_key(((p.extensions(), p) for p in prs), sort_fn=sort_by_prio) else: raise ValueError( f"Argument 'key' must be 'type' or 'extensions' but it was '{key}'" ) return res def findall_with_pred(predicate: typing.Callable[..., bool], prs: ProcsT) -> ProcsT: """ :param predicate: any callable to filter results :param prs: A list of :class:`anyconfig.models.processor.Processor` classes :return: A list of appropriate processor classes or [] """ return sorted((p for p in prs if predicate(p)), key=operator.methodcaller('priority'), reverse=True) def maybe_processor(type_or_id: typing.Union[ProcT, ProcClsT], cls: ProcClsT = models.processor.Processor ) -> typing.Optional[ProcT]: """ :param type_or_id: Type of the data to process or ID of the processor class or :class:`anyconfig.models.processor.Processor` class object or its instance :param cls: A class object to compare with 'type_or_id' :return: Processor instance or None """ if isinstance(type_or_id, cls): return type_or_id try: if issubclass(typing.cast(ProcClsT, type_or_id), cls): return type_or_id() # type: ignore except TypeError: pass return None def find_by_type_or_id(type_or_id: str, prs: ProcsT) -> ProcsT: """ :param type_or_id: Type of the data to process or ID of the processor class :param prs: A list of :class:`anyconfig.models.processor.Processor` classes :return: A list of processor classes to process files of given data type or processor 'type_or_id' found by its ID :raises: anyconfig.common.UnknownProcessorTypeError """ def pred(pcls): """Predicate""" return pcls.cid() == type_or_id or pcls.type() == type_or_id pclss = findall_with_pred(pred, prs) if not pclss: raise common.UnknownProcessorTypeError(type_or_id) return pclss def find_by_fileext(fileext: str, prs: ProcsT) -> ProcsT: """ :param fileext: File extension :param prs: A list of :class:`anyconfig.models.processor.Processor` classes :return: A list of processor class to processor files with given extension :raises: common.UnknownFileTypeError """ def pred(pcls): """Predicate""" return fileext in pcls.extensions() pclss = findall_with_pred(pred, prs) if not pclss: raise common.UnknownFileTypeError(f'file extension={fileext}') return pclss # :: [Processor], never [] def find_by_maybe_file(obj: ioinfo.PathOrIOInfoT, prs: ProcsT) -> ProcsT: """ :param obj: a file path, file or file-like object, pathlib.Path object or an 'anyconfig.ioinfo.IOInfo' (namedtuple) object :param cps_by_ext: A list of processor classes :return: A list of processor classes to process given (maybe) file :raises: common.UnknownFileTypeError """ # :: [Processor], never [] return find_by_fileext(ioinfo.make(obj).extension, prs) def findall(obj: typing.Optional[ioinfo.PathOrIOInfoT], prs: ProcsT, forced_type: typing.Optional[str] = None, ) -> ProcsT: """ :param obj: a file path, file, file-like object, pathlib.Path object or an 'anyconfig.ioinfo.IOInfo` (namedtuple) object :param prs: A list of :class:`anyconfig.models.processor.Processor` classes :param forced_type: Forced processor type of the data to process or ID of the processor class or None :return: A list of instances of processor classes to process 'obj' data :raises: ValueError, common.UnknownProcessorTypeError, common.UnknownFileTypeError """ if (obj is None or not obj) and forced_type is None: raise ValueError( "The first argument 'obj' or the second argument 'forced_type' " "must be something other than None or False." ) if forced_type is None: pclss = find_by_maybe_file(typing.cast(ioinfo.PathOrIOInfoT, obj), prs) # :: [Processor], never [] else: pclss = find_by_type_or_id(forced_type, prs) # Do. return pclss def find(obj: typing.Optional[ioinfo.PathOrIOInfoT], prs: ProcsT, forced_type: MaybeProcT = None, ) -> ProcT: """ :param obj: a file path, file, file-like object, pathlib.Path object or an 'anyconfig.ioinfo.IOInfo' (namedtuple) object :param prs: A list of :class:`anyconfig.models.processor.Processor` classes :param forced_type: Forced processor type of the data to process or ID of the processor class or :class:`anyconfig.models.processor.Processor` class object or its instance itself :param cls: A class object to compare with 'forced_type' later :return: an instance of processor class to process 'obj' data :raises: ValueError, common.UnknownProcessorTypeError, common.UnknownFileTypeError """ if forced_type is not None and not isinstance(forced_type, str): proc = maybe_processor( typing.cast(typing.Union[ProcT, ProcClsT], forced_type) ) if proc is None: raise ValueError('Wrong processor class or instance ' f'was given: {forced_type!r}') return proc procs = findall(obj, prs, forced_type=typing.cast(str, forced_type)) return procs[0] def load_plugins(pgroup: str) -> typing.Iterator[ProcClsT]: """ A generator function to yield a class object of :class:`anyconfig.models.processor.Processor`. :param pgroup: A string represents plugin type, e.g. anyconfig_backends """ for res in pkg_resources.iter_entry_points(pgroup): try: yield res.load() except ImportError as exc: warnings.warn(f'Failed to load plugin, exc={exc!s}') # vim:sw=4:ts=4:et:
deepneuro/outputs/visualization.py
ysuter/DeepNeuro
113
11181608
