max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
Graphs/cc.py
Prince23598/cs-algorithms
239
12640889
#!/usr/bin/env python3 # Reference: Rosalind (http://rosalind.info/problems/cc/) def cc(g): """ >>> graph = [[1, 4], [0], [3, 6, 7], [2, 7], [0, 8, 9], [], [2, 10], \ [2, 3, 10, 11], [4, 9], [4, 8], [6, 7, 11], [10, 7]] >>> cc(graph) 3 """ def dfs(g, t, seen): for v in g[t]: if v not in seen: seen.add(v) dfs(g, v, seen) seen = set() cnt = 0 for v in range(len(g)): if v in seen: continue dfs(g, v, seen) cnt += 1 return cnt if __name__ == '__main__': import doctest doctest.testmod() with open('cc.txt') as f: line = f.readline() n, m = [int(x.strip()) for x in line.strip().split()] graph = [[] for _ in range(n)] for edge in range(m): line = f.readline() i, j = [int(x.strip()) for x in line.strip().split()] graph[i-1].append(j-1) graph[j-1].append(i-1) value = cc(graph) print(value)
model/carn.py
Gummary/denet
343
12640905
""" CutBlur Copyright 2020-present NAVER corp. MIT license Referenced from PCARN-pytorch, https://github.com/nmhkahn/PCARN-pytorch """ import torch import torch.nn as nn from model import ops class Group(nn.Module): def __init__(self, num_channels, num_blocks, res_scale=1.0): super().__init__() for nb in range(num_blocks): setattr(self, "b{}".format(nb+1), ops.ResBlock(num_channels, res_scale) ) setattr(self, "c{}".format(nb+1), nn.Conv2d(num_channels*(nb+2), num_channels, 1, 1, 0) ) self.num_blocks = num_blocks def forward(self, x): c = out = x for nb in range(self.num_blocks): unit_b = getattr(self, "b{}".format(nb+1)) unit_c = getattr(self, "c{}".format(nb+1)) b = unit_b(out) c = torch.cat([c, b], dim=1) out = unit_c(c) return out class Net(nn.Module): def __init__(self, opt): super().__init__() self.sub_mean = ops.MeanShift(255) self.add_mean = ops.MeanShift(255, sign=1) head = [ ops.DownBlock(opt.scale), nn.Conv2d(3*opt.scale**2, opt.num_channels, 3, 1, 1) ] # define body module for ng in range(opt.num_groups): setattr(self, "c{}".format(ng+1), nn.Conv2d(opt.num_channels*(ng+2), opt.num_channels, 1, 1, 0) ) setattr(self, "b{}".format(ng+1), Group(opt.num_channels, opt.num_blocks) ) tail = [ ops.Upsampler(opt.num_channels, opt.scale), nn.Conv2d(opt.num_channels, 3, 3, 1, 1) ] self.head = nn.Sequential(*head) self.tail = nn.Sequential(*tail) self.opt = opt def forward(self, x): x = self.sub_mean(x) x = self.head(x) c = out = x for ng in range(self.opt.num_groups): group = getattr(self, "b{}".format(ng+1)) conv = getattr(self, "c{}".format(ng+1)) g = group(out) c = torch.cat([c, g], dim=1) out = conv(c) res = out res += x x = self.tail(res) x = self.add_mean(x) return x
evennia/contrib/ingame_python/scripts.py
Jaykingamez/evennia
1,544
12640910
<gh_stars>1000+ """ Scripts for the in-game Python system. """ from datetime import datetime, timedelta from queue import Queue import re import sys import traceback from django.conf import settings from evennia import DefaultObject, DefaultScript, ChannelDB, ScriptDB from evennia import logger, ObjectDB from evennia.utils.ansi import raw from evennia.utils.create import create_channel from evennia.utils.dbserialize import dbserialize from evennia.utils.utils import all_from_module, delay, pypath_to_realpath from evennia.contrib.ingame_python.callbackhandler import CallbackHandler from evennia.contrib.ingame_python.utils import get_next_wait, EVENTS, InterruptEvent # Constants RE_LINE_ERROR = re.compile(r'^ File "\<string\>", line (\d+)') class EventHandler(DefaultScript): """ The event handler that contains all events in a global script. This script shouldn't be created more than once. It contains event (in a non-persistent attribute) and callbacks (in a persistent attribute). The script method would help adding, editing and deleting these events and callbacks. """ def at_script_creation(self): """Hook called when the script is created.""" self.key = "event_handler" self.desc = "Global event handler" self.persistent = True # Permanent data to be stored self.db.callbacks = {} self.db.to_valid = [] self.db.locked = [] # Tasks self.db.tasks = {} def at_start(self): """Set up the event system when starting. Note that this hook is called every time the server restarts (including when it's reloaded). This hook performs the following tasks: - Create temporarily stored events. - Generate locals (individual events' namespace). - Load eventfuncs, including user-defined ones. - Re-schedule tasks that aren't set to fire anymore. - Effectively connect the handler to the main script. """ self.ndb.events = {} for typeclass, name, variables, help_text, custom_call, custom_add in EVENTS: self.add_event(typeclass, name, variables, help_text, custom_call, custom_add) # Generate locals self.ndb.current_locals = {} self.ndb.fresh_locals = {} addresses = ["evennia.contrib.ingame_python.eventfuncs"] addresses.extend(getattr(settings, "EVENTFUNCS_LOCATIONS", ["world.eventfuncs"])) for address in addresses: if pypath_to_realpath(address): self.ndb.fresh_locals.update(all_from_module(address)) # Restart the delayed tasks now = datetime.now() for task_id, definition in tuple(self.db.tasks.items()): future, obj, event_name, locals = definition seconds = (future - now).total_seconds() if seconds < 0: seconds = 0 delay(seconds, complete_task, task_id) # Place the script in the CallbackHandler from evennia.contrib.ingame_python import typeclasses CallbackHandler.script = self DefaultObject.callbacks = typeclasses.EventObject.callbacks # Create the channel if non-existent try: self.ndb.channel = ChannelDB.objects.get(db_key="everror") except ChannelDB.DoesNotExist: self.ndb.channel = create_channel( "everror", desc="Event errors", locks="control:false();listen:perm(Builders);send:false()", ) def get_events(self, obj): """ Return a dictionary of events on this object. Args: obj (Object or typeclass): the connected object or a general typeclass. Returns: A dictionary of the object's events. Notes: Events would define what the object can have as callbacks. Note, however, that chained callbacks will not appear in events and are handled separately. You can also request the events of a typeclass, not a connected object. This is useful to get the global list of events for a typeclass that has no object yet. """ events = {} all_events = self.ndb.events classes = Queue() if isinstance(obj, type): classes.put(obj) else: classes.put(type(obj)) invalid = [] while not classes.empty(): typeclass = classes.get() typeclass_name = typeclass.__module__ + "." + typeclass.__name__ for key, etype in all_events.get(typeclass_name, {}).items(): if key in invalid: continue if etype[0] is None: # Invalidate invalid.append(key) continue if key not in events: events[key] = etype # Look for the parent classes for parent in typeclass.__bases__: classes.put(parent) return events def get_variable(self, variable_name): """ Return the variable defined in the locals. This can be very useful to check the value of a variable that can be modified in an event, and whose value will be used in code. This system allows additional customization. Args: variable_name (str): the name of the variable to return. Returns: The variable if found in the locals. None if not found in the locals. Note: This will return the variable from the current locals. Keep in mind that locals are shared between events. As every event is called one by one, this doesn't pose additional problems if you get the variable right after an event has been executed. If, however, you differ, there's no guarantee the variable will be here or will mean the same thing. """ return self.ndb.current_locals.get(variable_name) def get_callbacks(self, obj): """ Return a dictionary of the object's callbacks. Args: obj (Object): the connected objects. Returns: A dictionary of the object's callbacks. Note: This method can be useful to override in some contexts, when several objects would share callbacks. """ obj_callbacks = self.db.callbacks.get(obj, {}) callbacks = {} for callback_name, callback_list in obj_callbacks.items(): new_list = [] for i, callback in enumerate(callback_list): callback = dict(callback) callback["obj"] = obj callback["name"] = callback_name callback["number"] = i new_list.append(callback) if new_list: callbacks[callback_name] = new_list return callbacks def add_callback(self, obj, callback_name, code, author=None, valid=False, parameters=""): """ Add the specified callback. Args: obj (Object): the Evennia typeclassed object to be extended. callback_name (str): the name of the callback to add. code (str): the Python code associated with this callback. author (Character or Account, optional): the author of the callback. valid (bool, optional): should the callback be connected? parameters (str, optional): optional parameters. Note: This method doesn't check that the callback type exists. """ obj_callbacks = self.db.callbacks.get(obj, {}) if not obj_callbacks: self.db.callbacks[obj] = {} obj_callbacks = self.db.callbacks[obj] callbacks = obj_callbacks.get(callback_name, []) if not callbacks: obj_callbacks[callback_name] = [] callbacks = obj_callbacks[callback_name] # Add the callback in the list callbacks.append( { "created_on": datetime.now(), "author": author, "valid": valid, "code": code, "parameters": parameters, } ) # If not valid, set it in 'to_valid' if not valid: self.db.to_valid.append((obj, callback_name, len(callbacks) - 1)) # Call the custom_add if needed custom_add = self.get_events(obj).get(callback_name, [None, None, None, None])[3] if custom_add: custom_add(obj, callback_name, len(callbacks) - 1, parameters) # Build the definition to return (a dictionary) definition = dict(callbacks[-1]) definition["obj"] = obj definition["name"] = callback_name definition["number"] = len(callbacks) - 1 return definition def edit_callback(self, obj, callback_name, number, code, author=None, valid=False): """ Edit the specified callback. Args: obj (Object): the Evennia typeclassed object to be edited. callback_name (str): the name of the callback to edit. number (int): the callback number to be changed. code (str): the Python code associated with this callback. author (Character or Account, optional): the author of the callback. valid (bool, optional): should the callback be connected? Raises: RuntimeError if the callback is locked. Note: This method doesn't check that the callback type exists. """ obj_callbacks = self.db.callbacks.get(obj, {}) if not obj_callbacks: self.db.callbacks[obj] = {} obj_callbacks = self.db.callbacks[obj] callbacks = obj_callbacks.get(callback_name, []) if not callbacks: obj_callbacks[callback_name] = [] callbacks = obj_callbacks[callback_name] # If locked, don't edit it if (obj, callback_name, number) in self.db.locked: raise RuntimeError("this callback is locked.") # Edit the callback callbacks[number].update( {"updated_on": datetime.now(), "updated_by": author, "valid": valid, "code": code} ) # If not valid, set it in 'to_valid' if not valid and (obj, callback_name, number) not in self.db.to_valid: self.db.to_valid.append((obj, callback_name, number)) elif valid and (obj, callback_name, number) in self.db.to_valid: self.db.to_valid.remove((obj, callback_name, number)) # Build the definition to return (a dictionary) definition = dict(callbacks[number]) definition["obj"] = obj definition["name"] = callback_name definition["number"] = number return definition def del_callback(self, obj, callback_name, number): """ Delete the specified callback. Args: obj (Object): the typeclassed object containing the callback. callback_name (str): the name of the callback to delete. number (int): the number of the callback to delete. Raises: RuntimeError if the callback is locked. """ obj_callbacks = self.db.callbacks.get(obj, {}) callbacks = obj_callbacks.get(callback_name, []) # If locked, don't edit it if (obj, callback_name, number) in self.db.locked: raise RuntimeError("this callback is locked.") # Delete the callback itself try: code = callbacks[number]["code"] except IndexError: return else: logger.log_info( "Deleting callback {} {} of {}:\n{}".format(callback_name, number, obj, code) ) del callbacks[number] # Change IDs of callbacks to be validated i = 0 while i < len(self.db.to_valid): t_obj, t_callback_name, t_number = self.db.to_valid[i] if obj is t_obj and callback_name == t_callback_name: if t_number == number: # Strictly equal, delete the callback del self.db.to_valid[i] i -= 1 elif t_number > number: # Change the ID for this callback self.db.to_valid.insert(i, (t_obj, t_callback_name, t_number - 1)) del self.db.to_valid[i + 1] i += 1 # Update locked callback for i, line in enumerate(self.db.locked): t_obj, t_callback_name, t_number = line if obj is t_obj and callback_name == t_callback_name: if number < t_number: self.db.locked[i] = (t_obj, t_callback_name, t_number - 1) # Delete time-related callbacks associated with this object for script in obj.scripts.all(): if isinstance(script, TimecallbackScript): if script.obj is obj and script.db.callback_name == callback_name: if script.db.number == number: script.stop() elif script.db.number > number: script.db.number -= 1 def accept_callback(self, obj, callback_name, number): """ Valid a callback. Args: obj (Object): the object containing the callback. callback_name (str): the name of the callback. number (int): the number of the callback. """ obj_callbacks = self.db.callbacks.get(obj, {}) callbacks = obj_callbacks.get(callback_name, []) # Accept and connect the callback callbacks[number].update({"valid": True}) if (obj, callback_name, number) in self.db.to_valid: self.db.to_valid.remove((obj, callback_name, number)) def call(self, obj, callback_name, *args, **kwargs): """ Call the connected callbacks. Args: obj (Object): the Evennia typeclassed object. callback_name (str): the callback name to call. *args: additional variables for this callback. Keyword Args: number (int, optional): call just a specific callback. parameters (str, optional): call a callback with parameters. locals (dict, optional): a locals replacement. Returns: True to report the callback was called without interruption, False otherwise. """ # First, look for the callback type corresponding to this name number = kwargs.get("number") parameters = kwargs.get("parameters") locals = kwargs.get("locals") # Errors should not pass silently allowed = ("number", "parameters", "locals") if any(k for k in kwargs if k not in allowed): raise TypeError( "Unknown keyword arguments were specified " "to call callbacks: {}".format(kwargs) ) event = self.get_events(obj).get(callback_name) if locals is None and not event: logger.log_err( "The callback {} for the object {} (typeclass " "{}) can't be found".format(callback_name, obj, type(obj)) ) return False # Prepare the locals if necessary if locals is None: locals = self.ndb.fresh_locals.copy() for i, variable in enumerate(event[0]): try: locals[variable] = args[i] except IndexError: logger.log_trace( "callback {} of {} ({}): need variable " "{} in position {}".format(callback_name, obj, type(obj), variable, i) ) return False else: locals = {key: value for key, value in locals.items()} callbacks = self.get_callbacks(obj).get(callback_name, []) if event: custom_call = event[2] if custom_call: callbacks = custom_call(callbacks, parameters) # Now execute all the valid callbacks linked at this address self.ndb.current_locals = locals for i, callback in enumerate(callbacks): if not callback["valid"]: continue if number is not None and callback["number"] != number: continue try: exec(callback["code"], locals, locals) except InterruptEvent: return False except Exception: etype, evalue, tb = sys.exc_info() trace = traceback.format_exception(etype, evalue, tb) self.handle_error(callback, trace) return True def handle_error(self, callback, trace): """ Handle an error in a callback. Args: callback (dict): the callback representation. trace (list): the traceback containing the exception. Notes: This method can be useful to override to change the default handling of errors. By default, the error message is sent to the character who last updated the callback, if connected. If not, display to the everror channel. """ callback_name = callback["name"] number = callback["number"] obj = callback["obj"] oid = obj.id logger.log_err( "An error occurred during the callback {} of " "{} (#{}), number {}\n{}".format(callback_name, obj, oid, number + 1, "\n".join(trace)) ) # Create the error message line = "|runknown|n" lineno = "|runknown|n" for error in trace: if error.startswith(' File "<string>", line '): res = RE_LINE_ERROR.search(error) if res: lineno = int(res.group(1)) # Try to extract the line try: line = raw(callback["code"].splitlines()[lineno - 1]) except IndexError: continue else: break exc = raw(trace[-1].strip("\n").splitlines()[-1]) err_msg = "Error in {} of {} (#{})[{}], line {}:" " {}\n{}".format( callback_name, obj, oid, number + 1, lineno, line, exc ) # Inform the last updater if connected updater = callback.get("updated_by") if updater is None: updater = callback["created_by"] if updater and updater.sessions.all(): updater.msg(err_msg) else: err_msg = "Error in {} of {} (#{})[{}], line {}:" " {}\n {}".format( callback_name, obj, oid, number + 1, lineno, line, exc ) self.ndb.channel.msg(err_msg) def add_event(self, typeclass, name, variables, help_text, custom_call, custom_add): """ Add a new event for a defined typeclass. Args: typeclass (str): the path leading to the typeclass. name (str): the name of the event to add. variables (list of str): list of variable names for this event. help_text (str): the long help text of the event. custom_call (callable or None): the function to be called when the event fires. custom_add (callable or None): the function to be called when a callback is added. """ if typeclass not in self.ndb.events: self.ndb.events[typeclass] = {} events = self.ndb.events[typeclass] if name not in events: events[name] = (variables, help_text, custom_call, custom_add) def set_task(self, seconds, obj, callback_name): """ Set and schedule a task to run. Args: seconds (int, float): the delay in seconds from now. obj (Object): the typecalssed object connected to the event. callback_name (str): the callback's name. Notes: This method allows to schedule a "persistent" task. 'utils.delay' is called, but a copy of the task is kept in the event handler, and when the script restarts (after reload), the differed delay is called again. The dictionary of locals is frozen and will be available again when the task runs. This feature, however, is limited by the database: all data cannot be saved. Lambda functions, class methods, objects inside an instance and so on will not be kept in the locals dictionary. """ now = datetime.now() delta = timedelta(seconds=seconds) # Choose a free task_id used_ids = list(self.db.tasks.keys()) task_id = 1 while task_id in used_ids: task_id += 1 # Collect and freeze current locals locals = {} for key, value in self.ndb.current_locals.items(): try: dbserialize(value) except TypeError: continue else: locals[key] = value self.db.tasks[task_id] = (now + delta, obj, callback_name, locals) delay(seconds, complete_task, task_id) # Script to call time-related events class TimeEventScript(DefaultScript): """Gametime-sensitive script.""" def at_script_creation(self): """The script is created.""" self.start_delay = True self.persistent = True # Script attributes self.db.time_format = None self.db.event_name = "time" self.db.number = None def at_repeat(self): """ Call the event and reset interval. It is necessary to restart the script to reset its interval only twice after a reload. When the script has undergone down time, there's usually a slight shift in game time. Once the script restarts once, it will set the average time it needs for all its future intervals and should not need to be restarted. In short, a script that is created shouldn't need to restart more than once, and a script that is reloaded should restart only twice. """ if self.db.time_format: # If the 'usual' time is set, use it seconds = self.ndb.usual if seconds is None: seconds, usual, details = get_next_wait(self.db.time_format) self.ndb.usual = usual if self.interval != seconds: self.restart(interval=seconds) if self.db.event_name and self.db.number is not None: obj = self.obj if not obj.callbacks: return event_name = self.db.event_name number = self.db.number obj.callbacks.call(event_name, obj, number=number) # Functions to manipulate tasks def complete_task(task_id): """ Mark the task in the event handler as complete. Args: task_id (int): the task ID. Note: This function should be called automatically for individual tasks. """ try: script = ScriptDB.objects.get(db_key="event_handler") except ScriptDB.DoesNotExist: logger.log_trace("Can't get the event handler.") return if task_id not in script.db.tasks: logger.log_err("The task #{} was scheduled, but it cannot be " "found".format(task_id)) return delta, obj, callback_name, locals = script.db.tasks.pop(task_id) script.call(obj, callback_name, locals=locals)
alipay/aop/api/response/AlipayMarketingCdpRecommendQueryResponse.py
snowxmas/alipay-sdk-python-all
213
12640921
<reponame>snowxmas/alipay-sdk-python-all #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayMarketingCdpRecommendQueryResponse(AlipayResponse): def __init__(self): super(AlipayMarketingCdpRecommendQueryResponse, self).__init__() self._recommend_id = None self._shop_info = None @property def recommend_id(self): return self._recommend_id @recommend_id.setter def recommend_id(self, value): self._recommend_id = value @property def shop_info(self): return self._shop_info @shop_info.setter def shop_info(self, value): self._shop_info = value def parse_response_content(self, response_content): response = super(AlipayMarketingCdpRecommendQueryResponse, self).parse_response_content(response_content) if 'recommend_id' in response: self.recommend_id = response['recommend_id'] if 'shop_info' in response: self.shop_info = response['shop_info']
descarteslabs/scenes/tests/test_search.py
descarteslabs/descarteslabs-python
167
12640928
import unittest import datetime from descarteslabs.scenes import geocontext, search from shapely.geometry import shape import mock from .mock_data import _metadata_search, _cached_bands_by_product class TestScenesSearch(unittest.TestCase): geom = { "coordinates": ( ( (-95.836498, 39.278486), (-92.068696, 39.278486), (-92.068696, 42.799988), (-95.836498, 42.799988), (-95.836498, 39.278486), ), ), "type": "Polygon", } @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.cached_bands_by_product", _cached_bands_by_product, ) def test_search_geom(self): sc, ctx = search(self.geom, products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available assert isinstance(ctx, geocontext.AOI) assert ctx.__geo_interface__ == self.geom assert ctx.resolution == 15 assert ctx.crs == "EPSG:32615" for scene in sc: # allow for changes in publicly available data assert abs(len(scene.properties.bands) - 24) < 4 assert "derived:ndvi" in scene.properties.bands @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.cached_bands_by_product", _cached_bands_by_product, ) def test_search_shapely(self): sc, ctx = search(shape(self.geom), products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) == 2 assert isinstance(ctx, geocontext.AOI) assert ctx.__geo_interface__ == self.geom assert ctx.resolution == 15 assert ctx.crs == "EPSG:32615" for scene in sc: # allow for changes in publicly available data assert abs(len(scene.properties.bands) - 24) < 4 assert "derived:ndvi" in scene.properties.bands @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.cached_bands_by_product", _cached_bands_by_product, ) def test_search_AOI(self): aoi = geocontext.AOI(self.geom, resolution=5) sc, ctx = search(aoi, products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available assert ctx.resolution == 5 assert ctx.crs == "EPSG:32615" @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.cached_bands_by_product", _cached_bands_by_product, ) def test_search_AOI_with_shape(self): aoi = geocontext.AOI(self.geom, shape=(100, 100)) sc, ctx = search(aoi, products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available assert ctx.resolution is None assert ctx.shape == aoi.shape assert ctx.crs == "EPSG:32615" @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.cached_bands_by_product", _cached_bands_by_product, ) def test_search_dltile(self): tile = geocontext.DLTile( { "geometry": { "coordinates": [ [ [-94.50970627780103, 40.460817879515986], [-93.75494640538922, 40.468212507270195], [-93.76149667591069, 41.04471363474632], [-94.5228005945451, 41.03716803374444], [-94.50970627780103, 40.460817879515986], ] ], "type": "Polygon", }, "properties": { "cs_code": "EPSG:32615", "key": "64:0:1000.0:15:-2:70", "outputBounds": [372000.0, 4480000.0, 436000.0, 4544000.0], "pad": 0, "resolution": 1000.0, "ti": -2, "tilesize": 64, "tj": 70, "zone": 15, }, } ) sc, ctx = search(tile, products="landsat:LC08:PRE:TOAR", limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available assert ctx == tile @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.cached_bands_by_product", _cached_bands_by_product, ) def test_search_no_products(self): sc, ctx = search(self.geom, limit=4) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available @mock.patch("descarteslabs.scenes._search.Metadata.search", _metadata_search) @mock.patch( "descarteslabs.scenes._search.cached_bands_by_product", _cached_bands_by_product, ) def test_search_datetime(self): start_datetime = datetime.datetime(2016, 7, 6) end_datetime = datetime.datetime(2016, 7, 15) sc, ctx = search( self.geom, products="landsat:LC08:PRE:TOAR", start_datetime=start_datetime, end_datetime=end_datetime, limit=4, ) assert len(sc) > 0 assert len(sc) <= 4 # test client only has 2 scenes available for scene in sc: assert scene.properties["date"] >= start_datetime assert scene.properties["date"] <= end_datetime
snips_nlu/slot_filler/crf_utils.py
CharlyBlavier/snips-nlu-Copy
3,764
12640930
<gh_stars>1000+ from __future__ import unicode_literals from builtins import range from enum import Enum, unique from snips_nlu.constants import END, SLOT_NAME, START, TEXT from snips_nlu.preprocessing import Token, tokenize from snips_nlu.result import unresolved_slot BEGINNING_PREFIX = "B-" INSIDE_PREFIX = "I-" LAST_PREFIX = "L-" UNIT_PREFIX = "U-" OUTSIDE = "O" RANGE = "range" TAGS = "tags" TOKENS = "tokens" @unique class TaggingScheme(Enum): """CRF Coding Scheme""" IO = 0 """Inside-Outside scheme""" BIO = 1 """Beginning-Inside-Outside scheme""" BILOU = 2 """Beginning-Inside-Last-Outside-Unit scheme, sometimes referred as BWEMO""" def tag_name_to_slot_name(tag): return tag[2:] def start_of_io_slot(tags, i): if i == 0: return tags[i] != OUTSIDE if tags[i] == OUTSIDE: return False return tags[i - 1] == OUTSIDE def end_of_io_slot(tags, i): if i + 1 == len(tags): return tags[i] != OUTSIDE if tags[i] == OUTSIDE: return False return tags[i + 1] == OUTSIDE def start_of_bio_slot(tags, i): if i == 0: return tags[i] != OUTSIDE if tags[i] == OUTSIDE: return False if tags[i].startswith(BEGINNING_PREFIX): return True if tags[i - 1] != OUTSIDE: return False return True def end_of_bio_slot(tags, i): if i + 1 == len(tags): return tags[i] != OUTSIDE if tags[i] == OUTSIDE: return False if tags[i + 1].startswith(INSIDE_PREFIX): return False return True def start_of_bilou_slot(tags, i): if i == 0: return tags[i] != OUTSIDE if tags[i] == OUTSIDE: return False if tags[i].startswith(BEGINNING_PREFIX): return True if tags[i].startswith(UNIT_PREFIX): return True if tags[i - 1].startswith(UNIT_PREFIX): return True if tags[i - 1].startswith(LAST_PREFIX): return True if tags[i - 1] != OUTSIDE: return False return True def end_of_bilou_slot(tags, i): if i + 1 == len(tags): return tags[i] != OUTSIDE if tags[i] == OUTSIDE: return False if tags[i + 1] == OUTSIDE: return True if tags[i].startswith(LAST_PREFIX): return True if tags[i].startswith(UNIT_PREFIX): return True if tags[i + 1].startswith(BEGINNING_PREFIX): return True if tags[i + 1].startswith(UNIT_PREFIX): return True return False def _tags_to_preslots(tags, tokens, is_start_of_slot, is_end_of_slot): slots = [] current_slot_start = 0 for i, tag in enumerate(tags): if is_start_of_slot(tags, i): current_slot_start = i if is_end_of_slot(tags, i): slots.append({ RANGE: { START: tokens[current_slot_start].start, END: tokens[i].end }, SLOT_NAME: tag_name_to_slot_name(tag) }) current_slot_start = i return slots def tags_to_preslots(tokens, tags, tagging_scheme): if tagging_scheme == TaggingScheme.IO: slots = _tags_to_preslots(tags, tokens, start_of_io_slot, end_of_io_slot) elif tagging_scheme == TaggingScheme.BIO: slots = _tags_to_preslots(tags, tokens, start_of_bio_slot, end_of_bio_slot) elif tagging_scheme == TaggingScheme.BILOU: slots = _tags_to_preslots(tags, tokens, start_of_bilou_slot, end_of_bilou_slot) else: raise ValueError("Unknown tagging scheme %s" % tagging_scheme) return slots def tags_to_slots(text, tokens, tags, tagging_scheme, intent_slots_mapping): slots = tags_to_preslots(tokens, tags, tagging_scheme) return [ unresolved_slot(match_range=slot[RANGE], value=text[slot[RANGE][START]:slot[RANGE][END]], entity=intent_slots_mapping[slot[SLOT_NAME]], slot_name=slot[SLOT_NAME]) for slot in slots ] def positive_tagging(tagging_scheme, slot_name, slot_size): if slot_name == OUTSIDE: return [OUTSIDE for _ in range(slot_size)] if tagging_scheme == TaggingScheme.IO: tags = [INSIDE_PREFIX + slot_name for _ in range(slot_size)] elif tagging_scheme == TaggingScheme.BIO: if slot_size > 0: tags = [BEGINNING_PREFIX + slot_name] tags += [INSIDE_PREFIX + slot_name for _ in range(1, slot_size)] else: tags = [] elif tagging_scheme == TaggingScheme.BILOU: if slot_size == 0: tags = [] elif slot_size == 1: tags = [UNIT_PREFIX + slot_name] else: tags = [BEGINNING_PREFIX + slot_name] tags += [INSIDE_PREFIX + slot_name for _ in range(1, slot_size - 1)] tags.append(LAST_PREFIX + slot_name) else: raise ValueError("Invalid tagging scheme %s" % tagging_scheme) return tags def negative_tagging(size): return [OUTSIDE for _ in range(size)] def utterance_to_sample(query_data, tagging_scheme, language): tokens, tags = [], [] current_length = 0 for chunk in query_data: chunk_tokens = tokenize(chunk[TEXT], language) tokens += [Token(t.value, current_length + t.start, current_length + t.end) for t in chunk_tokens] current_length += len(chunk[TEXT]) if SLOT_NAME not in chunk: tags += negative_tagging(len(chunk_tokens)) else: tags += positive_tagging(tagging_scheme, chunk[SLOT_NAME], len(chunk_tokens)) return {TOKENS: tokens, TAGS: tags} def get_scheme_prefix(index, indexes, tagging_scheme): if tagging_scheme == TaggingScheme.IO: return INSIDE_PREFIX elif tagging_scheme == TaggingScheme.BIO: if index == indexes[0]: return BEGINNING_PREFIX return INSIDE_PREFIX elif tagging_scheme == TaggingScheme.BILOU: if len(indexes) == 1: return UNIT_PREFIX if index == indexes[0]: return BEGINNING_PREFIX if index == indexes[-1]: return LAST_PREFIX return INSIDE_PREFIX else: raise ValueError("Invalid tagging scheme %s" % tagging_scheme)
tests/test_check_www_redirect.py
Prodject/yawast
200
12640973
# Copyright (c) 2013 - 2020 <NAME> and Contributors. # This file is part of YAWAST which is released under the MIT license. # See the LICENSE file or go to https://yawast.org/license/ for full license details. from unittest import TestCase from yawast.shared import network class TestCheckWwwRedirect(TestCase): def test_check_www_redirect_valid(self): self.assertEqual( "https://adamcaudill.com/", network.check_www_redirect("https://www.adamcaudill.com/"), ) def test_check_www_redirect_none(self): self.assertEqual( "https://adamcaudill.com/", network.check_www_redirect("https://adamcaudill.com/"), ) def test_check_www_redirect_www(self): self.assertEqual( "https://www.apple.com/", network.check_www_redirect("https://apple.com/") )
tests/buildah_test.py
msaladna/mitogen
1,526
12640990
import os import mitogen import unittest2 import testlib class ConstructorTest(testlib.RouterMixin, testlib.TestCase): def test_okay(self): buildah_path = testlib.data_path('stubs/stub-buildah.py') context = self.router.buildah( container='container_name', buildah_path=buildah_path, ) stream = self.router.stream_by_id(context.context_id) argv = eval(context.call(os.getenv, 'ORIGINAL_ARGV')) self.assertEquals(argv[0], buildah_path) self.assertEquals(argv[1], 'run') self.assertEquals(argv[2], '--') self.assertEquals(argv[3], 'container_name') self.assertEquals(argv[4], stream.conn.options.python_path) if __name__ == '__main__': unittest2.main()
auctioning_platform/shipping_infrastructure/shipping_infrastructure/repositories/__init__.py
nhdinh/smp-modulith
299
12640997
__all__ = ["FakeAddressRepository"] from shipping_infrastructure.repositories.address import FakeAddressRepository
scripts/androaxml.py
jamjven/ATX
1,132
12641015
<reponame>jamjven/ATX #!/usr/bin/env python # This file is part of Androguard. # # Copyright (C) 2012, <NAME> <desnos at t0t0.fr> # All rights reserved. # # Androguard is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Androguard is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Androguard. If not, see <http://www.gnu.org/licenses/>. import os __dir__ = os.path.relpath(os.path.dirname(os.path.abspath(__file__))) import sys sys.path.append(os.path.join(__dir__, "androguard.zip")) from optparse import OptionParser from xml.dom import minidom import codecs import string from androguard.core import androconf from androguard.core.bytecodes import apk #option_0 = { 'name' : ('-i', '--input'), 'help' : 'filename input (APK or android\'s binary xml)', 'nargs' : 1 } option_1 = {'name' : ('-f', '--format'), 'help': 'output format', 'nargs': 1, 'default': '$package' } option_2 = { 'name': ('-v', '--version'), 'help':'version of the API', 'action': 'count' } options = [option_1, option_2] def xml2parse(dom, strformat='$package/$activity'): root = dom.getElementsByTagName("manifest")[0] package = root.getAttribute('package') activity = '' for e in root.getElementsByTagName('activity'): name = e.getAttribute('android:name') t = e.getElementsByTagName('intent-filter') if t: activity = name print string.Template(strformat).safe_substitute( package=package, activity = activity) def main(options, filename) : if filename != None : buff = "" ret_type = androconf.is_android(filename) if ret_type == "APK": a = apk.APK(filename) dom = a.get_android_manifest_xml() #buff = a.get_android_manifest_xml().toprettyxml(encoding="utf-8") #a.get_activities() xml2parse(dom) elif ".xml" in filename: ap = apk.AXMLPrinter(open(filename, "rb").read()) buff = minidom.parseString(ap.get_buff()).toprettyxml(encoding="utf-8") else: print "Unknown file type" return #if options.output != None : # fd = codecs.open(options.output, "w", "utf-8") # fd.write( buff ) # fd.close() #else : # print buff elif options.version != None : print "Androaxml version %s" % androconf.ANDROGUARD_VERSION if __name__ == "__main__" : parser = OptionParser() for option in options : param = option['name'] del option['name'] parser.add_option(*param, **option) options, arguments = parser.parse_args() if len(arguments) == 0: sys.exit('use --help for more help') sys.argv[:] = arguments main(options, arguments[0])
python/veles/tests/schema/test_polymodel.py
pombredanne/veles
918
12641018
# Copyright 2017 CodiLime # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals import unittest import six from veles.schema import fields from veles.schema.model import PolymorphicModel from veles.proto.exceptions import SchemaError class BaseNieZlew(PolymorphicModel): pass class NieZlew(BaseNieZlew): object_type = 'nie_zlew' pole = fields.String(optional=True) class BaseZlew(PolymorphicModel): imie = fields.String(optional=True) class Zlew(BaseZlew): object_type = 'zlew' odplyw = fields.String() class TurboZlew(Zlew): object_type = 'turbozlew' dopalacz = fields.Binary() class WieloZlew(BaseZlew): przeplyw = fields.Integer(default=13) class DwuZlew(WieloZlew): object_type = 'dwuzlew' lewy = fields.Object(Zlew) prawy = fields.Object(Zlew) class PietroZlew(WieloZlew): object_type = 'pietrozlew' pietra = fields.List(fields.Object(BaseZlew)) class TestModel(unittest.TestCase): def test_fields(self): self.assertEqual(set(BaseZlew.fields), { BaseZlew.imie }) self.assertEqual(set(Zlew.fields), { BaseZlew.imie, Zlew.odplyw }) self.assertEqual(set(TurboZlew.fields), { BaseZlew.imie, Zlew.odplyw, TurboZlew.dopalacz }) self.assertEqual(set(WieloZlew.fields), { BaseZlew.imie, WieloZlew.przeplyw }) self.assertEqual(set(DwuZlew.fields), { BaseZlew.imie, WieloZlew.przeplyw, DwuZlew.lewy, DwuZlew.prawy }) self.assertEqual(set(PietroZlew.fields), { BaseZlew.imie, WieloZlew.przeplyw, PietroZlew.pietra }) def test_object_types(self): self.assertEqual(set(BaseZlew.object_types), { 'zlew', 'turbozlew', 'dwuzlew', 'pietrozlew', }) for x in BaseZlew.object_types: self.assertIsInstance(x, six.text_type) class BaseAbc(PolymorphicModel): pass with self.assertRaises(TypeError): class Abc(BaseAbc): object_type = b'abc' with self.assertRaises(TypeError): class Def(BaseAbc): object_type = 1234 def test_init(self): a = Zlew(odplyw='o') b = TurboZlew(odplyw='wzium', dopalacz=b'\xf3\x90') c = DwuZlew(lewy=a, prawy=b) d = PietroZlew(imie='Jasiu', pietra=[c], przeplyw=1) with self.assertRaises(TypeError): BaseZlew(imie='Sid') with self.assertRaises(TypeError): WieloZlew(imie='Legion') with self.assertRaises(SchemaError): DwuZlew(lewy=a, prawy=d) def test_dump(self): a = Zlew(odplyw='o') b = TurboZlew(odplyw='wzium', dopalacz=b'\xf3\x90') c = DwuZlew(lewy=a, prawy=b) d = PietroZlew(imie='Jasiu', pietra=[c], przeplyw=1) da = a.dump() db = b.dump() dc = c.dump() dd = d.dump() for x in da: self.assertIsInstance(x, six.text_type) for x in db: self.assertIsInstance(x, six.text_type) for x in dc: self.assertIsInstance(x, six.text_type) for x in dd: self.assertIsInstance(x, six.text_type) self.assertEqual(da, { 'object_type': 'zlew', 'imie': None, 'odplyw': 'o', }) self.assertEqual(db, { 'object_type': 'turbozlew', 'imie': None, 'odplyw': 'wzium', 'dopalacz': b'\xf3\x90', }) self.assertEqual(dc, { 'object_type': 'dwuzlew', 'imie': None, 'lewy': da, 'prawy': db, 'przeplyw': 13, }) self.assertEqual(dd, { 'object_type': 'pietrozlew', 'imie': 'Jasiu', 'pietra': [dc], 'przeplyw': 1, }) def test_load(self): a = Zlew(odplyw='o') b = TurboZlew(odplyw='wzium', dopalacz=b'\xf3\x90') c = DwuZlew(lewy=a, prawy=b) d = PietroZlew(imie='Jasiu', pietra=[c], przeplyw=1) da = a.dump() db = b.dump() dc = c.dump() dd = d.dump() self.assertEqual(BaseZlew.load(da), a) self.assertEqual(Zlew.load(da), a) with self.assertRaises(SchemaError): TurboZlew.load(da) with self.assertRaises(SchemaError): WieloZlew.load(da) with self.assertRaises(SchemaError): DwuZlew.load(da) with self.assertRaises(SchemaError): PietroZlew.load(da) with self.assertRaises(SchemaError): NieZlew.load(da) with self.assertRaises(SchemaError): BaseNieZlew.load(da) self.assertEqual(BaseZlew.load(db), b) self.assertEqual(Zlew.load(db), b) self.assertEqual(TurboZlew.load(db), b) with self.assertRaises(SchemaError): WieloZlew.load(db) with self.assertRaises(SchemaError): DwuZlew.load(db) with self.assertRaises(SchemaError): PietroZlew.load(db) with self.assertRaises(SchemaError): NieZlew.load(db) with self.assertRaises(SchemaError): BaseNieZlew.load(db) self.assertEqual(BaseZlew.load(dc), c) self.assertEqual(WieloZlew.load(dc), c) self.assertEqual(DwuZlew.load(dc), c) with self.assertRaises(SchemaError): Zlew.load(dc) with self.assertRaises(SchemaError): TurboZlew.load(dc) with self.assertRaises(SchemaError): PietroZlew.load(dc) with self.assertRaises(SchemaError): NieZlew.load(dc) with self.assertRaises(SchemaError): BaseNieZlew.load(dc) self.assertEqual(BaseZlew.load(dd), d) self.assertEqual(WieloZlew.load(dd), d) self.assertEqual(PietroZlew.load(dd), d) with self.assertRaises(SchemaError): Zlew.load(dd) with self.assertRaises(SchemaError): TurboZlew.load(dd) with self.assertRaises(SchemaError): DwuZlew.load(dd) with self.assertRaises(SchemaError): NieZlew.load(dd) with self.assertRaises(SchemaError): BaseNieZlew.load(dd) with self.assertRaises(SchemaError): BaseZlew.load({}) with self.assertRaises(SchemaError): BaseZlew.load({'object_type': 'nie_zlew'})
chrome/updater/run_updater_tests.py
Ron423c/chromium
575
12641025
# Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import logging import os import shutil import sys from test.integration_tests.common import path_finder path_finder.add_typ_dir_to_sys_path() import typ class Context(object): def __init__(self, build_dir): self.build_dir = build_dir def copy_file(source, destination): shutil.copyfile(source, destination) def main(): parser = typ.ArgumentParser() parser.add_argument('--build-dir', help='Specifies chromium build directory.') parser.add_argument('--target-gen-dir') runner = typ.Runner() # Set this when using context that will be passed to tests. runner.win_multiprocessing = typ.WinMultiprocessing.importable runner.parse_args(parser, argv=None, tests=[path_finder.get_integration_tests_dir()]) # setup logging level if runner.args.verbose > 1: level = logging.DEBUG else: level = logging.INFO logging.basicConfig(level=level) # copy dynamically generated updater version_info.py from # target gen directory to # //chrome/updater/test/integration_tests/updater so that # it can be imported as a module during test runs. target_gen_dir_abs_path = os.path.abspath(runner.args.target_gen_dir) version_file_path = os.path.join(target_gen_dir_abs_path, 'gen', 'chrome', 'updater', 'version_info.py') if os.path.exists(version_file_path): dest = os.path.join(path_finder.get_integration_tests_dir(), 'updater', 'version_info.py') copy_file(version_file_path, dest) else: logging.info('File not found: %s' % version_file_path) return -1 # copy dynamically generated updater branding_info.py from # target gen directory to # //chrome/updater/test/integration_tests/updater so that # it can be imported as a module during test runs. branding_file_path = os.path.join(target_gen_dir_abs_path, 'gen', 'chrome', 'updater', 'branding_info.py') if os.path.exists(branding_file_path): dest = os.path.join(path_finder.get_integration_tests_dir(), 'updater', 'branding_info.py') copy_file(branding_file_path, dest) else: logging.info('File not found: %s' % branding_file_path) return -2 runner.context = Context(runner.args.build_dir) return runner.run()[0] if __name__ == "__main__": sys.exit(main())
Packs/IntegrationsAndIncidentsHealthCheck/Scripts/GetFailedTasks/test_data/constants.py
diCagri/content
799
12641029
<reponame>diCagri/content INCIDENTS_RESULT = [ {'ModuleName': 'InnerServicesModule', 'Brand': 'Builtin', 'Category': 'Builtin', 'ID': '', 'Version': 0, 'Type': 1, 'Contents': { 'ErrorsPrivateDoNotUse': None, 'data': [ { 'CustomFields': {'dbotpredictionprobability': 0, 'detectionsla': {'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 20, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'remediationsla': {'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 7200, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'timetoassignment': {'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 0, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'urlsslverification': []}, 'ShardID': 0, 'account': '', 'activated': '0001-01-01T00:00:00Z', 'allRead': False, 'allReadWrite': False, 'attachment': None, 'autime': 1601398110261438200, 'canvases': None, 'category': '', 'closeNotes': '', 'closeReason': '', 'closed': '0001-01-01T00:00:00Z', 'closingUserId': '', 'created': '2020-09-29T16:48:30.261438285Z', 'dbotCreatedBy': 'admin', 'dbotCurrentDirtyFields': None, 'dbotDirtyFields': None, 'dbotMirrorDirection': '', 'dbotMirrorId': '', 'dbotMirrorInstance': '', 'dbotMirrorLastSync': '0001-01-01T00:00:00Z', 'dbotMirrorTags': None, 'details': '', 'droppedCount': 0, 'dueDate': '2020-10-09T16:48:30.261438285Z', 'feedBased': False, 'hasRole': False, 'id': '7', 'investigationId': '7', 'isPlayground': False, 'labels': [{'type': 'Instance', 'value': 'admin'}, {'type': 'Brand', 'value': 'Manual'}], 'lastJobRunTime': '0001-01-01T00:00:00Z', 'lastOpen': '2020-09-30T15:40:11.737120193Z', 'linkedCount': 0, 'linkedIncidents': None, 'modified': '2020-09-30T15:40:36.604919119Z', 'name': 'errors', 'notifyTime': '2020-09-29T16:48:30.436371249Z', 'occurred': '2020-09-29T16:48:30.261438058Z', 'openDuration': 62265, 'owner': '', 'parent': '', 'phase': '', 'playbookId': 'AutoFocusPolling', 'previousAllRead': False, 'previousAllReadWrite': False, 'previousRoles': None, 'rawCategory': '', 'rawCloseReason': '', 'rawJSON': '', 'rawName': 'errors', 'rawPhase': '', 'rawType': 'Unclassified', 'reason': '', 'reminder': '0001-01-01T00:00:00Z', 'roles': None, 'runStatus': 'error', 'severity': 0, 'sla': 0, 'sortValues': ['_score'], 'sourceBrand': 'Manual', 'sourceInstance': 'admin', 'status': 1, 'type': 'Unclassified', 'version': 8}, { 'CustomFields': {'dbotpredictionprobability': 0, 'detectionsla': {'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 20, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'integrationscategories': ['Utilities', 'Utilities', 'Utilities', 'Utilities', 'Endpoint', 'Messaging', 'Data Enrichment & Threat Intelligence'], 'integrationsfailedcategories': [ 'Data Enrichment & Threat Intelligence', 'Endpoint'], 'numberofentriesiderrors': 0, 'numberoffailedincidents': 0, 'remediationsla': {'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 7200, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'timetoassignment': { 'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 0, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'totalfailedinstances': 2, 'totalgoodinstances': 7, 'totalinstances': 9, 'unassignedincidents': [], 'urlsslverification': []}, 'ShardID': 0, 'account': '', 'activated': '0001-01-01T00:00:00Z', 'allRead': False, 'allReadWrite': False, 'attachment': None, 'autime': 1601388165826470700, 'canvases': None, 'category': '', 'closeNotes': 'Created a new incident type.', 'closeReason': '', 'closed': '0001-01-01T00:00:00Z', 'closingUserId': '', 'created': '2020-09-29T14:02:45.82647067Z', 'dbotCreatedBy': 'admin', 'dbotCurrentDirtyFields': None, 'dbotDirtyFields': None, 'dbotMirrorDirection': '', 'dbotMirrorId': '', 'dbotMirrorInstance': '', 'dbotMirrorLastSync': '0001-01-01T00:00:00Z', 'dbotMirrorTags': None, 'details': '', 'droppedCount': 0, 'dueDate': '0001-01-01T00:00:00Z', 'feedBased': False, 'hasRole': False, 'id': '3', 'investigationId': '3', 'isPlayground': False, 'labels': [{'type': 'Instance', 'value': 'admin'}, {'type': 'Brand', 'value': 'Manual'}], 'lastJobRunTime': '0001-01-01T00:00:00Z', 'lastOpen': '2020-09-30T15:40:48.618174584Z', 'linkedCount': 0, 'linkedIncidents': None, 'modified': '2020-09-30T15:41:15.184226213Z', 'name': 'Incident with error', 'notifyTime': '2020-09-29T14:09:06.048819578Z', 'occurred': '2020-09-29T14:02:45.826470478Z', 'openDuration': 686, 'owner': 'admin', 'parent': '', 'phase': '', 'playbookId': 'JOB - Integrations and Playbooks Health Check', 'previousAllRead': False, 'previousAllReadWrite': False, 'previousRoles': None, 'rawCategory': '', 'rawCloseReason': '', 'rawJSON': '', 'rawName': 'Incident with error', 'rawPhase': '', 'rawType': 'testing', 'reason': '', 'reminder': '0001-01-01T00:00:00Z', 'roles': None, 'runStatus': 'error', 'severity': 0, 'sla': 0, 'sortValues': ['_score'], 'sourceBrand': 'Manual', 'sourceInstance': 'admin', 'status': 1, 'type': 'testing', 'version': 13}, { 'CustomFields': {'dbotpredictionprobability': 0, 'detectionsla': {'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 20, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'remediationsla': {'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 7200, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'sourceusername': 'JohnJoe', 'timetoassignment': { 'accumulatedPause': 0, 'breachTriggered': False, 'dueDate': '0001-01-01T00:00:00Z', 'endDate': '0001-01-01T00:00:00Z', 'lastPauseDate': '0001-01-01T00:00:00Z', 'runStatus': 'idle', 'sla': 0, 'slaStatus': -1, 'startDate': '0001-01-01T00:00:00Z', 'totalDuration': 0}, 'urlsslverification': []}, 'ShardID': 0, 'account': '', 'activated': '0001-01-01T00:00:00Z', 'allRead': False, 'allReadWrite': False, 'attachment': None, 'autime': 1601480646930752000, 'canvases': None, 'category': '', 'closeNotes': '', 'closeReason': '', 'closed': '0001-01-01T00:00:00Z', 'closingUserId': '', 'created': '2020-09-30T15:44:06.930751906Z', 'dbotCreatedBy': 'admin', 'dbotCurrentDirtyFields': None, 'dbotDirtyFields': None, 'dbotMirrorDirection': '', 'dbotMirrorId': '', 'dbotMirrorInstance': '', 'dbotMirrorLastSync': '0001-01-01T00:00:00Z', 'dbotMirrorTags': None, 'details': '', 'droppedCount': 0, 'dueDate': '2020-10-10T15:44:06.930751906Z', 'feedBased': False, 'hasRole': False, 'id': '48', 'investigationId': '48', 'isPlayground': False, 'labels': [{'type': 'Instance', 'value': 'admin'}, {'type': 'Brand', 'value': 'Manual'}], 'lastJobRunTime': '0001-01-01T00:00:00Z', 'lastOpen': '0001-01-01T00:00:00Z', 'linkedCount': 0, 'linkedIncidents': None, 'modified': '2020-09-30T15:46:35.843037049Z', 'name': 'Multiple Failed Logins', 'notifyTime': '2020-09-30T15:46:35.836929058Z', 'occurred': '2020-09-30T15:44:06.930751702Z', 'openDuration': 0, 'owner': 'admin', 'parent': '', 'phase': '', 'playbookId': 'Account Enrichment - Generic v2.1', 'previousAllRead': False, 'previousAllReadWrite': False, 'previousRoles': None, 'rawCategory': '', 'rawCloseReason': '', 'rawJSON': '', 'rawName': 'Multiple Failed Logins', 'rawPhase': '', 'rawType': 'Unclassified', 'reason': '', 'reminder': '0001-01-01T00:00:00Z', 'roles': None, 'runStatus': 'error', 'severity': 1, 'sla': 0, 'sortValues': ['_score'], 'sourceBrand': 'Manual', 'sourceInstance': 'admin', 'status': 1, 'type': 'Unclassified', 'version': 10}], 'total': 3}, 'HumanReadable': None, 'ImportantEntryContext': None, 'EntryContext': None, 'IgnoreAutoExtract': False, 'ReadableContentsFormat': '', 'ContentsFormat': 'json', 'File': '', 'FileID': '', 'FileMetadata': None, 'System': '', 'Note': False, 'Evidence': False, 'EvidenceID': '', 'Tags': None, 'Metadata': {'id': '', 'version': 0, 'modified': '0001-01-01T00:00:00Z', 'sortValues': None, 'roles': None, 'allRead': False, 'allReadWrite': False, 'previousRoles': None, 'previousAllRead': False, 'previousAllReadWrite': False, 'hasRole': False, 'dbotCreatedBy': '', 'ShardID': 0, 'type': 1, 'created': '2020-10-03T12:39:59.908094336Z', 'retryTime': '0001-01-01T00:00:00Z', 'user': '', 'errorSource': '', 'contents': '', 'format': 'json', 'investigationId': '51', 'file': '', 'fileID': '', 'parentId': '156@51', 'pinned': False, 'fileMetadata': None, 'parentContent': '!getIncidents page="0" query="-status:closed and runStatus:error"', 'parentEntryTruncated': False, 'system': '', 'reputations': None, 'category': '', 'note': False, 'isTodo': False, 'tags': None, 'tagsRaw': None, 'startDate': '0001-01-01T00:00:00Z', 'times': 0, 'recurrent': False, 'endingDate': '0001-01-01T00:00:00Z', 'timezoneOffset': 0, 'cronView': False, 'scheduled': False, 'entryTask': None, 'taskId': '', 'playbookId': '', 'reputationSize': 0, 'contentsSize': 0, 'brand': 'Builtin', 'instance': 'Builtin', 'IndicatorTimeline': None, 'mirrored': False}, 'IndicatorTimeline': None}] TASKS_RESULT = [ {'ModuleName': 'Demisto REST API_instance_1', 'Brand': 'Demisto REST API', 'Category': 'Utilities', 'ID': '', 'Version': 0, 'Type': 1, 'Contents': {'response': [{'ancestors': ['AutoFocusPolling'], 'arguments': {'additionalPollingCommandArgNames': '', 'additionalPollingCommandArgValues': '', 'ids': '', 'pollingCommand': '', 'pollingCommandArgName': 'ids'}, 'comments': False, 'completedBy': 'DBot', 'completedDate': '2020-09-29T16:48:30.427891714Z', 'doNotSaveTaskHistory': True, 'dueDate': '0001-01-01T00:00:00Z', 'dueDateDuration': 0, 'entries': ['4@7', '5@7'], 'evidenceData': {'description': None, 'occurred': None, 'tags': None}, 'forEachIndex': 0, 'forEachInputs': None, 'id': '3', 'indent': 0, 'nextTasks': {'#none#': ['1']}, 'note': False, 'outputs': {}, 'playbookInputs': None, 'previousTasks': {'#none#': ['0']}, 'quietMode': 2, 'reputationCalc': 0, 'restrictedCompletion': False, 'scriptArguments': { 'additionalPollingCommandArgNames': {'complex': None, 'simple': '${inputs.AdditionalPollingCommandArgNames}'}, 'additionalPollingCommandArgValues': {'complex': None, 'simple': '${inputs.AdditionalPollingCommandArgValues}'}, 'ids': {'complex': None, 'simple': '${inputs.Ids}'}, 'pollingCommand': {'complex': None, 'simple': '${inputs.PollingCommandName}'}, 'pollingCommandArgName': {'complex': None, 'simple': '${inputs.PollingCommandArgName}'}}, 'separateContext': False, 'startDate': '2020-09-29T16:48:30.324811804Z', 'state': 'Error', 'task': { 'brand': '', 'conditions': None, 'description': 'RunPollingCommand', 'id': 'c6a3af0a-cc78-4323-80c1-93d686010d86', 'isCommand': False, 'isLocked': False, 'modified': '2020-09-29T08:23:25.596407031Z', 'name': 'RunPollingCommand', 'playbookName': '', 'scriptId': 'RunPollingCommand', 'sortValues': None, 'type': 'regular', 'version': 1}, 'taskCompleteData': [], 'taskId': 'c6a3af0a-cc78-4323-80c1-93d686010d86', 'type': 'regular', 'view': {'position': {'x': 50, 'y': 195}}}]}, 'HumanReadable': None, 'ImportantEntryContext': None, 'EntryContext': None, 'IgnoreAutoExtract': False, 'ReadableContentsFormat': '', 'ContentsFormat': 'json', 'File': '', 'FileID': '', 'FileMetadata': None, 'System': '', 'Note': False, 'Evidence': False, 'EvidenceID': '', 'Tags': None, 'Metadata': { 'id': '', 'version': 0, 'modified': '0001-01-01T00:00:00Z', 'sortValues': None, 'roles': None, 'allRead': False, 'allReadWrite': False, 'previousRoles': None, 'previousAllRead': False, 'previousAllReadWrite': False, 'hasRole': False, 'dbotCreatedBy': '', 'ShardID': 0, 'type': 1, 'created': '2020-10-03T12:43:23.006018275Z', 'retryTime': '0001-01-01T00:00:00Z', 'user': '', 'errorSource': '', 'contents': '', 'format': 'json', 'investigationId': '51', 'file': '', 'fileID': '', 'parentId': '158@51', 'pinned': False, 'fileMetadata': None, 'parentContent': '!demisto-api-post uri="investigation/7/workplan/tasks" body=' '"{\\"states\\":[\\"Error\\"],\\"types\\":[\\"regular\\",\\"condition\\",\\"collection\\"]}"', 'parentEntryTruncated': False, 'system': '', 'reputations': None, 'category': '', 'note': False, 'isTodo': False, 'tags': None, 'tagsRaw': None, 'startDate': '0001-01-01T00:00:00Z', 'times': 0, 'recurrent': False, 'endingDate': '0001-01-01T00:00:00Z', 'timezoneOffset': 0, 'cronView': False, 'scheduled': False, 'entryTask': None, 'taskId': '', 'playbookId': '', 'reputationSize': 0, 'contentsSize': 0, 'brand': 'Demisto REST API', 'instance': 'Demisto REST API_instance_1', 'IndicatorTimeline': None, 'mirrored': False}, 'IndicatorTimeline': None}] SERVER_URL = [{'ModuleName': 'CustomScripts', 'Brand': 'Scripts', 'Category': 'automation', 'ID': '', 'Version': 0, 'Type': 1, 'Contents': 'https://ec2-11-123-11-22.eu-west-1.compute.amazonaws.com//acc_test', 'HumanReadable': 'https://ec2-11-123-11-22.eu-west-1.compute.amazonaws.com//acc_test'}]