import numpy as np import matplotlib.pyplot as plt from scipy import signal from deepneuro.utilities.conversion import read_image_files def create_mosaic(input_volume, output_filepath=None, label_volume=None, generate_outline=True, mask_value=0, step=1, dim=2, cols=8, label_buffer=5, rotate_90=3, flip=True): """This creates a mosaic of 2D images from a 3D Volume. Parameters ---------- input_volume : TYPE Any neuroimaging file with a filetype supported by qtim_tools, or existing numpy array. output_filepath : None, optional Where to save your output, in a filetype supported by matplotlib (e.g. .png). If label_volume : None, optional Whether to create your mosaic with an attached label filepath / numpy array. Will not perform volume transforms from header (yet) generate_outline : bool, optional If True, will generate outlines for label_volumes, instead of filled-in areas. Default is True. mask_value : int, optional Background value for label volumes. Default is 0. step : int, optional Will generate an image for every [step] slice. Default is 1. dim : int, optional Mosaic images will be sliced along this dimension. Default is 2, which often corresponds to axial. cols : int, optional How many columns in your output mosaic. Rows will be determined automatically. Default is 8. label_buffer : int, optional Images more than [label_buffer] slices away from a slice containing a label pixel will note be included. Default is 5. rotate_90 : int, optional If the output mosaic is incorrectly rotated, you may rotate clockwise [rotate_90] times. Default is 3. flip : bool, optional If the output is incorrectly flipped, you may set to True to flip the data. Default is True. No Longer Returned ------------------ Returns ------- output_array: N+1 or N-dimensional array The generated mosaic array. """ image_numpy = read_image_files(input_volume) if step is None: step = 1 if label_volume is not None: label_numpy = read_image_files(label_volume) if generate_outline: label_numpy = generate_label_outlines(label_numpy, dim, mask_value) # This is fun in a wacky way, but could probably be done more concisely and effeciently. mosaic_selections = [] for i in range(label_numpy.shape[dim]): label_slice = np.squeeze(label_numpy[[slice(None) if k != dim else slice(i, i + 1) for k in range(3)]]) if np.sum(label_slice) != 0: mosaic_selections += list(range(i - label_buffer, i + label_buffer)) mosaic_selections = np.unique(mosaic_selections) mosaic_selections = mosaic_selections[mosaic_selections >= 0] mosaic_selections = mosaic_selections[mosaic_selections <= image_numpy.shape[dim]] mosaic_selections = mosaic_selections[::step] color_range_image = [np.min(image_numpy), np.max(image_numpy)] color_range_label = [np.min(label_numpy), np.max(label_numpy)] # One day, specify rotations by affine matrix. # Is test slice necessary? Operate directly on shape if possible. test_slice = np.rot90(np.squeeze(image_numpy[[slice(None) if k != dim else slice(0, 1) for k in range(3)]]), rotate_90) slice_width = test_slice.shape[1] slice_height = test_slice.shape[0] mosaic_image_numpy = np.zeros((int(slice_height * np.ceil(float(len(mosaic_selections)) / float(cols))), int(test_slice.shape[1] * cols)), dtype=float) mosaic_label_numpy = np.zeros_like(mosaic_image_numpy) row_index = 0 col_index = 0 for i in mosaic_selections: image_slice = np.rot90(np.squeeze(image_numpy[[slice(None) if k != dim else slice(i, i + 1) for k in range(3)]]), rotate_90) label_slice = np.rot90(np.squeeze(label_numpy[[slice(None) if k != dim else slice(i, i + 1) for k in range(3)]]), rotate_90) # Again, specify from affine matrix if possible. if flip: image_slice = np.fliplr(image_slice) label_slice = np.fliplr(label_slice) if image_slice.size > 0: mosaic_image_numpy[int(row_index):int(row_index + slice_height), int(col_index):int(col_index + slice_width)] = image_slice mosaic_label_numpy[int(row_index):int(row_index + slice_height), int(col_index):int(col_index + slice_width)] = label_slice if col_index == mosaic_image_numpy.shape[1] - slice_width: col_index = 0 row_index += slice_height else: col_index += slice_width mosaic_label_numpy = np.ma.masked_where(mosaic_label_numpy == 0, mosaic_label_numpy) if output_filepath is not None: plt.figure(figsize=(mosaic_image_numpy.shape[0] / 100, mosaic_image_numpy.shape[1] / 100), dpi=100, frameon=False) plt.margins(0, 0) plt.gca().set_axis_off() plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.imshow(mosaic_image_numpy, 'gray', vmin=color_range_image[0], vmax=color_range_image[1], interpolation='none') plt.imshow(mosaic_label_numpy, 'jet', vmin=color_range_label[0], vmax=color_range_label[1], interpolation='none') plt.savefig(output_filepath, bbox_inches='tight', pad_inches=0.0, dpi=1000) plt.clf() plt.close() return mosaic_image_numpy else: color_range_image = [np.min(image_numpy), np.max(image_numpy)] test_slice = np.rot90(np.squeeze(image_numpy[[slice(None) if k != dim else slice(0, 1) for k in range(3)]]), rotate_90) slice_width = test_slice.shape[1] slice_height = test_slice.shape[0] mosaic_selections = np.arange(image_numpy.shape[dim])[::step] mosaic_image_numpy = np.zeros((int(slice_height * np.ceil(float(len(mosaic_selections)) / float(cols))), int(test_slice.shape[1] * cols)), dtype=float) row_index = 0 col_index = 0 for i in mosaic_selections: image_slice = np.squeeze(image_numpy[[slice(None) if k != dim else slice(i, i + 1) for k in range(3)]]) image_slice = np.rot90(image_slice, rotate_90) if flip: image_slice = np.fliplr(image_slice) mosaic_image_numpy[int(row_index):int(row_index + slice_height), int(col_index):int(col_index + slice_width)] = image_slice if col_index == mosaic_image_numpy.shape[1] - slice_width: col_index = 0 row_index += slice_height else: col_index += slice_width if output_filepath is not None: plt.figure(figsize=(mosaic_image_numpy.shape[0] / 100, mosaic_image_numpy.shape[1] / 100), dpi=100, frameon=False) plt.margins(0, 0) plt.gca().set_axis_off() plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.imshow(mosaic_image_numpy, 'gray', vmin=color_range_image[0], vmax=color_range_image[1], interpolation='none') plt.savefig(output_filepath, bbox_inches='tight', pad_inches=0.0, dpi=500) plt.clf() plt.close() return mosaic_image_numpy def generate_label_outlines(label_numpy, dim=2, mask_value=0): """ Assumes labels are > 0 and integers. Parameters ---------- input_volume: N-dimensional array The volume to be queried. mask_value: int or float Islands composed of "mask_value" will be ignored. return_split: bool Whether to a return a stacked output of equal-size binary arrays for each island, or to return one array with differently-labeled islands for each output. truncate: bool Whether or not to truncate the output. Irrelevant if return_split is False truncate_padding: int How many voxels of padding to leave when truncating. output_filepath: str If return_split is False, output will be saved to this file. If return_split is True, output will be save to this file with the suffix "_[#]" for island number Returns ------- output_array: N+1 or N-dimensional array Output array(s) depending on return_split """ edges_kernel = np.zeros((3, 3, 3), dtype=float) edges_kernel[1, 1, 1] = 4 if dim != 2: edges_kernel[1, 1, 0] = -1 edges_kernel[1, 1, 2] = -1 if dim != 1: edges_kernel[1, 0, 1] = -1 edges_kernel[1, 2, 1] = -1 if dim != 0: edges_kernel[0, 1, 1] = -1 edges_kernel[2, 1, 1] = -1 outline_label_numpy = np.zeros_like(label_numpy, dtype=float) for label_number in np.unique(label_numpy): if label_number != mask_value: sublabel_numpy = np.copy(label_numpy) sublabel_numpy[sublabel_numpy != label_number] = 0 edge_image = signal.convolve(sublabel_numpy, edges_kernel, mode='same').astype(int) edge_image[sublabel_numpy != label_number] = 0 edge_image[edge_image != 0] = label_number outline_label_numpy += edge_image.astype(float) return outline_label_numpy if __name__ == '__main__': pass
homeassistant/components/progettihwsw/const.py
tbarbette/core
30,023
11181660
"""Define constant variables for general usage.""" DOMAIN = "progettihwsw" DEFAULT_POLLING_INTERVAL_SEC = 5
benchmarks/import_cost/classes_100_with_5_invariants.py
kklein/icontract
244
11181783
<filename>benchmarks/import_cost/classes_100_with_5_invariants.py #!/usr/bin/env python3 import icontract @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass0: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass1: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass2: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass3: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass4: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass5: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass6: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass7: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass8: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass9: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass10: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass11: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass12: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass13: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass14: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass15: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass16: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass17: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass18: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass19: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass20: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass21: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass22: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass23: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass24: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass25: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass26: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass27: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass28: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass29: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass30: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass31: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass32: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass33: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass34: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass35: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass36: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass37: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass38: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass39: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass40: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass41: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass42: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass43: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass44: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass45: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass46: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass47: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass48: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass49: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass50: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass51: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass52: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass53: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass54: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass55: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass56: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass57: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass58: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass59: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass60: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass61: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass62: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass63: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass64: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass65: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass66: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass67: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass68: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass69: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass70: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass71: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass72: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass73: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass74: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass75: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass76: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass77: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass78: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass79: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass80: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass81: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass82: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass83: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass84: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass85: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass86: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass87: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass88: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass89: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass90: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass91: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass92: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass93: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass94: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass95: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass96: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass97: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass98: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass @icontract.invariant(lambda self: self.x > 0) @icontract.invariant(lambda self: self.x > 1) @icontract.invariant(lambda self: self.x > 2) @icontract.invariant(lambda self: self.x > 3) @icontract.invariant(lambda self: self.x > 4) class SomeClass99: def __init__(self) -> None: self.x = 100 def some_func(self) -> None: pass
aries_cloudagent/messaging/base_message.py
kuraakhilesh8230/aries-cloudagent-python
247
11181892
<gh_stars>100-1000 """Base message.""" from abc import ABC, abstractclassmethod, abstractmethod, abstractproperty from enum import Enum, auto from typing import Optional, Type, TYPE_CHECKING if TYPE_CHECKING: from .base_handler import BaseHandler class DIDCommVersion(Enum): """Serialized message formats.""" v1 = auto() v2 = auto() class BaseMessage(ABC): """Abstract base class for messages. This formally defines a "minimum viable message" and provides an unopinionated class for plugins to extend in whatever way makes sense in the context of the plugin. """ @abstractproperty def _type(self) -> str: """Return message type.""" @abstractproperty def _id(self) -> str: """Return message id.""" @abstractproperty def _thread_id(self) -> Optional[str]: """Return message thread id.""" @abstractmethod def serialize(self, msg_format: DIDCommVersion = DIDCommVersion.v1) -> dict: """Return serialized message in format specified.""" @abstractclassmethod def deserialize(cls, value: dict, msg_format: DIDCommVersion = DIDCommVersion.v1): """Return message object deserialized from value in format specified.""" @abstractproperty def Handler(self) -> Type["BaseHandler"]: """Return reference to handler class."""