FWCore/Services/test/test_zombiekiller_fail_cfg.py
ckamtsikis/cmssw
852
12641035
<filename>FWCore/Services/test/test_zombiekiller_fail_cfg.py import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(-1)) process.stuck = cms.EDAnalyzer("StuckAnalyzer") process.p = cms.Path(process.stuck) process.add_(cms.Service("ZombieKillerService", secondsBetweenChecks = cms.untracked.uint32(10), numberOfAllowedFailedChecksInARow = cms.untracked.uint32(2)))
code/utils/effective_loss_function.py
ricklentz/2dimageto3dmodel
150
12641037
# author: <NAME> import torch import torch.nn as nn from ..camera.coordinate_system_transformation import CameraUtilities from trilinear_interpolation import TrilinearInterpolation from smooth_voxels import VoxelsSmooth class EffectiveLossFunction(nn.Module): # Replaces need for differentiable point cloud projection PI(P, c) and generates point cloud without rendering. def __init__(self, voxel_size=64, kernel_size=21, smooth_sigma=3.0): super(EffectiveLossFunction, self).__init__() self.voxel_size = voxel_size self.kernel_size = kernel_size self.register_buffer("sigma", torch.tensor(smooth_sigma)) def termination_probs(self, voxels, epsilon=1e-5): """ :param voxels: smoothed voxels :param epsilon: ignore factor :return: """ """ Before projecting the resulting volume to a plane, we need to ensure that the signal from the occluded points does not interfere with the foreground points. To this end, we perform occlusion reasoning, similar to Tulsiani et al. [20]. We convert the occupancies o to ray termination probabilities. """ # The occupancy function of the point cloud is a clipped sum of the individual per-point functions per_point_functions = voxels.permute(1, 0, 2, 3) occupancy_function = per_point_functions.clamp(epsilon, 1.0 - epsilon) x = torch.log(1 - occupancy_function) x_prim = torch.log(occupancy_function) ray_termination_probs = torch.cumsum(x, dim=0) zeros_matrix = voxels.new(1, occupancy_function.size(1), occupancy_function.size(2), occupancy_function.size(3)).fill_(epsilon) """ Intuitively, a cell has high termination probability if its occupancy value is high and all previous occupancy values are low. The additional background cell serves to ensure that the termination probabilities sum to 1. """ # Concatenates the given sequence of seq tensors in the given dimension r1 = torch.cat([zeros_matrix, ray_termination_probs], dim=0) # All tensors must either have the same shape (except in the concatenating dimension) or be empty. r2 = torch.cat([x_prim, zeros_matrix], dim=0) project_volume_to_the_plane = r1 + r2 return torch.exp(project_volume_to_the_plane).permute(1, 0, 2, 3) def forward(self, point_cloud, rotation, scale=None): """ Projection based loss. :param point_cloud: point cloud of interest :param rotation: is rotation specified :param scale: if not None will scale the object :return: projection """ camera_utilities = CameraUtilities() point_cloud = camera_utilities.transformation_3d_coord_to_camera_coord(point_cloud=point_cloud, rotation=rotation, field_of_view=1.875, camera_view_distance=2.0) interpolation = TrilinearInterpolation() voxels = interpolation.trilinear_interpolation(point_cloud=point_cloud) voxels_smoothing = VoxelsSmooth() smoothed_voxels = voxels_smoothing.smooth(voxels=voxels, kernels=(), scale=scale) probs = self.termination_probs(smoothed_voxels) return probs[:, :-1].sum(1).flip(1)
add_gitutf16.py
mayl8822/CommandTrayHost
353
12641040
# /usr/bin/env python3 # -*- coding: utf-8 -*- import os import re import sys import codecs import traceback UTF16_GITCONFIG = '''[filter "utf16"] clean = iconv -f utf-16le -t utf-8 smudge = iconv -f utf-8 -t utf-16le required ''' def main(): git_config_path = os.path.expandvars(r'%USERPROFILE%\.gitconfig') if os.path.isfile(git_config_path): with open(git_config_path, "rb") as f: content = f.read().decode('utf-8').replace('\r\n', '\n') else: print(git_config_path, "not exist") content = '' if UTF16_GITCONFIG not in content: print(f"No UTF16_GITCONFIG in {git_config_path}") content = content + '\n' + UTF16_GITCONFIG if content else UTF16_GITCONFIG content = content.replace('\n', '\r\n').encode('utf-8') with open(git_config_path, "wb") as f: f.write(content) print("changed .gitconfig\n", content.decode('utf-8')) else: print('.gitconfig already includes [filter "utf16"]') if __name__ == '__main__': print(sys.version_info) if (sys.version_info < (3, 0)): sys.exit(2) main()
src/obfuscapk/obfuscators/method_overload/method_overload.py
Elyorbe/Obfuscapk
688
12641043
<gh_stars>100-1000 #!/usr/bin/env python3 import logging import random from typing import List, Set from obfuscapk import obfuscator_category from obfuscapk import util from obfuscapk.obfuscation import Obfuscation class MethodOverload(obfuscator_category.ICodeObfuscator): def __init__(self): self.logger = logging.getLogger( "{0}.{1}".format(__name__, self.__class__.__name__) ) super().__init__() self.is_adding_methods = True self.param_types = ["Ljava/lang/String;", "Z", "B", "S", "C", "I", "F"] def add_method_overloads_to_file( self, smali_file: str, overloaded_method_body: str, class_names_to_ignore: Set[str], ) -> int: new_methods_num: int = 0 with util.inplace_edit_file(smali_file) as (in_file, out_file): skip_remaining_lines = False class_name = None for line in in_file: if skip_remaining_lines: out_file.write(line) continue if not class_name: class_match = util.class_pattern.match(line) # If this is an enum class, skip it. if " enum " in line: skip_remaining_lines = True out_file.write(line) continue elif class_match: class_name = class_match.group("class_name") if class_name in class_names_to_ignore: # The methods of this class should be ignored when # renaming, so proceed with the next class. skip_remaining_lines = True out_file.write(line) continue # Skip virtual methods, consider only the direct methods defined # earlier in the file. if line.startswith("# virtual methods"): skip_remaining_lines = True out_file.write(line) continue # Method declared in class. method_match = util.method_pattern.match(line) # Avoid constructors, native and abstract methods. if ( method_match and "<init>" not in line and "<clinit>" not in line and " native " not in line and " abstract " not in line ): # Create lists with random parameters to be added to the method # signature. Add 3 overloads for each method and for each overload # use 4 random params. for params in util.get_random_list_permutations( random.sample(self.param_types, 4) )[:3]: new_param = "".join(params) # Update parameter list and add void return type. overloaded_signature = line.replace( "({0}){1}".format( method_match.group("method_param"), method_match.group("method_return"), ), "({0}{1})V".format( method_match.group("method_param"), new_param ), ) out_file.write(overloaded_signature) out_file.write(overloaded_method_body) new_methods_num += 1 # Print original method. out_file.write(line) else: out_file.write(line) return new_methods_num def add_method_overloads( self, smali_files: List[str], class_names_to_ignore: Set[str], max_methods_to_add: int, interactive: bool = False, ): overloaded_method_body = util.get_smali_method_overload() added_methods = 0 for smali_file in util.show_list_progress( smali_files, interactive=interactive, description="Inserting method overloads in smali files", ): self.logger.debug( 'Inserting method overloads in file "{0}"'.format(smali_file) ) if added_methods < max_methods_to_add: added_methods += self.add_method_overloads_to_file( smali_file, overloaded_method_body, class_names_to_ignore ) else: break self.logger.debug("{0} new overloaded methods were added".format(added_methods)) def obfuscate(self, obfuscation_info: Obfuscation): self.logger.info('Running "{0}" obfuscator'.format(self.__class__.__name__)) try: # NOTE: only direct methods (methods that are by nature non-overridable, # namely private instance methods, constructors and static methods) will be # overloaded. android_class_names: Set[str] = set(util.get_android_class_names()) # There is a method limit for dex files. max_methods_to_add = obfuscation_info.get_remaining_methods_per_obfuscator() if obfuscation_info.is_multidex(): for index, dex_smali_files in enumerate( util.show_list_progress( obfuscation_info.get_multidex_smali_files(), interactive=obfuscation_info.interactive, unit="dex", description="Processing multidex", ) ): max_methods_to_add = ( obfuscation_info.get_remaining_methods_per_obfuscator()[index] ) self.add_method_overloads( dex_smali_files, android_class_names, max_methods_to_add, obfuscation_info.interactive, ) else: self.add_method_overloads( obfuscation_info.get_smali_files(), android_class_names, max_methods_to_add, obfuscation_info.interactive, ) except Exception as e: self.logger.error( 'Error during execution of "{0}" obfuscator: {1}'.format( self.__class__.__name__, e ) ) raise finally: obfuscation_info.used_obfuscators.append(self.__class__.__name__)
test/unit/test_model_optimizer.py
Zhiyuan-w/DeepReg
379
12641046
<reponame>Zhiyuan-w/DeepReg # coding=utf-8 """ Tests for deepreg/model/optimizer.py pytest style """ import tensorflow as tf import deepreg.model.optimizer as optimizer class TestBuildOptimizer: def test_build_optimizer_adam(self): """Build an Adam optimizer""" opt_config = {"name": "Adam", "learning_rate": 1.0e-5} opt_get = optimizer.build_optimizer(opt_config) assert isinstance(opt_get, tf.keras.optimizers.Adam) def test_build_optimizer_sgd(self): """Build an SGD optimizer""" opt_config = {"name": "SGD"} opt_get = optimizer.build_optimizer(opt_config) assert isinstance(opt_get, tf.keras.optimizers.SGD)
cleanerversion/settings/sqlite.py
DocTocToc/cleanerversion
121
12641077
""" Django settings for CleanerVersion project. """ from .base import * # Database # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'sqlite.db', 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', }, }
base/models/base_module.py
CJWBW/TediGAN
219
12641127
<reponame>CJWBW/TediGAN<filename>base/models/base_module.py # python 3.7 """Contains the base class for modules in a GAN model. Commonly, GAN consists of two components, i.e., generator and discriminator. In practice, however, more modules can be added, such as encoder. """ import os.path import sys import logging import numpy as np import torch from . import model_settings __all__ = ['BaseModule'] DTYPE_NAME_TO_TORCH_TENSOR_TYPE = { 'float16': torch.HalfTensor, 'float32': torch.FloatTensor, 'float64': torch.DoubleTensor, 'int8': torch.CharTensor, 'int16': torch.ShortTensor, 'int32': torch.IntTensor, 'int64': torch.LongTensor, 'uint8': torch.ByteTensor, 'bool': torch.BoolTensor, } def get_temp_logger(logger_name='logger'): """Gets a temporary logger. This logger will print all levels of messages onto the screen. Args: logger_name: Name of the logger. Returns: A `logging.Logger`. Raises: ValueError: If the input `logger_name` is empty. """ if not logger_name: raise ValueError(f'Input `logger_name` should not be empty!') logger = logging.getLogger(logger_name) if not logger.hasHandlers(): logger.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s][%(levelname)s] %(message)s') sh = logging.StreamHandler(stream=sys.stdout) sh.setLevel(logging.DEBUG) sh.setFormatter(formatter) logger.addHandler(sh) return logger class BaseModule(object): """Base class for modules in GANs, like generator and discriminator. NOTE: The module should be defined with pytorch, and used for inference only. """ def __init__(self, model_name, module_name, logger=None): """Initializes with specific settings. The GAN model should be first registered in `model_settings.py` with proper settings. Among them, some attributes are necessary, including: (1) resolution: Resolution of the synthesis. (2) image_channels: Number of channels of the synthesis. (default: 3) (3) channel_order: Channel order of the raw synthesis. (default: `RGB`) (4) min_val: Minimum value of the raw synthesis. (default -1.0) (5) max_val: Maximum value of the raw synthesis. (default 1.0) Args: model_name: Name with which the GAN model is registered. module_name: Name of the module, like `generator` or `discriminator`. logger: Logger for recording log messages. If set as `None`, a default logger, which prints messages from all levels onto the screen, will be created. (default: None) Raises: AttributeError: If some necessary attributes are missing. """ self.model_name = model_name self.module_name = module_name self.logger = logger or get_temp_logger(model_name) # Parse settings. for key, val in model_settings.MODEL_POOL[model_name].items(): setattr(self, key, val) self.use_cuda = model_settings.USE_CUDA and torch.cuda.is_available() self.batch_size = model_settings.MAX_IMAGES_ON_DEVICE self.ram_size = model_settings.MAX_IMAGES_ON_RAM self.net = None self.run_device = 'cuda' if self.use_cuda else 'cpu' self.cpu_device = 'cpu' # Check necessary settings. self.check_attr('gan_type') # Should be specified in derived classes. self.check_attr('resolution') self.image_channels = getattr(self, 'image_channels', 3) assert self.image_channels in [1, 3] self.channel_order = getattr(self, 'channel_order', 'RGB').upper() assert self.channel_order in ['RGB', 'BGR'] self.min_val = getattr(self, 'min_val', -1.0) self.max_val = getattr(self, 'max_val', 1.0) # Get paths. self.weight_path = model_settings.get_weight_path( f'{model_name}_{module_name}') # Build graph and load pre-trained weights. self.logger.info(f'Build network for module `{self.module_name}` in ' f'model `{self.model_name}`.') self.model_specific_vars = [] self.build() if os.path.isfile(self.weight_path): self.load() else: self.logger.warning(f'No pre-trained weights will be loaded!') # Change to inference mode and GPU mode if needed. assert self.net self.net.eval().to(self.run_device) def check_attr(self, attr_name): """Checks the existence of a particular attribute. Args: attr_name: Name of the attribute to check. Raises: AttributeError: If the target attribute is missing. """ if not hasattr(self, attr_name): raise AttributeError(f'Field `{attr_name}` is missing for ' f'module `{self.module_name}` in ' f'model `{self.model_name}`!') def build(self): """Builds the graph.""" raise NotImplementedError(f'Should be implemented in derived class!') def load(self): """Loads pre-trained weights.""" self.logger.info(f'Loading pytorch weights from `{self.weight_path}`.') state_dict = torch.load(self.weight_path) for var_name in self.model_specific_vars: state_dict[var_name] = self.net.state_dict()[var_name] self.net.load_state_dict(state_dict) self.logger.info(f'Successfully loaded!') def to_tensor(self, array): """Converts a `numpy.ndarray` to `torch.Tensor` on running device. Args: array: The input array to convert. Returns: A `torch.Tensor` whose dtype is determined by that of the input array. Raises: ValueError: If the array is with neither `torch.Tensor` type nor `numpy.ndarray` type. """ dtype = type(array) if isinstance(array, torch.Tensor): tensor = array elif isinstance(array, np.ndarray): tensor_type = DTYPE_NAME_TO_TORCH_TENSOR_TYPE[array.dtype.name] tensor = torch.from_numpy(array).type(tensor_type) else: raise ValueError(f'Unsupported input type `{dtype}`!') tensor = tensor.to(self.run_device) return tensor def get_value(self, tensor): """Gets value of a `torch.Tensor`. Args: tensor: The input tensor to get value from. Returns: A `numpy.ndarray`. Raises: ValueError: If the tensor is with neither `torch.Tensor` type nor `numpy.ndarray` type. """ dtype = type(tensor) if isinstance(tensor, np.ndarray): return tensor if isinstance(tensor, torch.Tensor): return tensor.to(self.cpu_device).detach().numpy() raise ValueError(f'Unsupported input type `{dtype}`!') def get_ont_hot_labels(self, num, labels=None): """Gets ont-hot labels for conditional generation. Args: num: Number of labels to generate. labels: Input labels as reference to generate one-hot labels. If set as `None`, label `0` will be used by default. (default: None) Returns: Returns `None` if `self.label_size` is 0, otherwise, a `numpy.ndarray` with shape [num, self.label_size] and dtype `np.float32`. """ self.check_attr('label_size') if self.label_size == 0: return None if labels is None: labels = 0 labels = np.array(labels).reshape(-1) if labels.size == 1: labels = np.tile(labels, (num,)) assert labels.shape == (num,) for label in labels: if label >= self.label_size or label < 0: raise ValueError(f'Label should be smaller than {self.label_size}, ' f'but {label} is received!') one_hot = np.zeros((num, self.label_size), dtype=np.int32) one_hot[np.arange(num), labels] = 1 return one_hot def get_batch_inputs(self, inputs, batch_size=None): """Gets inputs within mini-batch. This function yields at most `self.batch_size` inputs at a time. Args: inputs: Input data to form mini-batch. batch_size: Batch size. If not specified, `self.batch_size` will be used. (default: None) """ total_num = inputs.shape[0] batch_size = batch_size or self.batch_size for i in range(0, total_num, batch_size): yield inputs[i:i + batch_size] def batch_run(self, inputs, run_fn): """Runs model with mini-batch. This function splits the inputs into mini-batches, run the model with each mini-batch, and then concatenate the outputs from all mini-batches together. NOTE: The output of `run_fn` can only be `numpy.ndarray` or a dictionary whose values are all `numpy.ndarray`. Args: inputs: The input samples to run with. run_fn: A callable function. Returns: Same type as the output of `run_fn`. Raises: ValueError: If the output type of `run_fn` is not supported. """ if inputs.shape[0] > self.ram_size: self.logger.warning(f'Number of inputs on RAM is larger than ' f'{self.ram_size}. Please use ' f'`self.get_batch_inputs()` to split the inputs! ' f'Otherwise, it may encounter OOM problem!') results = {} temp_key = '__temp_key__' for batch_inputs in self.get_batch_inputs(inputs): batch_outputs = run_fn(batch_inputs) if isinstance(batch_outputs, dict): for key, val in batch_outputs.items(): if not isinstance(val, np.ndarray): raise ValueError(f'Each item of the model output should be with ' f'type `numpy.ndarray`, but type `{type(val)}` is ' f'received for key `{key}`!') if key not in results: results[key] = [val] else: results[key].append(val) elif isinstance(batch_outputs, np.ndarray): if temp_key not in results: results[temp_key] = [batch_outputs] else: results[temp_key].append(batch_outputs) else: raise ValueError(f'The model output can only be with type ' f'`numpy.ndarray`, or a dictionary of ' f'`numpy.ndarray`, but type `{type(batch_outputs)}` ' f'is received!') for key, val in results.items(): results[key] = np.concatenate(val, axis=0) return results if temp_key not in results else results[temp_key]
geoq/settings.py
kaydoh/geoq
471
12641154
<reponame>kaydoh/geoq # -*- coding: utf-8 -*- # This technical data was produced for the U. S. Government under Contract No. W15P7T-13-C-F600, and # is subject to the Rights in Technical Data-Noncommercial Items clause at DFARS 252.227-7013 (FEB 2012) import os SITE_ROOT = os.path.dirname(os.path.realpath(__file__)) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '<KEY>' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = ['localhost','127.0.0.1'] ADMINS = ( ('Admin User', '<EMAIL>'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'geoq', # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: 'USER': 'geoq', 'PASSWORD': '<PASSWORD>', 'HOST': 'localhost', # Empty for local through domain sockets or '127.0.0.1' for local through TCP. 'PORT': '5432', # Set to empty string for default. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/New_York' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = '/usr/local/src/geoq' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = '/images/' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_URL_FOLDER = '' # Can be set to something like 'geoq-test/' if the app is not run at root level STATIC_ROOT = '{0}{1}'.format('/Users/srjones/www/static/', STATIC_URL_FOLDER) # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '{0}{1}'.format('/static/', STATIC_URL_FOLDER) # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(SITE_ROOT, 'static'), # TODO: Should we add this static location back in? ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', #'django.contrib.staticfiles.finders.DefaultStorageFinder', 'compressor.finders.CompressorFinder', ) #Change back to True after finishing development to verify it still works COMPRESS_ENABLED = False COMPRESS_PRECOMPILERS = ( ('text/less', 'lessc {infile} {outfile}'), ) LEAFLET_CSS = [ STATIC_URL + 'leaflet/leaflet-draw/leaflet.draw.css', os.path.join(STATIC_ROOT, '/static/leaflet/leaflet-draw/leaflet.draw.css') ] LEAFLET_CONFIG = { 'RESET_VIEW' : False, 'MAX_ZOOM' : 18, 'PLUGINS': { 'proj4js': { 'css': [], 'js': [STATIC_URL + 'leaflet/proj4-src.js', STATIC_URL + 'leaflet/proj4defs.js', STATIC_URL + 'leaflet/proj4leaflet.js'], 'repo': 'https://github.com/proj4js' }, 'draw': { 'css': LEAFLET_CSS, 'js': STATIC_URL + 'leaflet/leaflet-draw/leaflet.draw-src.js', 'repo': 'https://github.com/Leaflet/Leaflet.draw' }, 'esri': { 'css': [], 'js': [STATIC_URL + 'leaflet/esri-leaflet-src.js'], 'repo': 'https://github.com/Esri/esri-leaflet' }, 'esriCluster': { 'css': [STATIC_URL + 'leaflet/MarkerCluster.css'], 'js': [STATIC_URL + 'leaflet/ClusteredFeatureLayer.js', STATIC_URL + 'leaflet/leaflet.markercluster.js'], 'repo': 'https://github.com/Esri/esri-leaflet' }, 'MakiMarkers': { 'css': [], 'js': [STATIC_URL + 'leaflet/Leaflet.MakiMarkers.js'], 'repo': 'https://github.com/jseppi/Leaflet.MakiMarkers' }, 'MediaQ': { 'css': [], 'js': [STATIC_URL + 'leaflet/Leaflet.MediaQ.js'], 'repo': 'https://github.com/stephenrjones/Leaflet.MediaQ' }, 'AutoResizeSVG': { 'css': [], 'js': [STATIC_URL + 'leaflet/marker-resize-svg.js'], 'repo': 'https://github.com/john-kilgo/L.Marker.AutoResizeSVG' }, 'NWSIcons': { 'css': [], 'js': [STATIC_URL + 'leaflet/nws-leaflet.js'], 'repo': 'https://github.com/john-kilgo/L.Marker.NWS' }, 'OpenSensorHub': { 'css': [], 'js': [STATIC_URL + 'leaflet/Leaflet.SOS.min.js'], 'repo': 'https://github.com/opensensorhub/osh-js' }, 'WCS': { 'css': [], 'js': [STATIC_URL + 'leaflet/NonTiledLayer.WCS.js'], 'repo': 'https://github.com/stuartmatthews/Leaflet.NonTiledLayer.WCS' }, 'WMSHeader': { 'css': [], 'js': [STATIC_URL + 'leaflet/leaflet-plugins/layer/tile/leaflet-wms-header.js'], 'repo': 'https://https://github.com/ticinum-aerospace/leaflet-wms-header' } } } # List of callables that know how to import templates from various sources # Location of template files #TEMPLATE_DIRS = ( # os.path.join(SITE_ROOT, 'templates'), # SITE_ROOT, #) #. #TEMPLATE_LOADERS = ( # 'django.template.loaders.filesystem.Loader', # 'django.template.loaders.app_directories.Loader', # #'django.template.loaders.eggs.Loader', #) # #TEMPLATE_CONTEXT_PROCESSORS = ( ## 'django.contrib.auth.context_processors.auth', # 'django.core.context_processors.request', # 'django.core.context_processors.static', # 'django.contrib.messages.context_processors.messages', # 'geoq.core.contextprocessors.app_settings', #) TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(SITE_ROOT, 'templates'), SITE_ROOT ], 'OPTIONS': { 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', #'django.template.loaders.eggs.Loader' ], 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'geoq.core.contextprocessors.app_settings' ] } } ] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', 'django.contrib.gis', 'django.contrib.humanize', 'django_select2', 'reversion', 'easy_thumbnails', 'userena', 'guardian', 'compressor', 'geoexplorer', 'bootstrap_toolkit', 'leaflet', 'jsonfield', 'crispy_forms', 'django_extensions', 'debug_toolbar', #'httpproxy', 'bootstrap3', #'feedgen', 'geoq.feedback.apps.FeedbackConfig', 'geoq.accounts.apps.AccountsConfig', 'geoq.locations.apps.LocationsConfig', 'geoq.mage.apps.MageConfig', 'geoq.mgrs.apps.MgrsConfig', 'geoq.proxy.apps.ProxyConfig', 'geoq.training.apps.TrainingConfig', 'geoq.core.apps.CoreConfig', 'geoq.maps.apps.MapsConfig', 'geoq.workflow.apps.WorkflowConfig', 'geoq.ontology.apps.OntologyConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware' ] # removed middleware # 'geoq.core.middleware.UserPermsMiddleware', # 'geoq.core.middleware.Http403Middleware', # 'geoq.core.middleware.UpdateLastActivityMiddleware', # auth setup AUTHENTICATION_BACKENDS = ( 'userena.backends.UserenaAuthenticationBackend', 'guardian.backends.ObjectPermissionBackend', 'django.contrib.auth.backends.ModelBackend', # default ) SITE_ID = 1 ANONYMOUS_USER_NAME = "ANONYMOUS_USER_NAME" AUTH_PROFILE_MODULE = 'accounts.UserProfile' LOGIN_REDIRECT_URL = '/accounts/%(username)s/' #'/geoq/' # LOGIN_URL = '/accounts/signin/' LOGOUT_URL = '/geoq' EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend' USERENA_ACTIVATION_DAYS = 3 USERENA_MUGSHOT_DEFAULT = 'identicon' USERENA_HIDE_EMAIL = True USERENA_HTML_EMAIL = False ROOT_URLCONF = 'geoq.urls' WSGI_APPLICATION = 'geoq.wsgi.application' # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING_CONFIG = None LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } # take out later REST_FRAMEWORK = { 'UNAUTHENTICATED_USER': None, } # Set default login location #LOGIN_REDIRECT_URL = '/' # Gamification variables GAMIFICATION_SERVER = '' GAMIFICATION_PROJECT = 'geoq' #GeoServer GEOSERVER_WFS_JOB_LAYER = None # For Django Debug Toolbar - need to set this to resolve some errors DEBUG_TOOLBAR_PATCH_SETTINGS = False # Able to vary what we call workcells GEOQ_LEXICON = { 'WORKCELL_NAME': 'Target' } # Bootstrap variables to work with django-bootstrap-toolkit # Comment these out to use cdnjs.cloudflare.com versions of Bootstrap BOOTSTRAP_BASE_URL = STATIC_URL BOOTSTRAP_JS_BASE_URL = BOOTSTRAP_BASE_URL + 'bootstrap/js/' BOOTSTRAP_JS_URL = BOOTSTRAP_JS_BASE_URL + 'bootstrap.min.js' BOOTSTRAP_CSS_BASE_URL = BOOTSTRAP_BASE_URL + 'bootstrap/css/' BOOTSTRAP_CSS_URL = BOOTSTRAP_CSS_BASE_URL + 'bootstrap.css' #Time to check if users online (in milliseconds) ONLINE_TIME = 10 * 60 * 1000 ########## Select2 Settings CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'default-cache', }, 'select2': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'select2-cache', } } SELECT2_CACHE_BACKEND = 'select2' ########## MAGE Settings MAGE_USERNAME = 'username' MAGE_UID = '12345' MAGE_PASSWORD = 'password' MAGE_URL = 'https://mage.server.com/api' ########## End MAGE Settings ########## DEBUG TOOLBAR CONFIGURATION DEBUG_TOOLBAR_PATCH_SETTINGS = False DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', ] INTERNAL_IPS = ['127.0.0.1'] ########## COMPRESSION CONFIGURATION # COMPRESS_ENABLED = True # Default : the opposite of DEBUG # see https://github.com/jezdez/django_compressor/issues/226 COMPRESS_OUTPUT_DIR = 'STATIC_CACHE' # See: http://django_compressor.readthedocs.org/en/latest/settings/#django.conf.settings.COMPRESS_OFFLINE COMPRESS_OFFLINE = False # See: http://django_compressor.readthedocs.org/en/latest/settings/#django.conf.settings.COMPRESS_STORAGE COMPRESS_STORAGE = 'compressor.storage.CompressorFileStorage' # See: http://django_compressor.readthedocs.org/en/latest/settings/#django.conf.settings.COMPRESS_CSS_FILTERS COMPRESS_CSS_FILTERS = [ 'compressor.filters.cssmin.CSSMinFilter', ] # See: http://django_compressor.readthedocs.org/en/latest/settings/#django.conf.settings.COMPRESS_JS_FILTERS COMPRESS_JS_FILTERS = [ 'compressor.filters.jsmin.JSMinFilter', ] COMPRESS_DEBUG_TOGGLE = 'nocompress' COMPRESS_JS_COMPRESSOR = 'compressor.js.JsCompressor' COMPRESS_CSS_COMPRESSOR = 'compressor.css.CssCompressor' COMPRESS_PARSER = 'compressor.parser.AutoSelectParser' COMPRESS_URL = STATIC_URL COMPRESS_ROOT = STATIC_ROOT COMPRESS_VERBOSE = False COMPRESS_CACHEABLE_PRECOMPILERS = ( 'text/coffeescript', ) ########## END COMPRESSION CONFIGURATION ########## BOOTSTRAP 3 CONFIGURATION # Default settings BOOTSTRAP3 = { # The URL to the jQuery JavaScript file 'jquery_url': STATIC_URL + 'jquery/jquery.min.js', # The Bootstrap base URL 'base_url': STATIC_URL + 'bootstrap/', # The complete URL to the Bootstrap CSS file (None means derive it from base_url) 'css_url': STATIC_URL + 'bootstrap/css/bootstrap.css', # The complete URL to the Bootstrap CSS file (None means no theme) 'theme_url': STATIC_URL + 'bootstrap/css/bootstrap-theme.css', # The complete URL to the Bootstrap JavaScript file (None means derive it from base_url) 'javascript_url': STATIC_URL + 'bootstrap/js/bootstrap.min.js', # Put JavaScript in the HEAD section of the HTML document (only relevant if you use bootstrap3.html) 'javascript_in_head': False, # Include jQuery with Bootstrap JavaScript (affects django-bootstrap3 template tags) 'include_jquery': False, # Label class to use in horizontal forms 'horizontal_label_class': 'col-md-3', # Field class to use in horizontal forms 'horizontal_field_class': 'col-md-9', # Set HTML required attribute on required fields, for Django <= 1.8 only 'set_required': True, # Set HTML disabled attribute on disabled fields, for Django <= 1.8 only 'set_disabled': False, # Set placeholder attributes to label if no placeholder is provided 'set_placeholder': True, # Class to indicate required (better to set this in your Django form) 'required_css_class': '', # Class to indicate error (better to set this in your Django form) 'error_css_class': 'has-error', # Class to indicate success, meaning the field has valid input (better to set this in your Django form) 'success_css_class': 'has-success', # Renderers (only set these if you have studied the source and understand the inner workings) 'formset_renderers':{ 'default': 'bootstrap3.renderers.FormsetRenderer', }, 'form_renderers': { 'default': 'bootstrap3.renderers.FormRenderer', }, 'field_renderers': { 'default': 'bootstrap3.renderers.FieldRenderer', 'inline': 'bootstrap3.renderers.InlineFieldRenderer', }, } ########## END BOOTSTRAP 3 CONFIGURATION # Special case IMAGE_TRACKING = False # For KML uploads KML_REPOSITORY_ROOT = 'kml/' # initialize apps #django.setup() # Override production settings with local settings if they exist #try: # from local_settings import * # #except ImportError, e: # # local_settings does not exist # pass
graphs/models/custom_layers/denseblock.py
algocompretto/template-deep-learning
696
12641182
<reponame>algocompretto/template-deep-learning """ Definitions for custom blocks for condensenet model """ import torch import torch.nn as nn from graphs.models.custom_layers.learnedgroupconv import LearnedGroupConv class DenseBlock(nn.Sequential): def __init__(self, num_layers, in_channels, growth_rate, config): super().__init__() for layer_id in range(num_layers): layer = DenseLayer(in_channels=in_channels + (layer_id * growth_rate), growth_rate=growth_rate, config=config) self.add_module('dense_layer_%d' % (layer_id + 1), layer) class DenseLayer(nn.Module): def __init__(self, in_channels, growth_rate, config): super().__init__() self.config = config self.conv_bottleneck = self.config.conv_bottleneck self.group1x1 = self.config.group1x1 self.group3x3 = self.config.group3x3 self.condense_factor = self.config.condense_factor self.dropout_rate = self.config.dropout_rate # 1x1 conv in_channels --> bottleneck*growth_rate self.conv_1 = LearnedGroupConv(in_channels=in_channels, out_channels=self.conv_bottleneck * growth_rate, kernel_size=1, groups=self.group1x1, condense_factor=self.condense_factor, dropout_rate=self.dropout_rate) self.batch_norm = nn.BatchNorm2d(self.conv_bottleneck * growth_rate) self.relu = nn.ReLU(inplace=True) # 3x3 conv bottleneck*growth_rate --> growth_rate self.conv_2 = nn.Conv2d(in_channels=self.conv_bottleneck * growth_rate, out_channels=growth_rate, kernel_size=3, padding=1, stride=1, groups=self.group3x3, bias=False) def forward(self, x): out = self.conv_1(x) out = self.batch_norm(out) out = self.relu(out) out = self.conv_2(out) return torch.cat([x, out], 1)
samples/vsphere/oauth/grant_types/list_vms_client_credentials.py
CypherLegacy/anamorphicBI
589
12641193
#!/usr/bin/env python """ * ******************************************************* * Copyright (c) VMware, Inc. 2020. All Rights Reserved. * SPDX-License-Identifier: MIT * ******************************************************* * * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """ from vmware.vapi.vsphere.client import create_vsphere_client from samples.vsphere.common import sample_cli from samples.vsphere.common import sample_util from samples.vsphere.common.ssl_helper import get_unverified_session from samples.vsphere.oauth.grant_types.oauth_utility \ import login_using_client_credentials import argparse __author__ = 'VMware, Inc.' __copyright__ = 'Copyright 2020 VMware, Inc. All rights reserved.' __vcenter_version__ = '7.0+' """ To run this sample, $ python list_vms_client_credentials.py --server <VC_IP> \ -- client_id <client_id> --client_secret <client_secret> --skipverification """ parser = argparse.ArgumentParser() parser.add_argument("--server", help="VC IP or hostname") parser.add_argument("--client_id", help="Client/Application ID of the server to server app") parser.add_argument("--client_secret", help="Client/Application secret \ of the server to server app") parser.add_argument('--skipverification', action='store_true', help='Verify server certificate when connecting to vc.') args = parser.parse_args() session = get_unverified_session() if args.skipverification else None saml_assertion = login_using_client_credentials( args.server, session, args.client_id, args.client_secret) client = create_vsphere_client( server=args.server, bearer_token=saml_assertion, session=session) vms = client.vcenter.VM.list() print(vms)
cli/tests/pcluster3_config_converter/test_pcluster3_config_converter.py
enrico-usai/cfncluster
415
12641217
<filename>cli/tests/pcluster3_config_converter/test_pcluster3_config_converter.py # Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # with the License. A copy of the License is located at http://aws.amazon.com/apache2.0/ # or in the "LICENSE.txt" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import pytest import yaml from assertpy import assert_that from pcluster3_config_converter.pcluster3_config_converter import Pcluster3ConfigConverter from tests.pcluster3_config_converter import test_data @pytest.mark.parametrize( "expected_input, expected_output, warn", [ ( "pcluster.config.ini", "pcluster.config.yaml", [ "Note: Volume encrypted defaults to True in AWS ParallelCluster version 3 while it defaults to " "False in AWS ParallelCluster version 2.", "Note: In AWS ParallelCluster version 3, access to the Instance Metadata Service(IMDS) on the head " "node is restricted to the cluster administrator. If additional users required access to IMDS, you " "can set HeadNode/Imds/Secured to False.", "Warning: Parameter vpc_id = vpc-12345678 is no longer supported. Ignoring it during conversion.", "Warning: Parameter update_check = true is no longer supported. Ignoring it during conversion.", "Warning: Parameter ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS} is no longer supported. Ignoring it " "during conversion.", "Warning: Parameter encrypted_ephemeral = true is no longer supported. Ignoring it during conversion.", "Warning: additional_iam_policies = arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess is added to " "both headnode and scheduling sections. Please review the configuration file after conversion " "and decide whether to further trim down the permissions and specialize.", "Warning: pre_install = s3://testbucket/scripts/pre_install.sh is added to both headnode and " "scheduling sections. Please review the configuration file after conversion and decide whether to " "further trim down the permissions and specialize.", "Warning: post_install = s3://testbucekt/scripts/post_install.sh is added to both headnode and " "scheduling sections. Please review the configuration file after conversion and decide whether " "to further trim down the permissions and specialize.", ], ), ], ) def test_pcluster3_config_converter_command(test_datadir, tmpdir, expected_input, expected_output, warn): config_file_path = os.path.join(str(test_datadir), expected_input) args = [ "pcluster3-config-converter", "--config-file", config_file_path, "--output-file", tmpdir / "pcluster.config.yaml", ] result = subprocess.run(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8") _assert_files_are_equal( tmpdir / "pcluster.config.yaml", test_datadir / expected_output, ) for message in warn: assert_that(result.stdout).contains(message) @pytest.mark.parametrize( "expected_input, expected_output, warn, error, force_convert, cluster_label", [ ( "slurm_full.ini", "slurm_full.yaml", [ "Note: Volume encrypted defaults to True in AWS ParallelCluster version 3 while it defaults to False " "in AWS ParallelCluster version 2.", "Note: In AWS ParallelCluster version 3, access to the Instance Metadata Service(IMDS) on the head " "node is restricted to the cluster administrator. If additional users required access to IMDS, you " "can set HeadNode/Imds/Secured to False.", "Warning: Parameter vpc_id = vpc-0e0f223cc35256b9a is no longer supported. Ignoring it " "during conversion.", "Warning: Parameter update_check = true is no longer supported. Ignoring it during conversion.", "Warning: Parameter ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS} is no longer supported. Ignoring it " "during conversion.", "Warning: Parameter encrypted_ephemeral = true is no longer supported. Ignoring it during conversion.", "Warning: additional_iam_policies = arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess is added to both " "headnode and scheduling sections. Please review the configuration file after conversion and decide " "whether to further trim down the permissions and specialize.", "Warning: s3_read_write_resource = arn:aws:s3:::test/hello/* is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: s3_read_resource = arn:aws:s3:::testbucket/* is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: pre_install = s3://testbucket/pre_install.sh is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: post_install = s3://testbucket/post_install.sh is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: proxy_server = https://x.x.x.x:8080 is added to both headnode and scheduling sections. " "Please review the configuration file after conversion and decide whether to further trim down the " "permissions and specialize.", "Warning: additional_sg = sg-xxxxxx is added to both headnode and scheduling sections. Please review " "the configuration file after conversion and decide whether to further trim down the permissions and " "specialize.", "Warning: vpc_security_group_id = sg-xxxxxx is added to both headnode and scheduling sections. Please " "review the configuration file after conversion and decide whether to further trim down the " "permissions and specialize.", "Warning: Parameters ['extra_json', 'custom_chef_cookbook', 'template_url', 'instance_types_data'] " "are not officially supported and not recommended.", "Warning: Duplicate names 'custom1' are not allowed in the SharedStorage section. Please change them " "before cluster creation.", "Warning: '_' is not allowed in the name of 'compute_resource ondemand_i1'. Please rename it before " "cluster creation.", "Warning: '_' is not allowed in the name of 'compute_resource ondemand_i3'. Please rename it before " "cluster creation.", "Warning: Parameter initial_count = 2 is no longer supported. Ignoring it during conversion.", "Warning: '_' is not allowed in the name of 'compute_resource ondemand_i2'. Please rename it before " "cluster creation.", ], None, True, "default", ), ( "slurm_required.ini", "slurm_required.yaml", [ "Note: Volume encrypted defaults to True in AWS ParallelCluster version 3 while it defaults to False " "in AWS ParallelCluster version 2.", "Note: In AWS ParallelCluster version 3, access to the Instance Metadata Service(IMDS) on the head " "node is restricted to the cluster administrator. If additional users required access to IMDS, you " "can set HeadNode/Imds/Secured to False.", "Warning: Parameter vpc_id = vpc-123 is no longer supported. Ignoring it during conversion.", "Warning: Parameter update_check = true is no longer supported. Ignoring it during conversion.", "Warning: Parameter ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS} is no longer supported. Ignoring it " "during conversion.", ], None, False, "cluster_label1", ), ( "awsbatch_required.ini", "awsbatch_required.yaml", [ "Note: Volume encrypted defaults to True in AWS ParallelCluster version 3 while it defaults to False " "in AWS ParallelCluster version 2.", "Warning: Parameter vpc_id = vpc-0e0f223cc35256b9a is no longer supported. Ignoring it " "during conversion.", "Warning: Parameter update_check = true is no longer supported. Ignoring it during conversion.", "Warning: Parameter ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS} is no longer supported. Ignoring it " "during conversion.", "Warning: Parameter sanity_check = false is no longer supported, please specify " "`--suppress-validators ALL` during cluster creation.", ], None, False, None, ), ( "awsbatch_full.ini", "awsbatch_full.yaml", [ "Note: Volume encrypted defaults to True in AWS ParallelCluster version 3 while it defaults to False " "in AWS ParallelCluster version 2.", "Warning: Parameter vpc_id = vpc-0e0f223cc35256b9a is no longer supported. Ignoring it " "during conversion.", "Warning: Parameter update_check = true is no longer supported. Ignoring it during conversion.", "Warning: Parameter ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS} is no longer supported. Ignoring it " "during conversion.", "Warning: Parameter encrypted_ephemeral = true is no longer supported. Ignoring it during conversion.", "Warning: Parameter sanity_check = false is no longer supported, please specify " "`--suppress-validators ALL` during cluster creation.", "Warning: s3_read_resource = arn:aws:s3:::testbucket/* is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: disable_hyperthreading = true is added to both headnode and scheduling sections. Please " "review the configuration file after conversion and decide whether to further trim down the " "permissions and specialize.", "Warning: pre_install = s3://testbucket/pre_install.sh is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: post_install = s3://testbucket/post_install.sh is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: proxy_server = https://x.x.x.x:8080 is added to both headnode and scheduling sections. " "Please review the configuration file after conversion and decide whether to further trim down the " "permissions and specialize.", "Warning: additional_sg = sg-xxxxxx is added to both headnode and scheduling sections. Please review " "the configuration file after conversion and decide whether to further trim down the permissions and " "specialize.", "Warning: vpc_security_group_id = sg-xxxxxx is added to both headnode and scheduling sections. Please " "review the configuration file after conversion and decide whether to further trim down the " "permissions and specialize.", "Warning: Parameters ['extra_json'] are not officially supported and not recommended.", "Warning: Duplicate names 'custom1' are not allowed in the SharedStorage section. Please change them " "before cluster creation.", ], None, True, "default", ), ( "slurm_full.ini", None, [ "Note: Volume encrypted defaults to True in AWS ParallelCluster version 3 while it defaults to False " "in AWS ParallelCluster version 2.", "Note: In AWS ParallelCluster version 3, access to the Instance Metadata Service(IMDS) on the head " "node is restricted to the cluster administrator. If additional users required access to IMDS, you " "can set HeadNode/Imds/Secured to False.", "Warning: Parameter vpc_id = vpc-0e0f223cc35256b9a is no longer supported. Ignoring it " "during conversion.", "Warning: Parameter update_check = true is no longer supported. Ignoring it during conversion.", "Warning: Parameter ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS} is no longer supported. Ignoring it during " "conversion.", "Warning: Parameter encrypted_ephemeral = true is no longer supported. Ignoring it during conversion.", "Warning: additional_iam_policies = arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess is added to both " "headnode and scheduling sections. Please review the configuration file after conversion and decide " "whether to further trim down the permissions and specialize.", "Warning: s3_read_write_resource = arn:aws:s3:::test/hello/* is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: s3_read_resource = arn:aws:s3:::testbucket/* is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: pre_install = s3://testbucket/pre_install.sh is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: post_install = s3://testbucket/post_install.sh is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: proxy_server = https://x.x.x.x:8080 is added to both headnode and scheduling sections. " "Please review the configuration file after conversion and decide whether to further trim down the " "permissions and specialize.", "Warning: additional_sg = sg-xxxxxx is added to both headnode and scheduling sections. Please review " "the configuration file after conversion and decide whether to further trim down the permissions and " "specialize.", "Warning: vpc_security_group_id = sg-xxxxxx is added to both headnode and scheduling sections. Please " "review the configuration file after conversion and decide whether to further trim down the " "permissions and specialize.", ], "ERROR: ['extra_json', 'custom_chef_cookbook', 'template_url', 'instance_types_data'] are not officially " "supported and not recommended. If you want to proceed with conversion, please specify `--force-convert` " "and rerun the command.", False, None, ), ( "compute_subnet_cidr.ini", None, None, "ERROR: Parameter compute_subnet_cidr = 0.0.0.0/16 is no longer supported. Please remove it and run the " "converter again.", False, None, ), ( "missing_vpc.ini", None, None, "Missing vpc_settings in the configuration file", False, None, ), ( "slurm_full.ini", None, None, "The specified cluster section is not in the configuration.", False, "invalid_cluster_label", ), ( "slurm_requred.ini", None, None, "Can not find a valid cluster section.", False, None, ), ( "sit_base.ini", "sit_base.yaml", [ "Note: Volume encrypted defaults to True in AWS ParallelCluster version 3 while it defaults to False " "in AWS ParallelCluster version 2.", "Note: In AWS ParallelCluster version 3, access to the Instance Metadata Service(IMDS) on the head " "node is restricted to the cluster administrator. If additional users required access to IMDS, you " "can set HeadNode/Imds/Secured to False.", "Warning: Parameter vpc_id = vpc-12345678 is no longer supported. Ignoring it during conversion.", "Warning: Parameter update_check = false is no longer supported. Ignoring it during conversion.", "Warning: Parameter ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS} is no longer supported. Ignoring it during " "conversion.", ], None, False, None, ), ( "sit_full.ini", "sit_full.yaml", [ "Note: Volume encrypted defaults to True in AWS ParallelCluster version 3 while it defaults to False " "in AWS ParallelCluster version 2.", "Note: In AWS ParallelCluster version 3, access to the Instance Metadata Service(IMDS) on the head " "node is restricted to the cluster administrator. If additional users required access to IMDS, you " "can set HeadNode/Imds/Secured to False.", "Warning: Parameter vpc_id = vpc-12345678 is no longer supported. Ignoring it during conversion.", "Warning: Parameter update_check = false is no longer supported. Ignoring it during conversion.", "Warning: Parameter ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS} is no longer supported. Ignoring it during " "conversion.", "Warning: s3_read_write_resource = arn:aws:s3:::test/hello/* is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: s3_read_resource = arn:aws:s3:::testbucket/* is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: disable_hyperthreading = false is added to both headnode and scheduling sections. Please " "review the configuration file after conversion and decide whether to further trim down the " "permissions and specialize.", "Warning: pre_install = s3://testbucket/pre_install.sh is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: post_install = s3://testbucket/post_install.sh is added to both headnode and scheduling " "sections. Please review the configuration file after conversion and decide whether to further trim " "down the permissions and specialize.", "Warning: Parameter initial_queue_size = 2 is no longer supported. Ignoring it during conversion.", ], None, False, None, ), ], ) def test_pcluster3_config_converter( test_datadir, tmpdir, expected_input, expected_output, mocker, warn, error, force_convert, capsys, cluster_label ): mocker.patch( "pcluster3_config_converter.pcluster3_config_converter.Pcluster3ConfigConverter.get_region", return_value="us-west-1", ) mocker.patch( "pcluster3_config_converter.pcluster3_config_converter._get_account_id", return_value="1234567", ) converter = Pcluster3ConfigConverter( test_datadir / expected_input, cluster_label, tmpdir / "output_yaml", False, force_convert ) try: converter.validate() converter.convert_to_pcluster3_config() converter.write_configuration_file() _assert_files_are_equal( tmpdir / "output_yaml", test_datadir / expected_output, ) except SystemExit as e: print(e) assert_that(e.args[0]).contains(error) if warn: readouterr = capsys.readouterr() for message in warn: assert_that(readouterr.out).contains(message) @pytest.mark.parametrize( "test_case", test_data.region_test, ) def test_convert_region(test_case): user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.convert_region("Region") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.image_test, ) def test_convert_image(test_case): user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.convert_image("Image") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.iam_test, ) def test_convert_iam(test_case, mocker): mocker.patch( "pcluster3_config_converter.pcluster3_config_converter.Pcluster3ConfigConverter.get_region", return_value="us-west-1", ) mocker.patch( "pcluster3_config_converter.pcluster3_config_converter._get_account_id", return_value="1234567", ) user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.convert_iam("Iam") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.additional_packages_test, ) def test_convert_additional_packages(test_case): user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.convert_additional_packages("AdditionalPackages") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.tags_test, ) def test_convert_tags(test_case): user_input, expected_output, error_message = test_case[0], test_case[1], test_case[2] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() try: converter.convert_tags("Tags") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) except SystemExit as e: assert_that(e.args[0]).contains(error_message) @pytest.mark.parametrize( "test_case", test_data.monitoring_test, ) def test_convert_monitoring(test_case): user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.convert_monitoring("Monitoring") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.convert_custom_s3_bucket_test, ) def test_convert_custom_s3_bucket(test_case): user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.convert_custom_s3_bucket("CustomS3Bucket") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.convert_dev_settings_test, ) def test_convert_dev_settings(test_case): user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.convert_dev_settings("DevSettings") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.convert_additional_resources_test, ) def test_convert_additional_resources(test_case): user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.convert_additional_resources("AdditionalResources") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.shared_storage_test, ) def test_convert_shared_storage(test_case): user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.convert_shared_storage("SharedStorage") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.headnode_test, ) def test_convert_headnode(test_case, mocker): mocker.patch( "pcluster3_config_converter.pcluster3_config_converter.Pcluster3ConfigConverter.get_region", return_value="us-west-1", ) mocker.patch( "pcluster3_config_converter.pcluster3_config_converter._get_account_id", return_value="1234567", ) user_input, expected_output = test_case[0], test_case[1] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.validate_vpc_settings() converter.convert_headnode("HeadNode") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) @pytest.mark.parametrize( "test_case", test_data.scheduling_test, ) def test_convert_scheduling(test_case, mocker): mocker.patch( "pcluster3_config_converter.pcluster3_config_converter.Pcluster3ConfigConverter.get_region", return_value="us-west-1", ) mocker.patch( "pcluster3_config_converter.pcluster3_config_converter._get_account_id", return_value="1234567", ) user_input, expected_output, warn = test_case[0], test_case[1], test_case[2] expected_output_data = yaml.safe_load(expected_output) converter = Pcluster3ConfigConverter( config_file=user_input, cluster_template="default", output_file="dummy_output", input_as_string=True ) converter.validate_cluster_section_name() converter.validate_vpc_settings() converter.convert_scheduling("Scheduling") assert_that(converter.pcluster3_configuration).is_equal_to(expected_output_data) if warn: assert_that(converter.comments).contains(warn) @pytest.mark.parametrize( "pcluster2_field, value, pcluster3_field, method, error_message", [ ("proxy_server", "https://x.x.x.x:8080", "HttpProxyAddress", None, None), ("disable_hyperthreading", True, "DisableSimultaneousMultithreading", "getboolean", None), ("master_root_volume_size", 30, "Size", "getint", None), ( "master_root_volume_size", True, "Size", "getint", "Wrong type for master_root_volume_size in dummy-section section: invalid literal for int() with base 10: " "'True'", ), ("spot_price", 20.99, "SpotPrice", "getfloat", None), ], ) def test_convert_single_field( test_datadir, tmpdir, pcluster2_field, value, pcluster3_field, method, error_message, caplog, capsys ): converter = Pcluster3ConfigConverter( config_file="dummy_input", cluster_template="default", output_file="dummy_output" ) converter.config_parser.read_dict({"dummy-section": {pcluster2_field: value}}) pcluster3_model = {} try: converter.convert_single_field("dummy-section", pcluster2_field, pcluster3_model, pcluster3_field, method) assert_that(pcluster3_model).is_equal_to({pcluster3_field: value}) except SystemExit as e: assert_that(e.args[0]).contains(error_message) def _assert_files_are_equal(file, expected_file): with open(file, "r") as f, open(expected_file, "r") as exp_f: expected_file_content = exp_f.read() expected_file_content = expected_file_content.replace("<DIR>", os.path.dirname(file)) assert_that(f.read()).is_equal_to(expected_file_content)
exp.voc/voc8.res50v3+.CCT/train.py
Yongjin-colin-choi/TorchSemiSeg
268
12641242
<filename>exp.voc/voc8.res50v3+.CCT/train.py from __future__ import division import os.path as osp import os import sys import time import argparse from tqdm import tqdm import torch import torch.nn as nn import torch.distributed as dist import torch.backends.cudnn as cudnn from config import config from dataloader import get_train_loader from network import Network from dataloader import VOC from utils.init_func import init_weight, group_weight from engine.lr_policy import WarmUpPolyLR from engine.engine import Engine from seg_opr.loss_opr import SigmoidFocalLoss, ProbOhemCrossEntropy2d # from seg_opr.sync_bn import DataParallelModel, Reduce, BatchNorm2d from tensorboardX import SummaryWriter from unsupervised_head import * try: from apex.parallel import DistributedDataParallel, SyncBatchNorm except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex .") try: from azureml.core import Run azure = True run = Run.get_context() except: azure = False parser = argparse.ArgumentParser() os.environ['MASTER_PORT'] = '169711' with Engine(custom_parser=parser) as engine: args = parser.parse_args() cudnn.benchmark = True seed = config.seed if engine.distributed: seed = engine.local_rank torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) # data loader + unsupervised data loader train_loader, train_sampler = get_train_loader(engine, VOC, train_source=config.train_source, \ unsupervised=False) unsupervised_train_loader, unsupervised_train_sampler = get_train_loader(engine, VOC, \ train_source=config.unsup_source, unsupervised=True) if engine.distributed and (engine.local_rank == 0): tb_dir = config.tb_dir + '/{}'.format(time.strftime("%b%d_%d-%H-%M", time.localtime())) generate_tb_dir = config.tb_dir + '/tb' logger = SummaryWriter(log_dir=tb_dir) engine.link_tb(tb_dir, generate_tb_dir) # config network and criterion criterion = nn.CrossEntropyLoss(reduction='mean', ignore_index=255) criterion = abCE_loss(iters_per_epoch=config.niters_per_epoch, epochs=config.nepochs, num_classes=config.num_classes) if engine.distributed: BatchNorm2d = SyncBatchNorm model = Network(config.num_classes, criterion=criterion, pretrained_model=config.pretrained_model, norm_layer=BatchNorm2d) init_weight(model.business_layer, nn.init.kaiming_normal_, BatchNorm2d, config.bn_eps, config.bn_momentum, mode='fan_in', nonlinearity='relu') # group weight and config optimizer base_lr = config.lr if engine.distributed: base_lr = config.lr * engine.world_size params_list = [] params_list = group_weight(params_list, model.backbone, BatchNorm2d, base_lr) for module in model.business_layer: params_list = group_weight(params_list, module, BatchNorm2d, base_lr) optimizer = torch.optim.SGD(params_list, lr=base_lr, momentum=config.momentum, weight_decay=config.weight_decay) # config lr policy total_iteration = config.nepochs * config.niters_per_epoch lr_policy = WarmUpPolyLR(base_lr, config.lr_power, total_iteration, config.niters_per_epoch * config.warm_up_epoch) if engine.distributed: print('distributed !!') if torch.cuda.is_available(): model.cuda() model = DistributedDataParallel(model) else: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DataParallelModel(model, device_ids=engine.devices) model.to(device) engine.register_state(dataloader=train_loader, model=model, optimizer=optimizer) if engine.continue_state_object: engine.restore_checkpoint() model.train() print('begin train') for epoch in range(engine.state.epoch, config.nepochs): if engine.distributed: train_sampler.set_epoch(epoch) bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]' pbar = tqdm(range(config.niters_per_epoch), file=sys.stdout, bar_format=bar_format) dataloader = iter(train_loader) unsupervised_dataloader = iter(unsupervised_train_loader) sum_loss = 0 sum_loss_unsup = 0 for idx in pbar: optimizer.zero_grad() engine.update_iteration(epoch, idx) minibatch = dataloader.next() unsupervised_minibatch = unsupervised_dataloader.next() imgs = minibatch['data'] gts = minibatch['label'] unsupervised_imgs = unsupervised_minibatch['data'] imgs = imgs.cuda(non_blocking=True) gts = gts.cuda(non_blocking=True) unsupervised_imgs = unsupervised_imgs.cuda(non_blocking=True) loss_sup, loss_unsup = model(imgs, unsupervised_imgs, gts, curr_iter=idx+1, epoch=epoch) # reduce the whole loss over multi-gpu dist.all_reduce(loss_sup, dist.ReduceOp.SUM) loss_sup = loss_sup / engine.world_size dist.all_reduce(loss_unsup, dist.ReduceOp.SUM) loss_unsup = loss_unsup / engine.world_size current_idx = epoch * config.niters_per_epoch + idx lr = lr_policy.get_lr(current_idx) optimizer.param_groups[0]['lr'] = lr optimizer.param_groups[1]['lr'] = lr for i in range(2, len(optimizer.param_groups)): optimizer.param_groups[i]['lr'] = lr unsup_weight = config.unsup_weight loss_unsup = loss_unsup * unsup_weight tot_loss = loss_sup + loss_unsup # sup loss + unsup loss tot_loss.backward() optimizer.step() print_str = 'Epoch{}/{}'.format(epoch, config.nepochs) \ + ' Iter{}/{}:'.format(idx + 1, config.niters_per_epoch) \ + ' lr=%.2e' % lr \ + ' loss=%.2f' % tot_loss.item() \ + ' loss_unsup=%.2f' % loss_unsup.item() sum_loss += tot_loss.item() sum_loss_unsup += loss_unsup.item() pbar.set_description(print_str, refresh=False) if engine.distributed and (engine.local_rank == 0): logger.add_scalar('train_loss', sum_loss / len(pbar), epoch) logger.add_scalar('train_loss_unsup', sum_loss_unsup / len(pbar), epoch) if azure: run.log(name='Training Loss', value=sum_loss / len(pbar)) run.log(name='Unsupervised Training Loss', value=sum_loss_unsup / len(pbar)) if (epoch > config.nepochs // 6) and (epoch % config.snapshot_iter == 0) or (epoch == config.nepochs - 1): if engine.distributed and (engine.local_rank == 0): engine.save_and_link_checkpoint(config.snapshot_dir, config.log_dir, config.log_dir_link) elif not engine.distributed: engine.save_and_link_checkpoint(config.snapshot_dir, config.log_dir, config.log_dir_link)
var/spack/repos/builtin/packages/tippecanoe/package.py
kkauder/spack
2,360
12641257
<filename>var/spack/repos/builtin/packages/tippecanoe/package.py<gh_stars>1000+ # Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Tippecanoe(MakefilePackage): """Build vector tilesets from large collections of GeoJSON features.""" homepage = "https://github.com/mapbox/tippecanoe" url = "https://github.com/mapbox/tippecanoe/archive/1.34.3.tar.gz" version('1.34.3', sha256='7a2dd2376a93d66a82c8253a46dbfcab3eaaaaca7bf503388167b9ee251bee54') depends_on('sqlite') depends_on('zlib') def edit(self, spec, prefix): makefile = FileFilter('Makefile') makefile.filter(r'PREFIX \?= /usr/local', 'PREFIX = ' + self.prefix)
tests/integration/pybaseball/datasources/test_fg_pitching_data.py
reddigari/pybaseball
650
12641271
<reponame>reddigari/pybaseball<filename>tests/integration/pybaseball/datasources/test_fg_pitching_data.py from typing import Callable import pandas as pd import pytest from pybaseball.datasources.fangraphs import fg_pitching_data from pybaseball.enums.fangraphs.pitching_data_enum import FangraphsPitchingStats from tests.conftest import _DataFrameComparer class TestFGPitchingData: ALL_DATA_COLUMNS_COUNT = len(FangraphsPitchingStats.ALL()) + 2 # All columns + name and team DEFAULT_MAX_RESULTS = 10 def test_fg_pitching_data(self) -> None: season = 2019 data = fg_pitching_data(season, max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data.index) == self.DEFAULT_MAX_RESULTS seasons = list(set(data['Season'])) assert len(seasons) == 1 assert seasons[0] == season def test_fg_pitching_data_future_season(self) -> None: season = 3000 with pytest.raises(ValueError): fg_pitching_data(season, max_results=self.DEFAULT_MAX_RESULTS) def test_fg_pitching_data_end_season(self) -> None: data = fg_pitching_data(2018, end_season=2019, max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data.index) == self.DEFAULT_MAX_RESULTS def test_fg_pitching_data_end_season_no_split_season(self) -> None: data = fg_pitching_data(2018, end_season=2019, split_seasons=False, max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == self.ALL_DATA_COLUMNS_COUNT - 1 assert 'Season' not in data.columns assert len(data.index) == self.DEFAULT_MAX_RESULTS def test_fg_pitching_data_single_stat_columns(self) -> None: data = fg_pitching_data(2019, stat_columns='ERA', max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == 5 assert len(data.index) == self.DEFAULT_MAX_RESULTS def test_fg_pitching_data_multiple_stat_columns(self) -> None: data = fg_pitching_data(2019, stat_columns=['ERA', 'BB'], max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == 6 assert len(data.index) == self.DEFAULT_MAX_RESULTS def test_fg_pitching_data_league(self, assert_frame_not_equal: _DataFrameComparer) -> None: data_al = fg_pitching_data(2019, league='AL', max_results=self.DEFAULT_MAX_RESULTS) assert data_al is not None assert not data_al.empty assert len(data_al.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data_al.index) == self.DEFAULT_MAX_RESULTS data_nl = fg_pitching_data(2019, league='NL', max_results=self.DEFAULT_MAX_RESULTS) assert data_nl is not None assert not data_nl.empty assert len(data_nl.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data_nl.index) == self.DEFAULT_MAX_RESULTS assert assert_frame_not_equal(data_al, data_nl) def test_fg_pitching_data_qual(self) -> None: data = fg_pitching_data(2019, qual=210, max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data.index) == 4 def test_fg_pitching_data_on_active_roster(self, assert_frame_not_equal: _DataFrameComparer) -> None: data = fg_pitching_data(2018, max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data.index) == self.DEFAULT_MAX_RESULTS oar_data = fg_pitching_data(2018, on_active_roster=True, max_results=self.DEFAULT_MAX_RESULTS) assert oar_data is not None assert not oar_data.empty assert len(oar_data.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(oar_data.index) == self.DEFAULT_MAX_RESULTS assert_frame_not_equal(data, oar_data) def test_fg_pitching_minimum_age(self) -> None: data = fg_pitching_data(2019, minimum_age=37, max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data.index) == 1 def test_fg_pitching_maximum_age(self) -> None: data = fg_pitching_data(2019, maximum_age=21, max_results=self.DEFAULT_MAX_RESULTS) assert data is not None assert not data.empty assert len(data.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data.index) == 1 def test_fg_pitching_team(self, assert_frame_not_equal: _DataFrameComparer) -> None: data_1 = fg_pitching_data(2019, team='3', max_results=self.DEFAULT_MAX_RESULTS) assert data_1 is not None assert not data_1.empty assert len(data_1.columns) == self.ALL_DATA_COLUMNS_COUNT - 1 assert 'Team' not in data_1.columns assert len(data_1.index) == 2 data_2 = fg_pitching_data(2019, team='4', max_results=self.DEFAULT_MAX_RESULTS) assert data_2 is not None assert not data_2.empty assert len(data_2.columns) == self.ALL_DATA_COLUMNS_COUNT - 1 assert 'Team' not in data_2.columns assert len(data_2.index) == 3 assert_frame_not_equal(data_1, data_2) def test_fg_pitching_data_max_results(self) -> None: season = 2019 data = fg_pitching_data(season) assert data is not None assert not data.empty assert len(data.columns) == self.ALL_DATA_COLUMNS_COUNT assert len(data.index) == 61
tests/__init__.py
steve1aa/microdot
173
12641275
<reponame>steve1aa/microdot from tests.microdot.test_multidict import TestMultiDict from tests.microdot.test_request import TestRequest from tests.microdot.test_response import TestResponse from tests.microdot.test_url_pattern import TestURLPattern from tests.microdot.test_microdot import TestMicrodot from tests.microdot_asyncio.test_request_asyncio import TestRequestAsync from tests.microdot_asyncio.test_response_asyncio import TestResponseAsync from tests.microdot_asyncio.test_microdot_asyncio import TestMicrodotAsync
tests/ae_example/models/autoencoder.py
agr17/pytorch-msssim
461
12641279
import torch import torch.nn as nn import torch.nn.functional as F import math from .gdn import GDN # https://arxiv.org/pdf/1611.01704.pdf # A simplfied version without quantization class AutoEncoder(nn.Module): def __init__(self, C=128, M=128, in_chan=3, out_chan=3): super(AutoEncoder, self).__init__() self.encoder = Encoder(C=C, M=M, in_chan=in_chan) self.decoder = Decoder(C=C, M=M, out_chan=out_chan) def forward(self, x, **kargs): code = self.encoder(x) out = self.decoder(code) return out class Encoder(nn.Module): """ Encoder """ def __init__(self, C=32, M=128, in_chan=3): super(Encoder, self).__init__() self.enc = nn.Sequential( nn.Conv2d(in_channels=in_chan, out_channels=M, kernel_size=5, stride=2, padding=2, bias=False), GDN(M), nn.Conv2d(in_channels=M, out_channels=M, kernel_size=5, stride=2, padding=2, bias=False), GDN(M), nn.Conv2d(in_channels=M, out_channels=M, kernel_size=5, stride=2, padding=2, bias=False), GDN(M), nn.Conv2d(in_channels=M, out_channels=C, kernel_size=5, stride=2, padding=2, bias=False) ) def forward(self, x): return self.enc(x) class Decoder(nn.Module): """ Decoder """ def __init__(self, C=32, M=128, out_chan=3): super(Decoder, self).__init__() self.dec = nn.Sequential( nn.ConvTranspose2d(in_channels=C, out_channels=M, kernel_size=5, stride=2, padding=2, output_padding=1, bias=False), GDN(M, inverse=True), nn.ConvTranspose2d(in_channels=M, out_channels=M, kernel_size=5, stride=2, padding=2, output_padding=1, bias=False), GDN(M, inverse=True), nn.ConvTranspose2d(in_channels=M, out_channels=M, kernel_size=5, stride=2, padding=2, output_padding=1, bias=False), GDN(M, inverse=True), nn.ConvTranspose2d(in_channels=M, out_channels=out_chan, kernel_size=5, stride=2, padding=2, output_padding=1, bias=False), ) def forward(self, q): return torch.sigmoid( self.dec(q) )
stonesoup/types/tests/test_hypothesis.py
Red-Portal/Stone-Soup-1
157
12641280
# -*- coding: utf-8 -*- import numpy as np import pytest from ..prediction import StatePrediction, StateMeasurementPrediction from ..detection import Detection from ..track import Track from ..hypothesis import ( SingleHypothesis, SingleDistanceHypothesis, SingleProbabilityHypothesis, JointHypothesis, ProbabilityJointHypothesis, DistanceJointHypothesis) prediction = StatePrediction(np.array([[1], [0]])) measurement_prediction = StateMeasurementPrediction(np.array([[1], [0]])) detection = Detection(np.array([[1], [0]])) distance = float(1) def test_single_hypothesis(): """Single Measurement Hypothesis type test""" hypothesis = SingleHypothesis(prediction, detection) assert hypothesis.prediction is prediction assert hypothesis.measurement is detection assert hypothesis.measurement_prediction is None assert hypothesis hypothesis = SingleHypothesis(prediction, detection, measurement_prediction) assert hypothesis.prediction is prediction assert hypothesis.measurement is detection assert hypothesis.measurement_prediction is measurement_prediction assert hypothesis hypothesis = SingleHypothesis(prediction, None) assert hypothesis.prediction is prediction assert hypothesis.measurement is None assert hypothesis.measurement_prediction is None assert not hypothesis def test_single_distance_hypothesis(): """Single Measurement Distance Hypothesis type test""" hypothesis = SingleDistanceHypothesis( prediction, detection, distance, measurement_prediction) assert hypothesis.prediction is prediction assert hypothesis.measurement is detection assert hypothesis.distance is distance assert hypothesis.measurement_prediction is measurement_prediction assert hypothesis.weight == 1/distance hypothesis.distance = 0 assert hypothesis.weight == float('inf') def test_single_distance_hypothesis_comparison(): """Single Measurement Distance Hypothesis comparison test""" h1 = SingleDistanceHypothesis( prediction, detection, distance, measurement_prediction) h2 = SingleDistanceHypothesis( prediction, detection, distance + 1, measurement_prediction) assert h1 > h2 assert h2 < h1 assert h1 <= h1 assert h1 >= h1 assert h1 == h1 def test_single_probability_hypothesis_comparison(): """Single Measurement Probability Hypothesis comparison test""" h1 = SingleProbabilityHypothesis( prediction, detection, 0.9, measurement_prediction) h2 = SingleProbabilityHypothesis( prediction, detection, 0.1, measurement_prediction) assert h1 > h2 assert h2 < h1 assert h1 <= h1 assert h1 >= h1 assert h1 == h1 def test_probability_joint_hypothesis(): """Probability Joint Hypothesis type test""" t1 = Track() t2 = Track() h1 = SingleProbabilityHypothesis( prediction, detection, 0.9, measurement_prediction) h2 = SingleProbabilityHypothesis( prediction, detection, 0.1, measurement_prediction) hypotheses = {t1: h1, t2: h2} joint_hypothesis = JointHypothesis(hypotheses) assert isinstance(joint_hypothesis, ProbabilityJointHypothesis) assert joint_hypothesis[t1] is h1 assert joint_hypothesis[t2] is h2 assert joint_hypothesis.probability == h1.probability * h2.probability def test_probability_joint_hypothesis_comparison(): """Probability Joint Hypothesis comparison test""" t1 = Track() t2 = Track() h1 = SingleProbabilityHypothesis( prediction, detection, 0.75, measurement_prediction) h2 = SingleProbabilityHypothesis( prediction, detection, 0.75, measurement_prediction) h3 = SingleProbabilityHypothesis( prediction, detection, 0.25, measurement_prediction) hypotheses1 = {t1: h1, t2: h2} hypotheses2 = {t1: h1, t2: h3} j1 = JointHypothesis(hypotheses1) j1.normalise() j2 = JointHypothesis(hypotheses2) j2.normalise() assert j1 > j2 assert j2 < j1 assert j1 <= j1 assert j1 >= j1 assert j1 == j1 def test_distance_joint_hypothesis(): """Distance Joint Hypothesis type test""" t1 = Track() t2 = Track() h1 = SingleDistanceHypothesis( prediction, detection, distance, measurement_prediction) h2 = SingleDistanceHypothesis( prediction, detection, distance, measurement_prediction) hypotheses = {t1: h1, t2: h2} joint_hypothesis = JointHypothesis(hypotheses) assert isinstance(joint_hypothesis, DistanceJointHypothesis) assert joint_hypothesis[t1] is h1 assert joint_hypothesis[t2] is h2 assert joint_hypothesis.distance == distance * 2 def test_distance_joint_hypothesis_comparison(): """Distance Joint Hypothesis comparison test""" t1 = Track() t2 = Track() h1 = SingleDistanceHypothesis( prediction, detection, distance, measurement_prediction) h2 = SingleDistanceHypothesis( prediction, detection, distance, measurement_prediction) h3 = SingleDistanceHypothesis( prediction, detection, distance + 1, measurement_prediction) hypotheses1 = {t1: h1, t2: h2} hypotheses2 = {t1: h1, t2: h3} j1 = JointHypothesis(hypotheses1) j2 = JointHypothesis(hypotheses2) assert j1 > j2 assert j2 < j1 assert j1 <= j1 assert j1 >= j1 assert j1 == j1 def test_invalid_single_joint_hypothesis(): """Invalid Single Measurement Joint Hypothesis test""" t1 = Track() t2 = Track() h1 = object() h2 = object() hypotheses = {t1: h1, t2: h2} with pytest.raises(NotImplementedError): JointHypothesis(hypotheses)
bin/deepstate/executors/fuzz/libfuzzer.py
acpaquette/deepstate
684
12641325
#!/usr/bin/env python3.6 # Copyright (c) 2019 Trail of Bits, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import argparse from typing import List from deepstate.core import FuzzerFrontend, FuzzFrontendError L = logging.getLogger(__name__) class LibFuzzer(FuzzerFrontend): NAME = "libFuzzer" EXECUTABLES = {"FUZZER": "clang++", # placeholder "COMPILER": "clang++" } ENVVAR = "LIBFUZZER_HOME" REQUIRE_SEEDS = False PUSH_DIR = os.path.join("sync_dir", "queue") PULL_DIR = os.path.join("sync_dir", "queue") CRASH_DIR = os.path.join("the_fuzzer", "crashes") @classmethod def parse_args(cls) -> None: parser: argparse.ArgumentParser = argparse.ArgumentParser( description="Use libFuzzer as a backend for DeepState") cls.parser = parser super(LibFuzzer, cls).parse_args() def compile(self) -> None: # type: ignore lib_path: str = "/usr/local/lib/libdeepstate_LF.a" flags: List[str] = ["-ldeepstate_LF", "-fsanitize=fuzzer,undefined"] if self.compiler_args: flags += [arg for arg in self.compiler_args.split(" ")] super().compile(lib_path, flags, self.out_test_name) def pre_exec(self) -> None: """ Perform argparse and environment-related sanity checks. """ # first, redefine and override fuzzer as harness executable if self.binary: self.binary = os.path.abspath(self.binary) self.fuzzer_exe = self.binary # type: ignore super().pre_exec() # again, because we may had run compiler if not self.binary: raise FuzzFrontendError("Binary not set.") self.binary = os.path.abspath(self.binary) self.fuzzer_exe = self.binary # type: ignore if self.blackbox is True: raise FuzzFrontendError("Blackbox fuzzing is not supported by libFuzzer.") # resuming fuzzing if len(os.listdir(self.output_test_dir)) > 0: self.check_required_directories([self.push_dir, self.pull_dir, self.crash_dir]) self.input_seeds = None L.info(f"Resuming fuzzing using seeds from {self.push_dir} (skipping --input_seeds option).") else: self.setup_new_session([self.pull_dir, self.crash_dir]) @property def cmd(self): """ Initializes a command for an in-process libFuzzer instance that runs indefinitely until an interrupt. """ cmd_list: List[str] = list() # guaranteed arguments cmd_list.extend([ "-rss_limit_mb={}".format(self.mem_limit), "-max_len={}".format(self.max_input_size), "-artifact_prefix={}".format(self.crash_dir + "/"), # "-jobs={}".format(0), # "-workers={}".format(1), # "-fork=1", "-reload=1", "-runs=-1", "-print_final_stats=1" ]) for key, val in self.fuzzer_args: if val is not None: cmd_list.append('-{}={}'.format(key, val)) else: cmd_list.append('-{}'.format(key)) # optional arguments: if self.dictionary: cmd_list.append("-dict={}".format(self.dictionary)) if self.exec_timeout: cmd_list.append("-timeout={}".format(self.exec_timeout / 1000)) # must be here, this are positional args cmd_list.append(self.push_dir) # no auto-create, reusable # not required, if provided: not auto-create and not require any files inside if self.input_seeds: cmd_list.append(self.input_seeds) return cmd_list def populate_stats(self): super().populate_stats() if not os.path.isfile(self.output_file): return with open(self.output_file, "rb") as f: for line in f: # libFuzzer under DeepState have broken output # splitted into multiple lines, preceeded with "EXTERNAL:" if line.startswith(b"EXTERNAL: "): line = line.split(b":", 1)[1].strip() if line.startswith(b"#"): # new event code self.stats["execs_done"] = line.split()[0].strip(b"#").decode() elif b":" in line: line = line.split(b":", 1)[1].strip() if b":" in line: key, value = line.split(b":", 1) if key == b"exec/s": self.stats["execs_per_sec"] = value.strip().decode() elif key == b"units": self.stats["paths_total"] = value.strip().decode() elif key == b"cov": self.stats["bitmap_cvg"] = value.strip().decode() def _sync_seeds(self, src, dest, excludes=[]) -> None: excludes += ["*.cur_input", ".state"] super()._sync_seeds(src, dest, excludes=excludes) def post_exec(self): # TODO: remove crashes from seeds dir and from sync_dir pass def main(): fuzzer = LibFuzzer() return fuzzer.main() if __name__ == "__main__": exit(main())
tests/resolution/evaluation/test_evaluate_resolved.py
mib1185/homeassistant-supervisor
597
12641372
<reponame>mib1185/homeassistant-supervisor<filename>tests/resolution/evaluation/test_evaluate_resolved.py """Test evaluate systemd-resolved.""" from unittest.mock import PropertyMock, patch from supervisor.const import CoreState from supervisor.coresys import CoreSys from supervisor.resolution.evaluations.resolved import EvaluateResolved async def test_evaluation(coresys: CoreSys): """Test evaluation.""" resolved = EvaluateResolved(coresys) coresys.core.state = CoreState.SETUP assert resolved.reason not in coresys.resolution.unsupported with patch.object( type(coresys.dbus.resolved), "is_connected", PropertyMock(return_value=False) ): await resolved() assert resolved.reason in coresys.resolution.unsupported await resolved() assert resolved.reason not in coresys.resolution.unsupported async def test_did_run(coresys: CoreSys): """Test that the evaluation ran as expected.""" resolved = EvaluateResolved(coresys) should_run = resolved.states should_not_run = [state for state in CoreState if state not in should_run] assert len(should_run) != 0 assert len(should_not_run) != 0 with patch( "supervisor.resolution.evaluations.resolved.EvaluateResolved.evaluate", return_value=None, ) as evaluate: for state in should_run: coresys.core.state = state await resolved() evaluate.assert_called_once() evaluate.reset_mock() for state in should_not_run: coresys.core.state = state await resolved() evaluate.assert_not_called() evaluate.reset_mock()
wren/resources/constants.py
tzano/wren
245
12641374
<gh_stars>100-1000 # config files CONFIG_DIR = "config" # Link to DB Configuration DB_CONFIG_FILE = "db.yml" # Name of collection COLLECTION_NAME = 'collection_name' CONFIG_DIR = "config" CONFIG_FNAME = "rss_feeds.yml" PARAM_CONFIG_FILE = "services.yml" APP_KEYS_FILE = "keys.yml" NLU_CONFIG = "nlu_config.yml" MESSAGING_FILE = "messaging_platforms.yml" SOCIALMEDIA_FILE = "socialmedia.yml" EMAIL_FILE = "email.yml" PAR_DIR = ".." # News Organizations ALJAZEERA = "AlJazeera" BBC = "BBC" CNN = "CNN" HUFFINGTONPOST = "HuffingtonPost" NYPOST = "NYPost" NYTIMES = "NYTimes" REUTERS = "Reuters" TELEGRAPH = "Telegraph" THEGLOBAEANDMAIL = "TheGlobeAndMail" GUARDIAN = "Guardian" USTODAY = "USAToday" VICE = "Vice" WSJ = "WSJ" # name of collections COLLECTION_ARTICLES = 'articles' COLLECTION_PODCASTS = 'podcasts' COLLECTION_VIDEOS = 'videos' COLLECTION_LISTS = 'list' COLLECTION_BOOKMARS = 'bookmarks' # Schedulers' names SCHEDULER_NEWS_ARTICLES = "Scheduler-NewsArticles" SCHEDULER_PODCASTS = "Scheduler-Podcasts" SCHEDULER_VIDEOS = "Scheduler-Videos" SECONDS = 60 # Empty string EMPTY_STR = "" EMPTY_LIST = [] EMPTY_DICT = {} # media types ARTICLES = "Articles" PODCASTS = "Podcasts" VIDEOS = "Videos" ARTICLE = "Article" PODCAST = "Podcast" VIDEO = "Video" MEDIA_TYPE_ARTICLES = {ARTICLES: ARTICLE} MEDIA_TYPE_PODCASTS = {PODCASTS: PODCAST} MEDIA_TYPE_VIDEOS = {VIDEOS: VIDEO} # Scheduler STOPPED = "stopped" RUNNING = "running" # Languages EN_LANG = "English" AR_LANG = "Arabic" # Keys for webservices CALAIS_KEY = "calais_key" DBPEDIA_KEY = "dbpedia_key" FREEBASE_KEY = "freebase_key" YAHOO_KEY = "yahoo_key" ZEMANTA_KEY = "zemanta_key" VONA_KEY = "vona_key" VONA_USERNAME = "vona_username" SLACK_API_KEY = "api_key" SLACK_BOT_NAME = "bot_name" SLACK_CHANNEL_NAME = "channel_name" SLACK_SERVICE = "slack" # Voice TTs TTS_PERONA = 'Emma' # Connectors MONGODB = "mongodb" KAFKA = "kafka" # Host/Port HOST = "host" PORT = "port" SENTISTRENGHT_JAR = "../resources/SentiStrength.jar" SENTISTRENGHT_DIR = "../resources/sentstrength_data/" # NLU Server NLU_SERVER = "http://localhost:5000" # NLU Parser parameters MIN_THRESHOLD = 0.30 # List of intents INTENT_FINDNEWSCONTENT = 'findNewsContent' INTENT_ADDCONTENTITEMTOCOLLECTION = 'addContentItemToCollection' INTENT_BOOKMARKCONTENTITEM = 'bookmarkContentItem' INTENT_EMAILCONTENTITEM = 'emailContentItem' INTENT_FAVORITECONTENTITEM = 'favoriteContentItem' INTENT_GETCONTENTINFO = 'getContentInfo' INTENT_LISTENPODCAST = 'listenPodcast' INTENT_RATECONTENTITEM = 'rateContentItem' INTENT_READARTICLE = 'readArticle' INTENT_SHARECONTENTITEM = 'shareContentItem' INTENT_WATCHVIDEO = 'watchVideo' # List of entities ENTITY_FINDNEWSCONTENT_AUTHORNAME = 'findnewscontent_authorname' ENTITY_FINDNEWSCONTENT_CONTENTITEMNAME = 'findnewscontent_contentitemname' ENTITY_FINDNEWSCONTENT_CONTENTTYPE = 'findnewscontent_contenttype' ENTITY_FINDNEWSCONTENT_EVENTNAME = 'findnewscontent_eventname' ENTITY_FINDNEWSCONTENT_LOCATIONNAME = 'findnewscontent_locationname' ENTITY_FINDNEWSCONTENT_ORGNAME = 'findnewscontent_orgname' ENTITY_FINDNEWSCONTENT_PERSONNAME = 'findnewscontent_personname' ENTITY_FINDNEWSCONTENT_SPATIALRELATION = 'findnewscontent_spatialrelation' ENTITY_FINDNEWSCONTENT_TIMEFRAME = 'findnewscontent_timeframe' ENTITY_FINDNEWSCONTENT_TOPICNAME = 'findnewscontent_topicname' ENTITY_ADDCONTENTITEMTOCOLLECTION_COLLECTIONNAME = 'addcontentitemtocollection_collectionname' ENTITY_ADDCONTENTITEMTOCOLLECTION_CONTENTITEMNAME = 'addcontentitemtocollection_contentitemname' ENTITY_ADDCONTENTITEMTOCOLLECTION_CONTENTTYPE = 'addcontentitemtocollection_contenttype' ENTITY_BOOKMARKCONTENTITEM_CONTENTITEMNAME = 'bookmarkcontentitem_contentitemname' ENTITY_BOOKMARKCONTENTITEM_CONTENTTYPE = 'bookmarkcontentitem_contenttype' ENTITY_BOOKMARKCONTENTITEM_SELECTCRITERIA = 'bookmarkcontentitem_selectcriteria' ENTITY_EMAILCONTENTITEM_CONTENTITEMNAME = 'emailcontentitem_contentitemname' ENTITY_EMAILCONTENTITEM_CONTENTTYPE = 'emailcontentitem_contenttype' ENTITY_EMAILCONTENTITEM_RECEIPENT = 'emailcontentitem_receipent' ENTITY_EMAILCONTENTITEM_SELECTCRITERIA = 'emailcontentitem_selectcriteria' ENTITY_FAVORITECONTENTITEM_CONTENTITEMNAME = 'favoritecontentitem_contentitemname' ENTITY_FAVORITECONTENTITEM_CONTENTTYPE = 'favoritecontentitem_contenttype' ENTITY_FAVORITECONTENTITEM_SELECTCRITERIA = 'favoritecontentitem_selectcriteria' ENTITY_GETCONTENTINFO_CONTENTTYPE = 'getcontentinfo_contenttype' ENTITY_GETCONTENTINFO_SELECTCRITERIA = 'getcontentinfo_selectcriteria' ENTITY_LISTENPODCAST_COMMAND = 'listenpodcast_command' ENTITY_LISTENPODCAST_CONTENTITEMNAME = 'listenpodcast_contentitemname' ENTITY_LISTENPODCAST_CONTENTTYPE = 'listenpodcast_contenttype' ENTITY_LISTENPODCAST_SELECTCRITERIA = 'listenpodcast_selectcriteria' ENTITY_RATECONTENTITEM_CONTENTITEMNAME = 'ratecontentitem_contentitemname' ENTITY_RATECONTENTITEM_CONTENTTYPE = 'ratecontentitem_contenttype' ENTITY_RATECONTENTITEM_RATINGVALUE = 'ratecontentitem_ratingvalue' ENTITY_READARTICLE_COMMAND = 'readarticle_command' ENTITY_READARTICLE_CONTENTITEMNAME = 'readarticle_contentitemname' ENTITY_READARTICLE_CONTENTTYPE = 'readarticle_contenttype' ENTITY_READARTICLE_SELECTCRITERIA = 'readarticle_selectcriteria' ENTITY_SHARECONTENTITEM_CONTENTITEMNAME = 'sharecontentitem_contentitemname' ENTITY_SHARECONTENTITEM_CONTENTTYPE = 'sharecontentitem_contenttype' ENTITY_SHARECONTENTITEM_SOCIALNETWORK = 'sharecontentitem_socialnetwork' ENTITY_WATCHVIDEO_COMMAND = 'watchvideo_command' ENTITY_WATCHVIDEO_CONTENTITEMNAME = 'watchvideo_contentitemname' ENTITY_WATCHVIDEO_CONTENTTYPE = 'watchvideo_contenttype' ENTITY_WATCHVIDEO_SELECTCRITERIA = 'watchvideo_selectcriteria'
utime/utils/scriptutils/predict.py
learning310/U-Time
138
12641400
""" A set of functions for running prediction in various settings """ import numpy as np def predict_on_generator(model, generator, argmax=False): """ Takes a tf.keras model and uses it to predict on all batches in a generator Stacks the predictions over all batches on axis 0 (vstack) Args: model: A tf.keras module instance. Should accept batches as output from 'generator' generator: A generator object yielding one or more batches of data to predict on argmax: Whether to return argmax values or model output values Returns: If argmax is true, returns integer predictions of shape [-1, 1]. Otherwise, returns floating values of shape [-1, n_classes] """ pred = [] end_of_data = False while not end_of_data: try: X_batch, _ = next(generator) except StopIteration: end_of_data = True else: # Predict pred_batch = model.predict_on_batch(X_batch) if argmax: pred_batch = pred_batch.argmax(-1).reshape(-1, 1) pred.append(pred_batch) return np.vstack(pred) def predict_by_id(model, sequencer, study_id, argmax=False): """ Takes a tf.keras model and predicts on all batches of data in a SleepStudy object. Args: model: A tf.keras model instance. Should accept batches of data as output by the 'sequence' Sequence object. sequencer: A Sequence object which stores at least the passed SleepStudy object of 'sleep_study'. study_id: The identifier string of a SleepStudy object in 'sequence'. argmax: See predict_on_generator docstring. Returns: Predictions of 'model' on all batches of data in a SleepStudy Please refer to the 'predict_on_generator' docstring. """ # Get generator gen = sequencer.to_batch_generator(study_id=study_id) return predict_on_generator(model, gen, argmax) def sequence_predict_generator(model, total_seq_length, generator, argmax=False, overlapping=True, verbose=True): """ Takes a tf.keras model and predicts on segments of data from a generator. This function takes a few additional values needed to derive an understanding of the data produced by 'generator', see below: Args: model: A tf.keras model to predict with. Should accept data as output by the generator. total_seq_length: The total number of 'segments/epochs/stages' in the generator. This is needed to initialize the predictions array. generator: A generator which produces batches of data argmax: Whether to return argmax values or model output values overlapping: Specifies whether the sequences output of 'generator' represent overlapping segments or contagious data. verbose: If True, prints the prediction progess to screen. Returns: An array of shape [total_seq_length, n_classes] or [total_seq_length, -1, n_classes] if data_per_prediction != input_dims. If argmax = True axis -1 (now shape 1) is squeezed. """ n_classes = model.outputs[0].get_shape()[-1] s = model.outputs[0].get_shape().as_list() pred = np.zeros(shape=[total_seq_length] + s[2:], dtype=np.float64) cur_pos = 0 for X, _, _ in generator: if verbose: print(" pos: {}/{}".format(cur_pos+1, total_seq_length), end="\r", flush=True) batch_pred = model.predict_on_batch(X) if overlapping: for p in batch_pred: pred[cur_pos:cur_pos+p.shape[0]] += p cur_pos += 1 else: batch_pred = batch_pred.reshape(-1, n_classes) n_vals = batch_pred.shape[0] pred[cur_pos:cur_pos+n_vals] += batch_pred cur_pos += n_vals if argmax: pred = pred.argmax(-1) print() return pred
api/accounts_api.py
liamnewmarch/chromium-dashboard
450
12641434
# -*- coding: utf-8 -*- # Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from google.cloud import ndb from framework import basehandlers from framework import permissions from framework import ramcache from internals import models class AccountsAPI(basehandlers.APIHandler): """User accounts store info on registered users.""" # TODO(jrobbins): do_get @permissions.require_admin_site def do_post(self): """Process a request to create an account.""" email = self.get_param('email', required=True) is_admin = self.get_bool_param('isAdmin') user = self.create_account(email, is_admin) response_json = user.format_for_template() return response_json def create_account(self, email, is_admin): """Create and store a new account entity.""" # Don't add a duplicate email address. user = models.AppUser.query( models.AppUser.email == email).get(keys_only=True) if not user: user = models.AppUser(email=str(email)) user.is_admin = is_admin user.put() return user else: self.abort(400, 'User already exists') # TODO(jrobbins): do_patch @permissions.require_admin_site def do_delete(self, account_id): """Process a request to delete the specified account.""" if account_id: self.delete_account(account_id) return {'message': 'Done'} else: self.abort(400, msg='Account ID not specified') def delete_account(self, account_id): """Delete the specified account.""" if account_id: found_user = models.AppUser.get_by_id(int(account_id)) if found_user: found_user.key.delete() ramcache.flush_all() else: self.abort(404, msg='Specified account ID not found')
ckan/cli/dataset.py
gg2/ckan
2,805
12641453
# encoding: utf-8 import logging import pprint import click import ckan.logic as logic import ckan.model as model log = logging.getLogger(__name__) @click.group(short_help=u"Manage datasets") def dataset(): """Manage datasets. """ pass @dataset.command() @click.argument(u'package') def show(package): u'''Shows dataset properties. ''' dataset = _get_dataset(package) click.echo(pprint.pformat(dataset.as_dict())) @dataset.command() def list(): u'''Lists datasets. ''' click.echo(u'Datasets:') datasets = model.Session.query(model.Package) click.echo(u'count = %i' % datasets.count()) for dataset in datasets: state = ( u'(%s)' % dataset.state ) if dataset.state != u'active' else u'' click.echo( u'%s %s %s' % (click.style(dataset.id, bold=True), dataset.name, state) ) @dataset.command() @click.argument(u'package') def delete(package): u'''Changes dataset state to 'deleted'. ''' dataset = _get_dataset(package) old_state = dataset.state dataset.delete() model.repo.commit_and_remove() dataset = _get_dataset(package) click.echo( u'%s %s -> %s' % ( dataset.name, click.style(old_state, fg=u'red'), click.style(dataset.state, fg=u'green') ) ) @dataset.command() @click.argument(u'package') def purge(package): u'''Removes dataset from db entirely. ''' dataset = _get_dataset(package) name = dataset.name site_user = logic.get_action(u'get_site_user')({u'ignore_auth': True}, {}) context = {u'user': site_user[u'name'], u'ignore_auth': True} logic.get_action(u'dataset_purge')(context, {u'id': package}) click.echo(u'%s purged' % name) def _get_dataset(package): dataset = model.Package.get(str(package)) assert dataset, u'Could not find dataset matching reference: {}'.format( package ) return dataset
hw3/plot_part1.py
whoiszyc/cs294-112_hws
102
12641464
import pandas as pd import os import matplotlib import matplotlib.pyplot as plt import seaborn as sns def read_result(exp_name): path = os.path.join('data', exp_name, 'log.txt') return pd.read_csv(path, sep='\t') def add_plot(data, var_name, label=''): sns.set(style="darkgrid", font_scale=1.5) plt.plot(data['Timestep'], data[var_name], \ label=label, alpha=0.8) def plot_11(data): r1, r2, r3, r4 = data plt.figure() add_plot(r1, 'MeanReward100Episodes', 'MeanReward100Episodes'); add_plot(r1, 'BestMeanReward', 'BestMeanReward'); plt.xlabel('Time step'); plt.ylabel('Reward'); plt.legend(); plt.savefig( os.path.join('results', 'p11.png'), bbox_inches='tight', transparent=True, pad_inches=0.1 ) def plot_12(data): r1, r2, r3, r4 = data plt.figure() add_plot(r1, 'MeanReward100Episodes'); add_plot(r1, 'BestMeanReward', 'vanilla DQN'); add_plot(r2, 'MeanReward100Episodes'); add_plot(r2, 'BestMeanReward', 'double DQN'); plt.xlabel('Time step'); plt.ylabel('Reward'); plt.legend(); plt.savefig( os.path.join('results', 'p12.png'), bbox_inches='tight', transparent=True, pad_inches=0.1 ) def plot_13(data): r1, r2, r3, r4 = data plt.figure() add_plot(r3, 'MeanReward100Episodes'); add_plot(r3, 'BestMeanReward', 'gamma = 0.9'); add_plot(r2, 'MeanReward100Episodes'); add_plot(r2, 'BestMeanReward', 'gamma = 0.99'); add_plot(r4, 'MeanReward100Episodes'); add_plot(r4, 'BestMeanReward', 'gamma = 0.999'); plt.legend(); plt.xlabel('Time step'); plt.ylabel('Reward'); plt.savefig( os.path.join('results', 'p13.png'), bbox_inches='tight', transparent=True, pad_inches=0.1 ) def main(): if not os.path.exists('results'): os.makedirs('results') r1 = read_result('PongNoFrameskip-v4_bq') r2 = read_result('PongNoFrameskip-v4_dq') r3 = read_result('PongNoFrameskip-v4_dq_gamma-0_9') r4 = read_result('PongNoFrameskip-v4_dq_gamma-0_999') data = (r1, r2, r3, r4) plot_11(data) plot_12(data) plot_13(data) if __name__ == '__main__': main()
quantecon/optimize/pivoting.py
Smit-create/QuantEcon.py
1,462
12641469
<reponame>Smit-create/QuantEcon.py """ Contain pivoting routines commonly used in the Simplex Algorithm and Lemke-Howson Algorithm routines. """ import numpy as np from numba import jit TOL_PIV = 1e-10 TOL_RATIO_DIFF = 1e-15 @jit(nopython=True, cache=True) def _pivoting(tableau, pivot_col, pivot_row): """ Perform a pivoting step. Modify `tableau` in place. Parameters ---------- tableau : ndarray(float, ndim=2) Array containing the tableau. pivot_col : scalar(int) Pivot column index. pivot_row : scalar(int) Pivot row index. Returns ------- tableau : ndarray(float, ndim=2) View to `tableau`. """ nrows, ncols = tableau.shape pivot_elt = tableau[pivot_row, pivot_col] for j in range(ncols): tableau[pivot_row, j] /= pivot_elt for i in range(nrows): if i == pivot_row: continue multiplier = tableau[i, pivot_col] if multiplier == 0: continue for j in range(ncols): tableau[i, j] -= tableau[pivot_row, j] * multiplier return tableau @jit(nopython=True, cache=True) def _min_ratio_test_no_tie_breaking(tableau, pivot, test_col, argmins, num_candidates, tol_piv, tol_ratio_diff): """ Perform the minimum ratio test, without tie breaking, for the candidate rows in `argmins[:num_candidates]`. Return the number `num_argmins` of the rows minimizing the ratio and store thier indices in `argmins[:num_argmins]`. Parameters ---------- tableau : ndarray(float, ndim=2) Array containing the tableau. pivot : scalar(int) Pivot. test_col : scalar(int) Index of the column used in the test. argmins : ndarray(int, ndim=1) Array containing the indices of the candidate rows. Modified in place to store the indices of minimizing rows. num_candidates : scalar(int) Number of candidate rows in `argmins`. tol_piv : scalar(float) Pivot tolerance below which a number is considered to be nonpositive. tol_ratio_diff : scalar(float) Tolerance to determine a tie between ratio values. Returns ------- num_argmins : scalar(int) Number of minimizing rows. """ ratio_min = np.inf num_argmins = 0 for k in range(num_candidates): i = argmins[k] if tableau[i, pivot] <= tol_piv: # Treated as nonpositive continue ratio = tableau[i, test_col] / tableau[i, pivot] if ratio > ratio_min + tol_ratio_diff: # Ratio large for i continue elif ratio < ratio_min - tol_ratio_diff: # Ratio smaller for i ratio_min = ratio num_argmins = 1 else: # Ratio equal num_argmins += 1 argmins[num_argmins-1] = i return num_argmins @jit(nopython=True, cache=True) def _lex_min_ratio_test(tableau, pivot, slack_start, argmins, tol_piv=TOL_PIV, tol_ratio_diff=TOL_RATIO_DIFF): """ Perform the lexico-minimum ratio test. Parameters ---------- tableau : ndarray(float, ndim=2) Array containing the tableau. pivot : scalar(int) Pivot. slack_start : scalar(int) First index for the slack variables. argmins : ndarray(int, ndim=1) Empty array used to store the row indices. Its length must be no smaller than the number of the rows of `tableau`. tol_piv : scalar(float), optional Pivot tolerance below which a number is considered to be nonpositive. Default value is {TOL_PIV}. tol_ratio_diff : scalar(float), optional Tolerance to determine a tie between ratio values. Default value is {TOL_RATIO_DIFF}. Returns ------- found : bool False if there is no positive entry in the pivot column. row_min : scalar(int) Index of the row with the lexico-minimum ratio. """ nrows = tableau.shape[0] num_candidates = nrows found = False # Initialize `argmins` for i in range(nrows): argmins[i] = i num_argmins = _min_ratio_test_no_tie_breaking( tableau, pivot, -1, argmins, num_candidates, tol_piv, tol_ratio_diff ) if num_argmins == 1: found = True elif num_argmins >= 2: for j in range(slack_start, slack_start+nrows): if j == pivot: continue num_argmins = _min_ratio_test_no_tie_breaking( tableau, pivot, j, argmins, num_argmins, tol_piv, tol_ratio_diff ) if num_argmins == 1: found = True break return found, argmins[0] _lex_min_ratio_test.__doc__ = _lex_min_ratio_test.__doc__.format( TOL_PIV=TOL_PIV, TOL_RATIO_DIFF=TOL_RATIO_DIFF )
tests/tasks/twitter/test_twitter.py
concreted/prefect
8,633
12641470
import pytest import prefect from prefect.tasks.twitter import LoadTweetReplies from prefect.utilities.configuration import set_temporary_config class TestLoadTweetReplies: def test_initialize_with_nothing_sets_defaults(self): task = LoadTweetReplies() assert task.user is None assert task.tweet_id is None def test_initialize_kwargs_are_processed(self): task = LoadTweetReplies(checkpoint=True, name="test") assert task.name == "test" assert task.checkpoint is True @pytest.mark.parametrize("attr", ["user", "tweet_id"]) def test_initializes_attr_from_kwargs(self, attr): task = LoadTweetReplies(**{attr: "my-value"}) assert getattr(task, attr) == "my-value"
mpire/dashboard/__init__.py
synapticarbors/mpire
505
12641525
<reponame>synapticarbors/mpire<gh_stars>100-1000 try: from mpire.dashboard.dashboard import connect_to_dashboard, start_dashboard except (ImportError, ModuleNotFoundError): def connect_to_dashboard(*_, **__): raise NotImplementedError("Install the dashboard dependencies to enable the dashboard") def start_dashboard(*_, **__): raise NotImplementedError("Install the dashboard dependencies to enable the dashboard")
labs/03_neural_recsys/keras_fixes.py
soufiomario/labs-Deep-learning
1,398
12641535
"""Temporary workaround for keras bugs in merge modes. merge([...], mode='dot') and merge([...], mode='cos') do not return the correct output on 2D inputs. Those fixes only work with the TF backend. More details: https://github.com/fchollet/keras/issues/2626 """ import tensorflow as tf def dot_mode(inputs): """Work around for Keras bug with merge([...], mode='dot'). https://github.com/fchollet/keras/issues/2626 The dot product of 2 embeddings can be used as an unnormalized approximation to the cosine similarity. """ latent_codes_1, latent_codes_2 = inputs return tf.reduce_sum(latent_codes_1 * latent_codes_2, axis=-1) def cos_mode(inputs): """Work around for Keras bug with merge([...], mode='cos'). Compute the cosine similarity of two unormalized embeddings. """ latent_codes_1, latent_codes_2 = inputs sq_norm_1 = tf.reduce_sum(latent_codes_1 ** 2, axis=-1) sq_norm_2 = tf.reduce_sum(latent_codes_2 ** 2, axis=-1) dot = tf.reduce_sum(latent_codes_1 * latent_codes_2, axis=-1) return dot / tf.sqrt(sq_norm_1 * sq_norm_2)
plugins/public/cinq-collector-dns/cinq_collector_dns/__init__.py
gibbsie/cloud-inquisitor
462
12641536