insights/tests/test_integration_support.py
lhuett/insights-core
121
11181938
from insights.plugins.ps_rule_fakes import psaux_no_filter, psauxww_ds_filter, psalxwww_parser_filter from insights.specs import Specs from . import InputData, run_test import pytest def test_run_test_missing_filters_exception(): """ The rule underlying datasource requires a filter, an exception should be raised because filter was not added in the rule module. """ input_data = InputData("fake_input") input_data.add(Specs.ps_aux, "FAKE_CONTENT") with pytest.raises(Exception): run_test(psaux_no_filter, input_data, None) def test_run_test_no_missing_filters_using_datasource(): """ Required filter was added directly to the datasouce, ``run_test`` should complete without any exceptions. """ input_data = InputData("fake_input") input_data.add(Specs.ps_auxww, "FAKE_CONTENT") result = run_test(psauxww_ds_filter, input_data, None) assert result def test_run_test_no_missing_filters_using_parser(): """ Required filter was added to using the parser, ``run_test`` should complete without any exceptions. """ input_data = InputData("fake_input") input_data.add(Specs.ps_alxwww, "FAKE_CONTENT") result = run_test(psalxwww_parser_filter, input_data, None) assert result
tests/test_dataset.py
Harald-R/aw_nas
195
11181996
<gh_stars>100-1000 import os import pytest # we use environments variable to mark slow instead of register new pytest marks here. AWNAS_TEST_SLOW = os.environ.get("AWNAS_TEST_SLOW", None) @pytest.mark.skipif(not AWNAS_TEST_SLOW, reason="parse corpus might be slow, by default not test") def test_ptb_batchify(): from aw_nas.dataset import BaseDataset from aw_nas.utils import batchify_sentences dataset = BaseDataset.get_class_("ptb")() assert len(dataset.splits()["train"]) == 45438 assert len(dataset.splits()["test"]) == 3761 assert dataset.vocab_size == 10000 inputs, targets = batchify_sentences(dataset.splits()["test"], 32) assert inputs.shape[0] == targets.shape[0] assert inputs.shape[1] == targets.shape[1] == 32 def test_infinite_get_callback(): from aw_nas.utils.torch_utils import get_inf_iterator, SimpleDataset import torch import torch.utils.data dataset = torch.utils.data.DataLoader(SimpleDataset(([0,1,2,3], [1,2,3,4])), batch_size=2, num_workers=1) hiddens = [torch.rand(2) for _ in range(2)] ids = [id(hid) for hid in hiddens] callback = lambda: [hid.zero_() for hid in hiddens] queue = get_inf_iterator(dataset, callback) _ = next(queue) _ = next(queue) _ = next(queue) # should trigger callback assert all((hid == 0).all() for hid in hiddens), "hiddens should be reset" assert all(id_ == id(hid) for id_, hid in zip(ids, hiddens)), "hiddens should be reset in-place" @pytest.mark.skipif(not AWNAS_TEST_SLOW, reason="parse dataset might be slow, by default not test") def test_imagenet_sample_class(): from aw_nas.dataset import BaseDataset dataset = BaseDataset.get_class_("imagenet")(load_train_only=True, num_sample_classes=20, random_choose=True) assert len(dataset.choosen_classes) == 20
Examples/AppKit/CocoaBindings/CurrencyConvBinding/CurrencyConvBindingDocument.py
Khan/pyobjc-framework-Cocoa
132
11182024
from Cocoa import * class CurrencyConvBindingDocument (NSDocument): def windowNibName(self): return "CurrencyConvBindingDocument"
lbry/build_info.py
nishp77/lbry-sdk
4,996
11182044
# don't touch this. CI server changes this during build/deployment BUILD = "dev" COMMIT_HASH = "none" DOCKER_TAG = "none"
api/features/workflows/core/exceptions.py
SolidStateGroup/Bullet-Train-API
126
11182064
<filename>api/features/workflows/core/exceptions.py<gh_stars>100-1000 from rest_framework import status from rest_framework.exceptions import APIException class FeatureWorkflowError(APIException): status_code = status.HTTP_500_INTERNAL_SERVER_ERROR class ChangeRequestNotApprovedError(FeatureWorkflowError): status_code = status.HTTP_400_BAD_REQUEST class CannotApproveOwnChangeRequest(FeatureWorkflowError): status_code = status.HTTP_400_BAD_REQUEST