<reponame>gibbsie/cloud-inquisitor from collections import defaultdict import requests from cloud_inquisitor.config import dbconfig, ConfigOption from cloud_inquisitor.database import db from cloud_inquisitor.exceptions import CloudFlareError from cloud_inquisitor.plugins import BaseCollector, CollectorType from cloud_inquisitor.plugins.types.accounts import AXFRAccount, CloudFlareAccount from cloud_inquisitor.plugins.types.resources import DNSZone, DNSRecord from cloud_inquisitor.utils import get_resource_id from cloud_inquisitor.wrappers import retry from dns import zone as dns_zone, query from dns.rdatatype import to_text as type_to_text class DNSCollector(BaseCollector): name = 'DNS' ns = 'collector_dns' type = CollectorType.GLOBAL interval = dbconfig.get('interval', ns, 15) options = ( ConfigOption('enabled', False, 'bool', 'Enable the DNS collector plugin'), ConfigOption('interval', 15, 'int', 'Run frequency in minutes'), ConfigOption('cloudflare_enabled', False, 'bool', 'Enable CloudFlare as a source for DNS records'), ConfigOption('axfr_enabled', False, 'bool', 'Enable using DNS Zone Transfers for records') ) def __init__(self): super().__init__() self.axfr_enabled = self.dbconfig.get('axfr_enabled', self.ns, False) self.cloudflare_enabled = self.dbconfig.get('cloudflare_enabled', self.ns, False) self.axfr_accounts = list(AXFRAccount.get_all().values()) self.cf_accounts = list(CloudFlareAccount.get_all().values()) self.cloudflare_initialized = defaultdict(lambda: False) self.cloudflare_session = {} def run(self): if self.axfr_enabled: try: for account in self.axfr_accounts: records = self.get_axfr_records(account.server, account.domains) self.process_zones(records, account) except: self.log.exception('Failed processing domains via AXFR') if self.cloudflare_enabled: try: for account in self.cf_accounts: records = self.get_cloudflare_records(account=account) self.process_zones(records, account) except: self.log.exception('Failed processing domains via CloudFlare') def process_zones(self, zones, account): self.log.info('Processing DNS records for {}'.format(account.account_name)) # region Update zones existing_zones = DNSZone.get_all(account) for data in zones: if data['zone_id'] in existing_zones: zone = DNSZone.get(data['zone_id']) if zone.update(data): self.log.debug('Change detected for DNS zone {}/{}'.format( account.account_name, zone.name )) db.session.add(zone.resource) else: DNSZone.create( data['zone_id'], account_id=account.account_id, properties={k: v for k, v in data.items() if k not in ('records', 'zone_id', 'tags')}, tags=data['tags'] ) self.log.debug('Added DNS zone {}/{}'.format( account.account_name, data['name'] )) db.session.commit() zk = set(x['zone_id'] for x in zones) ezk = set(existing_zones.keys()) for resource_id in ezk - zk: zone = existing_zones[resource_id] # Delete all the records for the zone for record in zone.records: db.session.delete(record.resource) db.session.delete(zone.resource) self.log.debug('Deleted DNS zone {}/{}'.format( account.account_name, zone.name.value )) db.session.commit() # endregion # region Update resource records for zone in zones: try: existing_zone = DNSZone.get(zone['zone_id']) existing_records = {rec.id: rec for rec in existing_zone.records} for data in zone['records']: if data['id'] in existing_records: record = existing_records[data['id']] if record.update(data): self.log.debug('Changed detected for DNSRecord {}/{}/{}'.format( account.account_name, zone.name, data['name'] )) db.session.add(record.resource) else: record = DNSRecord.create( data['id'], account_id=account.account_id, properties={k: v for k, v in data.items() if k not in ('records', 'zone_id')}, tags={} ) self.log.debug('Added new DNSRecord {}/{}/{}'.format( account.account_name, zone['name'], data['name'] )) existing_zone.add_record(record) db.session.commit() rk = set(x['id'] for x in zone['records']) erk = set(existing_records.keys()) for resource_id in erk - rk: record = existing_records[resource_id] db.session.delete(record.resource) self.log.debug('Deleted DNSRecord {}/{}/{}'.format( account.account_name, zone['zone_id'], record.name )) db.session.commit() except: self.log.exception('Error while attempting to update records for {}/{}'.format( account.account_name, zone['zone_id'], )) db.session.rollback() # endregion @retry def get_axfr_records(self, server, domains): """Return a `list` of `dict`s containing the zones and their records, obtained from the DNS server Returns: :obj:`list` of `dict` """ zones = [] for zoneName in domains: try: zone = { 'zone_id': get_resource_id('axfrz', zoneName), 'name': zoneName, 'source': 'AXFR', 'comment': None, 'tags': {}, 'records': [] } z = dns_zone.from_xfr(query.xfr(server, zoneName)) rdata_fields = ('name', 'ttl', 'rdata') for rr in [dict(zip(rdata_fields, x)) for x in z.iterate_rdatas()]: record_name = rr['name'].derelativize(z.origin).to_text() zone['records'].append( { 'id': get_resource_id('axfrr', record_name, ['{}={}'.format(k, str(v)) for k, v in rr.items()]), 'zone_id': zone['zone_id'], 'name': record_name, 'value': sorted([rr['rdata'].to_text()]), 'type': type_to_text(rr['rdata'].rdtype) }) if len(zone['records']) > 0: zones.append(zone) except Exception as ex: self.log.exception('Failed fetching DNS zone information for {}: {}'.format(zoneName, ex)) raise return zones def get_cloudflare_records(self, *, account): """Return a `list` of `dict`s containing the zones and their records, obtained from the CloudFlare API Returns: account (:obj:`CloudFlareAccount`): A CloudFlare Account object :obj:`list` of `dict` """ zones = [] for zobj in self.__cloudflare_list_zones(account=account): try: self.log.debug('Processing DNS zone CloudFlare/{}'.format(zobj['name'])) zone = { 'zone_id': get_resource_id('cfz', zobj['name']), 'name': zobj['name'], 'source': 'CloudFlare', 'comment': None, 'tags': {}, 'records': [] } for record in self.__cloudflare_list_zone_records(account=account, zoneID=zobj['id']): zone['records'].append({ 'id': get_resource_id('cfr', zobj['id'], ['{}={}'.format(k, v) for k, v in record.items()]), 'zone_id': zone['zone_id'], 'name': record['name'], 'value': record['value'], 'type': record['type'] }) if len(zone['records']) > 0: zones.append(zone) except CloudFlareError: self.log.exception('Failed getting records for CloudFlare zone {}'.format(zobj['name'])) return zones # region Helper functions for CloudFlare def __cloudflare_request(self, *, account, path, args=None): """Helper function to interact with the CloudFlare API. Args: account (:obj:`CloudFlareAccount`): CloudFlare Account object path (`str`): URL endpoint to communicate with args (:obj:`dict` of `str`: `str`): A dictionary of arguments for the endpoint to consume Returns: `dict` """ if not args: args = {} if not self.cloudflare_initialized[account.account_id]: self.cloudflare_session[account.account_id] = requests.Session() self.cloudflare_session[account.account_id].headers.update({ 'X-Auth-Email': account.email, 'X-Auth-Key': account.api_key, 'Content-Type': 'application/json' }) self.cloudflare_initialized[account.account_id] = True if 'per_page' not in args: args['per_page'] = 100 response = self.cloudflare_session[account.account_id].get(account.endpoint + path, params=args) if response.status_code != 200: raise CloudFlareError('Request failed: {}'.format(response.text)) return response.json() def __cloudflare_list_zones(self, *, account, **kwargs): """Helper function to list all zones registered in the CloudFlare system. Returns a `list` of the zones Args: account (:obj:`CloudFlareAccount`): A CloudFlare Account object **kwargs (`dict`): Extra arguments to pass to the API endpoint Returns: `list` of `dict` """ done = False zones = [] page = 1 while not done: kwargs['page'] = page response = self.__cloudflare_request(account=account, path='/zones', args=kwargs) info = response['result_info'] if 'total_pages' not in info or page == info['total_pages']: done = True else: page += 1 zones += response['result'] return zones def __cloudflare_list_zone_records(self, *, account, zoneID, **kwargs): """Helper function to list all records on a CloudFlare DNS Zone. Returns a `dict` containing the records and their information. Args: account (:obj:`CloudFlareAccount`): A CloudFlare Account object zoneID (`int`): Internal CloudFlare ID of the DNS zone **kwargs (`dict`): Additional arguments to be consumed by the API endpoint Returns: :obj:`dict` of `str`: `dict` """ done = False records = {} page = 1 while not done: kwargs['page'] = page response = self.__cloudflare_request( account=account, path='/zones/{}/dns_records'.format(zoneID), args=kwargs ) info = response['result_info'] # Check if we have received all records, and if not iterate over the result set if 'total_pages' not in info or page >= info['total_pages']: done = True else: page += 1 for record in response['result']: if record['name'] in records: records[record['name']]['value'] = sorted(records[record['name']]['value'] + [record['content']]) else: records[record['name']] = { 'name': record['name'], 'value': sorted([record['content']]), 'type': record['type'] } return list(records.values()) # endregion
src/holodeck/exceptions.py
LaudateCorpus1/holodeck
518
12641544
<gh_stars>100-1000 """Holodeck Exceptions""" class HolodeckException(Exception): """Base class for a generic exception in Holodeck.""" class HolodeckConfigurationException(HolodeckException): """The user provided an invalid configuration for Holodeck""" class TimeoutException(HolodeckException): """Exception raised when communicating with the engine timed out.""" class NotFoundException(HolodeckException): """Raised when a package cannot be found"""
tensorlayer/layers/convolution/quan_conv_bn.py
Howdy-Personally/tensorlayer-master
4,484
12641569
#! /usr/bin/python # -*- coding: utf-8 -*- import numpy as np import tensorflow as tf from tensorflow.python.training import moving_averages import tensorlayer as tl from tensorlayer import logging from tensorlayer.layers.core import Layer from tensorlayer.layers.utils import (quantize_active_overflow, quantize_weight_overflow) # from tensorlayer.layers.core import LayersConfig __all__ = ['QuanConv2dWithBN'] class QuanConv2dWithBN(Layer): """The :class:`QuanConv2dWithBN` class is a quantized convolutional layer with BN, which weights are 'bitW' bits and the output of the previous layer are 'bitA' bits while inferencing. Note that, the bias vector would keep the same. Parameters ---------- n_filter : int The number of filters. filter_size : tuple of int The filter size (height, width). strides : tuple of int The sliding window strides of corresponding input dimensions. It must be in the same order as the ``shape`` parameter. padding : str The padding algorithm type: "SAME" or "VALID". act : activation function The activation function of this layer. decay : float A decay factor for `ExponentialMovingAverage`. Suggest to use a large value for large dataset. epsilon : float Eplison. is_train : boolean Is being used for training or inference. beta_init : initializer or None The initializer for initializing beta, if None, skip beta. Usually you should not skip beta unless you know what happened. gamma_init : initializer or None The initializer for initializing gamma, if None, skip gamma. bitW : int The bits of this layer's parameter bitA : int The bits of the output of previous layer use_gemm : boolean If True, use gemm instead of ``tf.matmul`` for inferencing. (TODO). W_init : initializer The initializer for the the weight matrix. W_init_args : dictionary The arguments for the weight matrix initializer. data_format : str "NHWC" or "NCHW", default is "NHWC". dilation_rate : tuple of int Specifying the dilation rate to use for dilated convolution. in_channels : int The number of in channels. name : str A unique layer name. Examples --------- >>> import tensorlayer as tl >>> net = tl.layers.Input([50, 256, 256, 3]) >>> layer = tl.layers.QuanConv2dWithBN(n_filter=64, filter_size=(5,5),strides=(1,1),padding='SAME',name='qcnnbn1') >>> print(layer) >>> net = tl.layers.QuanConv2dWithBN(n_filter=64, filter_size=(5,5),strides=(1,1),padding='SAME',name='qcnnbn1')(net) >>> print(net) """ def __init__( self, n_filter=32, filter_size=(3, 3), strides=(1, 1), padding='SAME', act=None, decay=0.9, epsilon=1e-5, is_train=False, gamma_init=tl.initializers.truncated_normal(stddev=0.02), beta_init=tl.initializers.truncated_normal(stddev=0.02), bitW=8, bitA=8, use_gemm=False, W_init=tl.initializers.truncated_normal(stddev=0.02), W_init_args=None, data_format="channels_last", dilation_rate=(1, 1), in_channels=None, name='quan_cnn2d_bn', ): super(QuanConv2dWithBN, self).__init__(act=act, name=name) self.n_filter = n_filter self.filter_size = filter_size self.strides = strides self.padding = padding self.decay = decay self.epsilon = epsilon self.is_train = is_train self.gamma_init = gamma_init self.beta_init = beta_init self.bitW = bitW self.bitA = bitA self.use_gemm = use_gemm self.W_init = W_init self.W_init_args = W_init_args self.data_format = data_format self.dilation_rate = dilation_rate self.in_channels = in_channels logging.info( "QuanConv2dWithBN %s: n_filter: %d filter_size: %s strides: %s pad: %s act: %s " % ( self.name, n_filter, filter_size, str(strides), padding, self.act.__name__ if self.act is not None else 'No Activation' ) ) if self.in_channels: self.build(None) self._built = True if use_gemm: raise Exception("TODO. The current version use tf.matmul for inferencing.") if len(strides) != 2: raise ValueError("len(strides) should be 2.") def __repr__(self): actstr = self.act.__name__ if self.act is not None else 'No Activation' s = ( '{classname}(in_channels={in_channels}, out_channels={n_filter}, kernel_size={filter_size}' ', strides={strides}, padding={padding}' + actstr ) if self.dilation_rate != (1, ) * len(self.dilation_rate): s += ', dilation={dilation_rate}' if self.name is not None: s += ', name=\'{name}\'' s += ')' return s.format(classname=self.__class__.__name__, **self.__dict__) def build(self, inputs_shape): if self.data_format == 'channels_last': self.data_format = 'NHWC' if self.in_channels is None: self.in_channels = inputs_shape[-1] self._strides = [1, self.strides[0], self.strides[1], 1] self._dilation_rate = [1, self.dilation_rate[0], self.dilation_rate[1], 1] elif self.data_format == 'channels_first': self.data_format = 'NCHW' if self.in_channels is None: self.in_channels = inputs_shape[1] self._strides = [1, 1, self.strides[0], self.strides[1]] self._dilation_rate = [1, 1, self.dilation_rate[0], self.dilation_rate[1]] else: raise Exception("data_format should be either channels_last or channels_first") self.filter_shape = (self.filter_size[0], self.filter_size[1], self.in_channels, self.n_filter) self.W = self._get_weights("filters", shape=self.filter_shape, init=self.W_init) para_bn_shape = (self.n_filter, ) if self.gamma_init: self.scale_para = self._get_weights( "scale_para", shape=para_bn_shape, init=self.gamma_init, trainable=self.is_train ) else: self.scale_para = None if self.beta_init: self.offset_para = self._get_weights( "offset_para", shape=para_bn_shape, init=self.beta_init, trainable=self.is_train ) else: self.offset_para = None self.moving_mean = self._get_weights( "moving_mean", shape=para_bn_shape, init=tl.initializers.constant(1.0), trainable=False ) self.moving_variance = self._get_weights( "moving_variance", shape=para_bn_shape, init=tl.initializers.constant(1.0), trainable=False ) def forward(self, inputs): x = inputs inputs = quantize_active_overflow(inputs, self.bitA) # Do not remove outputs = tf.nn.conv2d( input=x, filters=self.W, strides=self._strides, padding=self.padding, data_format=self.data_format, dilations=self._dilation_rate, name=self.name ) mean, variance = tf.nn.moments(outputs, axes=list(range(len(outputs.get_shape()) - 1))) update_moving_mean = moving_averages.assign_moving_average( self.moving_mean, mean, self.decay, zero_debias=False ) # if zero_debias=True, has bias update_moving_variance = moving_averages.assign_moving_average( self.moving_variance, mean, self.decay, zero_debias=False ) # if zero_debias=True, has bias if self.is_train: mean, var = self.mean_var_with_update(update_moving_mean, update_moving_variance, mean, variance) else: mean, var = self.moving_mean, self.moving_variance w_fold = self._w_fold(self.W, self.scale_para, var, self.epsilon) W_ = quantize_weight_overflow(w_fold, self.bitW) conv_fold = tf.nn.conv2d(inputs, W_, strides=self.strides, padding=self.padding, data_format=self.data_format) if self.beta_init: bias_fold = self._bias_fold(self.offset_para, self.scale_para, mean, var, self.epsilon) conv_fold = tf.nn.bias_add(conv_fold, bias_fold, name='bn_bias_add') if self.act: conv_fold = self.act(conv_fold) return conv_fold def mean_var_with_update(self, update_moving_mean, update_moving_variance, mean, variance): with tf.control_dependencies([update_moving_mean, update_moving_variance]): return tf.identity(mean), tf.identity(variance) def _w_fold(self, w, gama, var, epsilon): return tf.compat.v1.div(tf.multiply(gama, w), tf.sqrt(var + epsilon)) def _bias_fold(self, beta, gama, mean, var, epsilon): return tf.subtract(beta, tf.compat.v1.div(tf.multiply(gama, mean), tf.sqrt(var + epsilon)))
demos/common/python/openvino/model_zoo/model_api/models/model.py
kblaszczak-intel/open_model_zoo
2,201
12641596
<reponame>kblaszczak-intel/open_model_zoo """ Copyright (C) 2020-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging as log class WrapperError(RuntimeError): '''Special class for errors occurred in Model API wrappers''' def __init__(self, wrapper_name, message): super().__init__(f"{wrapper_name}: {message}") class Model: '''An abstract model wrapper The abstract model wrapper is free from any executor dependencies. It sets the `ModelAdapter` instance with the provided model and defines model inputs/outputs. Next, it loads the provided configuration variables and sets it as wrapper attributes. The keys of the configuration dictionary should be presented in the `parameters` method. Also, it decorates the following adapter interface: - Loading the model to the device - The model reshaping - Synchronous model inference - Asynchronous model inference The `preprocess` and `postprocess` methods must be implemented in a specific inherited wrapper. Attributes: logger (Logger): instance of the Logger model_adapter (ModelAdapter): allows working with the specified executor inputs (dict): keeps the model inputs names and `Metadata` structure for each one outputs (dict): keeps the model outputs names and `Metadata` structure for each one model_loaded (bool): a flag whether the model is loaded to device ''' __model__ = None # Abstract wrapper has no name def __init__(self, model_adapter, configuration=None, preload=False): '''Model constructor Args: model_adapter (ModelAdapter): allows working with the specified executor configuration (dict, optional): it contains values for parameters accepted by specific wrapper (`confidence_threshold`, `labels` etc.) which are set as data attributes preload (bool, optional): a flag whether the model is loaded to device while initialization. If `preload=False`, the model must be loaded via `load` method before inference Raises: WrapperError: if the wrapper configuration is incorrect ''' self.logger = log.getLogger() self.model_adapter = model_adapter self.inputs = self.model_adapter.get_input_layers() self.outputs = self.model_adapter.get_output_layers() for name, parameter in self.parameters().items(): self.__setattr__(name, parameter.default_value) self._load_config(configuration) self.model_loaded = False if preload: self.load() @classmethod def get_model(cls, name): subclasses = [subclass for subclass in cls.get_subclasses() if subclass.__model__] if cls.__model__: subclasses.append(cls) for subclass in subclasses: if name.lower() == subclass.__model__.lower(): return subclass cls.raise_error('There is no model with name "{}" in list: {}'.format( name, ', '.join([subclass.__model__ for subclass in subclasses]))) @classmethod def create_model(cls, name, model_adapter, configuration=None, preload=False): Model = cls.get_model(name) return Model(model_adapter, configuration, preload) @classmethod def get_subclasses(cls): all_subclasses = [] for subclass in cls.__subclasses__(): all_subclasses.append(subclass) all_subclasses.extend(subclass.get_subclasses()) return all_subclasses @classmethod def available_wrappers(cls): available_classes = [cls] if cls.__model__ else [] available_classes.extend(cls.get_subclasses()) return [subclass.__model__ for subclass in available_classes if subclass.__model__] @classmethod def parameters(cls): '''Defines the description and type of configurable data parameters for the wrapper. See `types.py` to find available types of the data parameter. For each parameter the type, default value and description must be provided. The example of possible data parameter: 'confidence_threshold': NumericalValue( default_value=0.5, description="Threshold value for detection box confidence" ) The method must be implemented in each specific inherited wrapper. Returns: - the dictionary with defined wrapper data parameters ''' parameters = {} return parameters def _load_config(self, config): '''Reads the configuration and creates data attributes by setting the wrapper parameters with values from configuration. Args: config (dict): the dictionary with keys to be set as data attributes and its values. The example of the config is the following: { 'confidence_threshold': 0.5, 'resize_type': 'fit_to_window', } Note: The config keys should be provided in `parameters` method for each wrapper, then the default value of the parameter will be updated. If some key presented in the config is not introduced in `parameters`, it will be omitted. Raises: WrapperError: if the configuration is incorrect ''' if config is None: return parameters = self.parameters() for name, value in config.items(): if name in parameters: errors = parameters[name].validate(value) if errors: self.logger.error(f'Error with "{name}" parameter:') for error in errors: self.logger.error(f"\t{error}") self.raise_error('Incorrect user configuration') value = parameters[name].get_value(value) self.__setattr__(name, value) else: self.logger.warning(f'The parameter "{name}" not found in {self.__model__} wrapper, will be omitted') def raise_error(self, message): '''Raises the WrapperError. Args: message (str): error message to be shown in the following format: "WrapperName: message" ''' raise WrapperError(self.__model__, message) def preprocess(self, inputs): '''Interface for preprocess method. Args: inputs: raw input data, the data type is defined by wrapper Returns: - the preprocessed data which is submitted to the model for inference and has the following format: { 'input_layer_name_1': data_1, 'input_layer_name_2': data_2, ... } - the input metadata, which might be used in `postprocess` method ''' raise NotImplementedError def postprocess(self, outputs, meta): '''Interface for postprocess method. Args: outputs (dict): model raw output in the following format: { 'output_layer_name_1': raw_result_1, 'output_layer_name_2': raw_result_2, ... } meta (dict): the input metadata obtained from `preprocess` method Returns: - postprocessed data in the format defined by wrapper ''' raise NotImplementedError def _check_io_number(self, number_of_inputs, number_of_outputs): '''Checks whether the number of model inputs/outputs is supported. Args: number_of_inputs (int, Tuple(int)): number of inputs supported by wrapper. Use -1 to omit the check number_of_outputs (int, Tuple(int)): number of outputs supported by wrapper. Use -1 to omit the check Raises: WrapperError: if the model has unsupported number of inputs/outputs ''' if not isinstance(number_of_inputs, tuple): if len(self.inputs) != number_of_inputs and number_of_inputs != -1: self.raise_error("Expected {} input blob{}, but {} found: {}".format( number_of_inputs, 's' if number_of_inputs !=1 else '', len(self.inputs), ', '.join(self.inputs) )) else: if not len(self.inputs) in number_of_inputs: self.raise_error("Expected {} or {} input blobs, but {} found: {}".format( ', '.join(str(n) for n in number_of_inputs[:-1]), int(number_of_inputs[-1]), len(self.inputs), ', '.join(self.inputs) )) if not isinstance(number_of_outputs, tuple): if len(self.outputs) != number_of_outputs and number_of_outputs != -1: self.raise_error("Expected {} output blob{}, but {} found: {}".format( number_of_outputs, 's' if number_of_outputs !=1 else '', len(self.outputs), ', '.join(self.outputs) )) else: if not len(self.outputs) in number_of_outputs: self.raise_error("Expected {} or {} output blobs, but {} found: {}".format( ', '.join(str(n) for n in number_of_outputs[:-1]), int(number_of_outputs[-1]), len(self.outputs), ', '.join(self.outputs) )) def __call__(self, inputs): ''' Applies preprocessing, synchronous inference, postprocessing routines while one call. Args: inputs: raw input data, the data type is defined by wrapper Returns: - postprocessed data in the format defined by wrapper - the input metadata obtained from `preprocess` method ''' dict_data, input_meta = self.preprocess(inputs) raw_result = self.infer_sync(dict_data) return self.postprocess(raw_result, input_meta), input_meta def load(self, force=False): if not self.model_loaded or force: self.model_loaded = True self.model_adapter.load_model() def reshape(self, new_shape): if self.model_loaded: self.logger.warning(f'{self.__model__}: the model already loaded to device, ', 'should be reloaded after reshaping.') self.model_loaded = False self.model_adapter.reshape_model(new_shape) self.inputs = self.model_adapter.get_input_layers() self.outputs = self.model_adapter.get_output_layers() def infer_sync(self, dict_data): if not self.model_loaded: self.raise_error("The model is not loaded to the device. Please, create the wrapper " "with preload=True option or call load() method before infer_sync()") return self.model_adapter.infer_sync(dict_data) def infer_async(self, dict_data, callback_data): if not self.model_loaded: self.raise_error("The model is not loaded to the device. Please, create the wrapper " "with preload=True option or call load() method before infer_async()") self.model_adapter.infer_async(dict_data, callback_data) def is_ready(self): return self.model_adapter.is_ready() def await_all(self): self.model_adapter.await_all() def await_any(self): self.model_adapter.await_any() def log_layers_info(self): '''Prints the shape, precision and layout for all model inputs/outputs. ''' for name, metadata in self.inputs.items(): self.logger.info('\tInput layer: {}, shape: {}, precision: {}, layout: {}'.format( name, metadata.shape, metadata.precision, metadata.layout)) for name, metadata in self.outputs.items(): self.logger.info('\tOutput layer: {}, shape: {}, precision: {}, layout: {}'.format( name, metadata.shape, metadata.precision, metadata.layout))
demos/text_to_speech_demo/python/utils/embeddings_processing.py
APrigarina/open_model_zoo
2,201
12641601
<filename>demos/text_to_speech_demo/python/utils/embeddings_processing.py import numpy as np class PCA: def __init__(self, n_components=1): self.mean = None self.eig_vectors = None self.n_components = n_components def build(self, x): m = np.mean(x, axis=0) xm = x - m cov_mat = np.cov(xm.T) eig_values, eig_vectors = np.linalg.eig(cov_mat) idx = np.argsort(eig_values)[::-1] eig_vectors = eig_vectors[:, idx] v = eig_vectors[:, :self.n_components] projection = xm.dot(v) self.eig_vectors = eig_vectors self.mean = m return projection def project(self, x): xm = x - self.mean v = self.eig_vectors[:, :self.n_components] return xm.dot(v) def iproject(self, z): v = self.eig_vectors[:, :self.n_components] x = z * v.T + self.mean return x
hypergbm/tests/experiment_test.py
oaksharks/HyperGBM
687
12641607
<reponame>oaksharks/HyperGBM # -*- coding:utf-8 -*- __author__ = 'yangjian' """ """ from datetime import datetime from sklearn.metrics import get_scorer from sklearn.model_selection import train_test_split from hypergbm import HyperGBM, CompeteExperiment, make_experiment from hypergbm.search_space import search_space_general from hypernets.core import OptimizeDirection, EarlyStoppingCallback from hypernets.experiment import GeneralExperiment, ExperimentCallback, ConsoleCallback, StepNames from hypernets.searchers import RandomSearcher from hypernets.tabular.datasets import dsutils class LogCallback(ExperimentCallback): def __init__(self, output_elapsed=False): self.logs = [] self.experiment_elapsed = None self.output_elapsed = output_elapsed def experiment_start(self, exp): self.logs.append('experiment start') def experiment_end(self, exp, elapsed): self.logs.append(f'experiment end') if self.output_elapsed: self.logs.append(f' elapsed:{elapsed}') self.experiment_elapsed = elapsed def experiment_break(self, exp, error): self.logs.append(f'experiment break, error:{error}') def step_start(self, exp, step): self.logs.append(f' step start, step:{step}') def step_progress(self, exp, step, progress, elapsed, eta=None): self.logs.append(f' progress:{progress}') if self.output_elapsed: self.logs.append(f' elapsed:{elapsed}') def step_end(self, exp, step, output, elapsed): self.logs.append(f' step end, step:{step}, output:{output.keys() if output is not None else ""}') if self.output_elapsed: self.logs.append(f' elapsed:{elapsed}') def step_break(self, exp, step, error): self.logs.append(f'step break, step:{step}, error:{error}') class Test_Experiment(): def test_regression_cv(self): self.run_regression(cv=True) def test_regression_feature_reselection(self): self.run_regression(feature_reselection=True) def test_regression_pseudo_labeling(self): self.run_regression(pseudo_labeling=True) def test_regression_adversarial_validation(self): self.run_regression(train_test_split_strategy='adversarial_validation') def test_regression_cross_validator(self): from hypernets.tabular.lifelong_learning import PrequentialSplit preq_split = PrequentialSplit(PrequentialSplit.STRATEGY_PREQ_BLS, n_splits=3) self.run_regression(cv=True, cross_validator=preq_split) def run_regression(self, train_test_split_strategy=None, cv=False, feature_reselection=False, pseudo_labeling=False, collinearity_detection=False, drift_detection=True, max_trials=3, cross_validator=None): df = dsutils.load_Bike_Sharing() y = df.pop('count') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.3, random_state=9527) log_callback = LogCallback(output_elapsed=True) rs = RandomSearcher(lambda: search_space_general(early_stopping_rounds=5, ), optimize_direction='min') hk = HyperGBM(rs, task='regression', reward_metric='mse', callbacks=[]) experiment = CompeteExperiment(hk, X_train, y_train, X_test=X_test, callbacks=[log_callback], train_test_split_strategy=train_test_split_strategy, cv=cv, num_folds=3, pseudo_labeling=pseudo_labeling, scorer=get_scorer('neg_root_mean_squared_error'), collinearity_detection=collinearity_detection, drift_detection=drift_detection, feature_reselection=feature_reselection, feature_reselection_estimator_size=5, feature_reselection_threshold=1e-5, ensemble_size=10, cross_validator=cross_validator, random_state=12345, ) pipeline = experiment.run(max_trials=max_trials) rmse_scorer = get_scorer('neg_root_mean_squared_error') rmse = rmse_scorer(pipeline, X_test, y_test) assert rmse def test_multiclass_cv(self): self.run_multiclass(cv=True) def test_multiclass_pseudo_labeling(self): self.run_multiclass(pseudo_labeling=True) def test_multiclass_feature_reselection(self): self.run_multiclass(feature_reselection=True) def test_multiclass_adversarial_validation(self): self.run_multiclass(train_test_split_strategy='adversarial_validation') def test_multiclass_cross_validator(self): from hypernets.tabular.lifelong_learning import PrequentialSplit preq_split = PrequentialSplit(PrequentialSplit.STRATEGY_PREQ_BLS, n_splits=3) self.run_multiclass(cv=True, cross_validator=preq_split) def run_multiclass(self, train_test_split_strategy=None, cv=False, feature_reselection=False, pseudo_labeling=False, collinearity_detection=False, drift_detection=True, max_trials=3, cross_validator=None): df = dsutils.load_glass_uci() df.columns = [f'x_{c}' for c in df.columns.to_list()] df.pop('x_0') y = df.pop('x_10') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.3, random_state=1, stratify=y) rs = RandomSearcher(lambda: search_space_general(early_stopping_rounds=20, verbose=0), optimize_direction=OptimizeDirection.Maximize) es = EarlyStoppingCallback(20, 'max') hk = HyperGBM(rs, reward_metric='auc', callbacks=[es]) log_callback = ConsoleCallback() experiment = CompeteExperiment(hk, X_train, y_train, X_test=X_test, callbacks=[log_callback], train_test_split_strategy=train_test_split_strategy, cv=cv, num_folds=3, pseudo_labeling=pseudo_labeling, scorer=get_scorer('roc_auc_ovr'), collinearity_detection=collinearity_detection, drift_detection=drift_detection, feature_reselection=feature_reselection, feature_reselection_estimator_size=5, feature_reselection_threshold=1e-5, ensemble_size=10, cross_validator=cross_validator, random_state=2345 ) pipeline = experiment.run(max_trials=max_trials) acc_scorer = get_scorer('accuracy') acc = acc_scorer(pipeline, X_test, y_test) assert acc auc_scorer = get_scorer('roc_auc_ovo') auc = auc_scorer(pipeline, X_test, y_test) assert auc def test_general_exp(self): rs = RandomSearcher(search_space_general, optimize_direction=OptimizeDirection.Maximize) hk = HyperGBM(rs, reward_metric='accuracy', callbacks=[]) df = dsutils.load_bank().head(1000) df.drop(['id'], axis=1, inplace=True) y = df.pop('y') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.3, random_state=9527) log_callback = LogCallback() experiment = GeneralExperiment(hk, X_train, y_train, X_test=X_test, callbacks=[log_callback]) experiment.run(max_trials=5) assert log_callback.logs == ['experiment start', ' step start, step:data split', " step end, step:data split, output:dict_keys(['X_train.shape', " "'y_train.shape', 'X_eval.shape', 'y_eval.shape', 'X_test.shape'])", ' step start, step:search', " step end, step:search, output:dict_keys(['best_trial'])", ' step start, step:load estimator', " step end, step:load estimator, output:dict_keys(['estimator'])", 'experiment end'] def run_binary(self, train_test_split_strategy=None, cv=False, pseudo_labeling=False, feature_reselection=False, collinearity_detection=False, drift_detection=True, max_trials=3, scoring='roc_auc_ovr', cross_validator=None): rs = RandomSearcher(lambda: search_space_general(early_stopping_rounds=20, verbose=0), optimize_direction=OptimizeDirection.Maximize) hk = HyperGBM(rs, reward_metric='auc', callbacks=[]) df = dsutils.load_bank().head(1000) df.drop(['id'], axis=1, inplace=True) y = df.pop('y') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.3, random_state=9527) log_callback = LogCallback(output_elapsed=True) experiment = CompeteExperiment(hk, X_train, y_train, X_test=X_test, train_test_split_strategy=train_test_split_strategy, callbacks=[log_callback], scorer=get_scorer(scoring), collinearity_detection=collinearity_detection, drift_detection=drift_detection, cv=cv, pseudo_labeling=pseudo_labeling, feature_reselection=feature_reselection, feature_reselection_estimator_size=5, feature_reselection_threshold=1e-5, ensemble_size=5, cross_validator=cross_validator, random_state=12345, ) pipeline = experiment.run(max_trials=max_trials) auc_scorer = get_scorer('roc_auc_ovo') acc_scorer = get_scorer('accuracy') auc = auc_scorer(pipeline, X_test, y_test) acc = acc_scorer(pipeline, X_test, y_test) assert auc assert acc def test_binary_cv(self): self.run_binary(cv=True) def test_binary_pseudo_labeling(self): self.run_binary(pseudo_labeling=True) def test_binary_importance_selection(self): self.run_binary(feature_reselection=True, cv=True, scoring='accuracy') def test_binary_adversarial_validation(self): self.run_binary(train_test_split_strategy='adversarial_validation') def test_binary_cross_validator(self): from hypernets.tabular.lifelong_learning import PrequentialSplit preq_split = PrequentialSplit(PrequentialSplit.STRATEGY_PREQ_BLS, n_splits=3) self.run_binary(cv=True, cross_validator=preq_split) def test_feature_generation(self): from hypernets.tabular.cfg import TabularCfg as tcfg tcfg.tfidf_primitive_output_feature_count = 5 df = dsutils.load_movielens() df['genres'] = df['genres'].apply(lambda s: s.replace('|', ' ')) df['timestamp'] = df['timestamp'].apply(datetime.fromtimestamp) experiment = make_experiment(df, target='rating', cv=False, ensemble_size=0, feature_generation=True, feature_generation_text_cols=['title', 'genres'], random_state=2345 ) assert isinstance(experiment, CompeteExperiment) estimator = experiment.run(max_trials=3) assert estimator is not None step = experiment.get_step(StepNames.FEATURE_GENERATION) assert step is not None feature_names = step.get_fitted_params()['output_feature_names'] assert all([c in feature_names for c in ['TFIDF__title____0__', 'TFIDF__genres____0__', 'DAY__timestamp__']])
corehq/apps/notifications/urls.py
dimagilg/commcare-hq
471
12641632
from django.conf.urls import url from corehq.apps.notifications.views import ( ManageNotificationView, NotificationsServiceRMIView, ) urlpatterns = [ url(r"^service/$", NotificationsServiceRMIView.as_view(), name=NotificationsServiceRMIView.urlname), url(r"^manage/$", ManageNotificationView.as_view(), name=ManageNotificationView.urlname), ]
tests/functional/python_tests/hived/replay_based_tests/vop_pagnation.py
drov0/hive
283
12641648
#!/usr/bin/python3 import sys import os import tempfile import argparse from threading import Thread sys.path.append("../../../") import hive_utils from hive_utils.resources.configini import config as configuration from hive_utils.resources.configini import validate_address # https://developers.hive.io/tutorials-recipes/paginated-api-methods.html#account_history_apiget_account_history MAX_AT_ONCE = 10000 parser = argparse.ArgumentParser() parser.add_argument("--run-hived", dest="hived", help = "IP address to replayed node", required=True, type=str) parser.add_argument("--path-to-config", dest="config_path", help = "Path to node config file", required=True, type=str, default=None) parser.add_argument("--blocks", dest="blocks", help = "Blocks to replay", required=False, type=int, default=1000000) args = parser.parse_args() node = None assert int(args.blocks) >= 1000000, "replay has to be done for more than 1 million blocks" # config config = configuration() config.load(args.config_path) # check existance of required plugins plugins = config.plugin.split(' ') assert "account_history_rocksdb" in plugins assert "account_history_api" in plugins # class that compressing vop class compressed_vop: def __init__(self, vop): from hashlib import sha512 from random import randint from json import dumps self.id = "{}_{}_{}".format( (~0x8000000000000000) & int(vop["operation_id"]), vop["block"], vop["trx_in_block"]) self.checksum = sha512( dumps(vop).encode() ).hexdigest() # self.content = vop def get(self): return self.__dict__ # return compressed data from api call def compress_vops(data : list) -> list: ret = [] for vop in data: ret.append(compressed_vop(vop).get()) return ret # this function do call to API def get_vops(range_begin : int, range_end : int, start_from_id : int, limit : int) -> dict: global config from requests import post from json import dumps # from time import sleep # sleep(0.25) data = { "jsonrpc":"2.0", "method":"call", "params":[ "account_history_api", "enum_virtual_ops", { "block_range_begin":range_begin, "block_range_end":range_end, "operation_begin":start_from_id, "limit":limit } ], "id":1 } ret = post(f"http://{config.webserver_http_endpoint}", data=dumps(data)) if ret.status_code == 200: return ret.json()['result'] else: raise Exception("bad request") # checks is there anythink more to get def paginated(data : dict, range_end : int) -> bool: return not ( data['next_operation_begin'] == 0 and ( data['next_block_range_begin'] == range_end or data['next_block_range_begin'] == 0 ) ) # do one huge call def get_vops_at_once(range_begin : int, range_end : int) -> list: tmp = get_vops(range_begin, range_end, 0, MAX_AT_ONCE) assert not paginated(tmp, range_end) return compress_vops(tmp['ops']) # generator, that get page by page in step given as limit def get_vops_paginated(range_begin : int, range_end : int, limit : int): ret = get_vops(range_begin, range_end, 0, limit) yield compress_vops(ret['ops']) if not paginated(ret, range_end): ret = None while ret is not None: ret = get_vops(ret['next_block_range_begin'], range_end, ret['next_operation_begin'], limit) yield compress_vops(ret['ops']) if not paginated(ret, range_end): ret = None yield None # wrapper on generator that agregates paginated output def get_vops_with_step(range_begin : int, range_end : int, limit : int) -> list: next_object = get_vops_paginated(range_begin, range_end, limit) ret = [] value = next(next_object) while value is not None: ret.extend(value) value = next(next_object) return ret # proxy, to get_vops_with_step with limit set as 1 def get_vops_one_by_one(range_begin : int, range_end : int) -> list: return get_vops_with_step(range_begin, range_end, 1) # get same data in given range with diffrent step def check_range(range_begin : int, blocks : int): from operator import itemgetter from json import dump range_end = range_begin + blocks + 1 print(f"gathering blocks in range [ {range_begin} ; {range_end} )") all_at_once = get_vops_at_once(range_begin, range_end) paginated_by_1 = get_vops_one_by_one(range_begin, range_end) paginated_by_2 = get_vops_with_step(range_begin, range_end, 2) paginated_by_5 = get_vops_with_step(range_begin, range_end, 5) paginated_by_10 = get_vops_with_step(range_begin, range_end, 10) # dump(all_at_once, open("all_at_once.json", 'w')) # dump(paginated_by_1, open("paginated_by_1.json", 'w')) # dump(paginated_by_2, open("paginated_by_2.json", 'w')) # dump(paginated_by_5, open("paginated_by_5.json", 'w')) # dump(paginated_by_10, open("paginated_by_10.json", 'w')) assert all_at_once == paginated_by_1 print(f"[OK] all == paginated by 1 [ {range_begin} ; {range_end} )") assert all_at_once == paginated_by_2 print(f"[OK] all == paginated by 2 [ {range_begin} ; {range_end} )") assert all_at_once == paginated_by_5 print(f"[OK] all == paginated by 5 [ {range_begin} ; {range_end} )") assert all_at_once == paginated_by_10 print(f"[OK] all == paginated by 10 [ {range_begin} ; {range_end} )") return True threads = [] STEP = 100 # start tests in diffrent threads for i in range(args.blocks - (STEP * 4), args.blocks, STEP): th = Thread(target=check_range, args=(i, STEP)) th.start() threads.append( th ) for job in threads: job.join() print("success") exit(0)
terrascript/vault/d.py
mjuenema/python-terrascript
507
12641710
<reponame>mjuenema/python-terrascript # terrascript/vault/d.py # Automatically generated by tools/makecode.py () import warnings warnings.warn( "using the 'legacy layout' is deprecated", DeprecationWarning, stacklevel=2 ) import terrascript class vault_approle_auth_backend_role_id(terrascript.Data): pass class vault_auth_backend(terrascript.Data): pass class vault_aws_access_credentials(terrascript.Data): pass class vault_azure_access_credentials(terrascript.Data): pass class vault_generic_secret(terrascript.Data): pass class vault_identity_entity(terrascript.Data): pass class vault_identity_group(terrascript.Data): pass class vault_kubernetes_auth_backend_config(terrascript.Data): pass class vault_kubernetes_auth_backend_role(terrascript.Data): pass class vault_policy_document(terrascript.Data): pass
demos/common/python/visualizers/instance_segmentation.py
alpkn/open_model_zoo
2,201
12641720
<reponame>alpkn/open_model_zoo """ Copyright (c) 2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import cv2 import numpy as np from .drawing_utils import ColorPalette class InstanceSegmentationVisualizer: def __init__(self, labels=None, show_boxes=False, show_scores=False): colors_num = len(labels) if labels else 80 self.labels = labels self.palette = ColorPalette(colors_num) self.show_boxes = show_boxes self.show_scores = show_scores def __call__(self, image, boxes, classes, scores, masks=None, ids=None, texts=None): result = image.copy() if masks is not None: result = self.overlay_masks(result, masks, ids) if self.show_boxes: result = self.overlay_boxes(result, boxes, classes) result = self.overlay_labels(result, boxes, classes, scores, texts) return result def overlay_masks(self, image, masks, ids=None): segments_image = image.copy() aggregated_mask = np.zeros(image.shape[:2], dtype=np.uint8) aggregated_colored_mask = np.zeros(image.shape, dtype=np.uint8) all_contours = [] for i, mask in enumerate(masks): contours = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2] if contours: all_contours.append(contours[0]) mask_color = self.palette[i if ids is None else ids[i]] cv2.bitwise_or(aggregated_mask, mask, dst=aggregated_mask) cv2.bitwise_or(aggregated_colored_mask, mask_color, dst=aggregated_colored_mask, mask=mask) # Fill the area occupied by all instances with a colored instances mask image cv2.bitwise_and(segments_image, (0, 0, 0), dst=segments_image, mask=aggregated_mask) cv2.bitwise_or(segments_image, aggregated_colored_mask, dst=segments_image, mask=aggregated_mask) cv2.addWeighted(image, 0.5, segments_image, 0.5, 0, dst=image) cv2.drawContours(image, all_contours, -1, (0, 0, 0)) return image def overlay_boxes(self, image, boxes, classes): for box, class_id in zip(boxes, classes): color = self.palette[class_id] box = box.astype(int) top_left, bottom_right = box[:2], box[2:] image = cv2.rectangle(image, top_left, bottom_right, color, 2) return image def overlay_labels(self, image, boxes, classes, scores, texts=None): if texts: labels = texts elif self.labels: labels = (self.labels[class_id] for class_id in classes) else: raise RuntimeError('InstanceSegmentationVisualizer must contain either labels or texts to display') template = '{}: {:.2f}' if self.show_scores else '{}' for box, score, label in zip(boxes, scores, labels): text = template.format(label, score) textsize = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0] position = ((box[:2] + box[2:] - textsize) / 2).astype(np.int32) cv2.putText(image, text, position, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) return image
codes/labs_lecture19/lab02_graph_clustering/util/graph_generator.py
sanjaysaha1311/Deep_Learning_CS7454_2018_NTU
221
12641722
<filename>codes/labs_lecture19/lab02_graph_clustering/util/graph_generator.py import numpy as np import block import torch import scipy.sparse as sp default_type='torch.cuda.FloatTensor' default_type='torch.FloatTensor' class variable_size_graph(): def __init__(self, task_parameters): # parameters vocab_size = task_parameters['Voc'] nb_of_clust = task_parameters['nb_clusters_target'] clust_size_min = task_parameters['size_min'] clust_size_max = task_parameters['size_max'] p = task_parameters['p'] q = task_parameters['q'] self_loop = True W0 = task_parameters['W0'] u0 = task_parameters['u0'] # create block model graph and put random signal on it W,c=block.unbalanced_block_model(nb_of_clust,clust_size_min,clust_size_max,p,q) u=np.random.randint(vocab_size,size=W.shape[0]) # add the subgraph to be detected W,c=block.add_a_block(W0,W,c,nb_of_clust,q) u=np.concatenate((u,u0),axis=0) # shuffle W,c,idx=block.schuffle(W,c) u=u[idx] u=torch.from_numpy(u) u=u.long() # add self loop if self_loop: for i in range(W.shape[0]): W[i,i]=1 # create the target target= (c==nb_of_clust).astype(float) target=torch.from_numpy(target) target=target.long() # mapping matrices W_coo=sp.coo_matrix(W) nb_edges=W_coo.nnz nb_vertices=W.shape[0] edge_to_starting_vertex=sp.coo_matrix( ( np.ones(nb_edges) ,(np.arange(nb_edges), W_coo.row) ), shape=(nb_edges, nb_vertices) ) edge_to_ending_vertex=sp.coo_matrix( ( np.ones(nb_edges) ,(np.arange(nb_edges), W_coo.col) ), shape=(nb_edges, nb_vertices) ) # attribute #self.adj_matrix=torch.from_numpy(W).type(default_type) #self.edge_to_starting_vertex=torch.from_numpy(edge_to_starting_vertex.toarray()).type(default_type) #self.edge_to_ending_vertex=torch.from_numpy(edge_to_ending_vertex.toarray()).type(default_type) self.adj_matrix=W self.edge_to_starting_vertex=edge_to_starting_vertex self.edge_to_ending_vertex=edge_to_ending_vertex self.signal=u self.target=target class graph_semi_super_clu(): def __init__(self, task_parameters): # parameters vocab_size = task_parameters['Voc'] nb_of_clust = task_parameters['nb_clusters_target'] clust_size_min = task_parameters['size_min'] clust_size_max = task_parameters['size_max'] p = task_parameters['p'] q = task_parameters['q'] self_loop = True # block model W, c = block.unbalanced_block_model(nb_of_clust, clust_size_min, clust_size_max, p, q) # add self loop if self_loop: for i in range(W.shape[0]): W[i,i]=1 # shuffle W,c,idx = block.schuffle(W,c) # signal on block model u = np.zeros(c.shape[0]) for r in range(nb_of_clust): cluster = np.where(c==r)[0] s = cluster[np.random.randint(cluster.shape[0])] u[s] = r+1 # target target = c # convert to pytorch u = torch.from_numpy(u) u = u.long() target = torch.from_numpy(target) target = target.long() # mapping matrices W_coo=sp.coo_matrix(W) nb_edges=W_coo.nnz nb_vertices=W.shape[0] edge_to_starting_vertex=sp.coo_matrix( ( np.ones(nb_edges) ,(np.arange(nb_edges), W_coo.row) ), shape=(nb_edges, nb_vertices) ) edge_to_ending_vertex=sp.coo_matrix( ( np.ones(nb_edges) ,(np.arange(nb_edges), W_coo.col) ), shape=(nb_edges, nb_vertices) ) # attribute #self.adj_matrix=torch.from_numpy(W).type(default_type) #self.edge_to_starting_vertex=torch.from_numpy(edge_to_starting_vertex.toarray()).type(default_type) #self.edge_to_ending_vertex=torch.from_numpy(edge_to_ending_vertex.toarray()).type(default_type) self.adj_matrix=W self.edge_to_starting_vertex=edge_to_starting_vertex self.edge_to_ending_vertex=edge_to_ending_vertex self.signal=u self.target=target
pywick/datasets/MultiFolderDataset.py
achaiah/pywick
408
12641735
<gh_stars>100-1000 import itertools import os from PIL import Image from .FolderDataset import FolderDataset, npy_loader, pil_loader, rgb_image_loader, rgba_image_loader, _find_classes, _finds_inputs_and_targets class MultiFolderDataset(FolderDataset): """ This class extends the FolderDataset with abilty to supply multiple root directories. The ``rel_target_root`` must exist relative to each root directory. For complete description of functionality see ``FolderDataset`` :param roots: (list): list of root directories to traverse\n :param class_mode: (string in `{'label', 'image', 'path'}):` type of target sample to look for and return\n `label` = return class folder as target\n `image` = return another image as target (determined by optional target_prefix/postfix)\n NOTE: if class_mode == 'image', in addition to input, you must also provide rel_target_root, target_prefix or target_postfix (in any combination). `path` = determines paths for inputs and targets and applies the respective loaders to the path :param class_to_idx: (dict): If specified, the given class_to_idx map will be used. Otherwise one will be derived from the directory structure. :param input_regex: (string `(default is any valid image file)`): regular expression to find input images\n e.g. if all your inputs have the word 'input', you'd enter something like input_regex='*input*' :param rel_target_root: (string `(default is Nothing)`): root of directory where to look for target images RELATIVE to the root dir (first arg) :param target_prefix: (string `(default is Nothing)`): prefix to use (if any) when trying to locate the matching target :param target_postfix: (string): postfix to use (if any) when trying to locate the matching target :param transform: (torch transform): transform to apply to input sample individually :param target_transform: (torch transform): transform to apply to target sample individually :param co_transform: (torch transform): transform to apply to both the input and the target :param apply_co_transform_first: (bool): whether to apply the co-transform before or after individual transforms (default: True = before) :param default_loader: (string in `{'npy', 'pil'}` or function `(default: pil)`): defines how to load samples from file. Will be applied to both input and target unless a separate target_loader is defined.\n if a function is provided, it should take in a file path as input and return the loaded sample. :param target_loader: (string in `{'npy', 'pil'}` or function `(default: pil)`): defines how to load target samples from file\n if a function is provided, it should take in a file path as input and return the loaded sample. :param exclusion_file: (string): list of files to exclude when enumerating all files. The list must be a full path relative to the root parameter :param target_index_map: (dict `(defaults to binary mask: {255:1})): a dictionary that maps pixel values in the image to classes to be recognized.\n Used in conjunction with 'image' class_mode to produce a label for semantic segmentation For semantic segmentation this is required so the default is a binary mask. However, if you want to turn off this feature then specify target_index_map=None """ def __init__(self, roots, class_mode='label', class_to_idx=None, input_regex='*', rel_target_root='', target_prefix='', target_postfix='', target_extension='png', transform=None, target_transform=None, co_transform=None, apply_co_transform_first=True, default_loader='pil', target_loader=None, exclusion_file=None, target_index_map=None): # call the super constructor first, then set our own parameters # super().__init__() self.num_inputs = 1 # these are hardcoded for the fit module to work self.num_targets = 1 # these are hardcoded for the fit module to work if default_loader == 'npy': default_loader = npy_loader elif default_loader == 'pil': default_loader = pil_loader self.default_loader = default_loader # separate loading for targets (e.g. for black/white masks) self.target_loader = target_loader if class_to_idx: self.classes = class_to_idx.keys() self.class_to_idx = class_to_idx else: self.classes, self.class_to_idx = _find_classes(roots) data_list = [] for root in roots: datai, _ = _finds_inputs_and_targets(root, class_mode=class_mode, class_to_idx=self.class_to_idx, input_regex=input_regex, rel_target_root=rel_target_root, target_prefix=target_prefix, target_postfix=target_postfix, target_extension=target_extension, exclusion_file=exclusion_file) data_list.append(datai) self.data = list(itertools.chain.from_iterable(data_list)) if len(self.data) == 0: raise (RuntimeError('Found 0 data items in subfolders of: {}'.format(roots))) print('Found %i data items' % len(self.data)) self.roots = [os.path.expanduser(x) for x in roots] self.transform = transform self.target_transform = target_transform self.co_transform = co_transform self.apply_co_transform_first = apply_co_transform_first self.target_index_map = target_index_map self.class_mode = class_mode
haskell/private/java.bzl
guibou/rules_haskell
222
12641752
"""Interop with Java.""" load("@bazel_skylib//lib:collections.bzl", "collections") JavaInteropInfo = provider( doc = "Information needed for interop with Java rules.", fields = { "inputs": "Files needed during build.", "env": "Dict with env variables that should be set during build.", }, ) def java_interop_info(deps): """Gather information from any Java dependencies. Args: deps: Dependencies of a target that might include Java artifacts. Returns: JavaInteropInfo: Information needed for Java interop. """ inputs = depset( transitive = [ # We only expose direct dependencies, though we could # expose transitive ones as well. Only exposing the direct # ones corresponds to Bazel's "strict Java dependencies" # mode. See # https://github.com/tweag/rules_haskell/issues/96. dep[JavaInfo].compile_jars for dep in deps if JavaInfo in dep ], ) env_dict = dict() uniq_classpath = collections.uniq([ f.path for f in inputs.to_list() ]) if len(uniq_classpath) > 0: env_dict["CLASSPATH"] = ":".join(uniq_classpath) return JavaInteropInfo( inputs = inputs, env = env_dict, )
src/aptsources_cleanup/util/import_check.py
DazEB/aptsources-cleanup
461
12641774
# -*- coding: utf-8 __all__ = ('import_check',) from . import pkg from .gettext import _ from .terminal import termwrap from .filesystem import samefile import sys import os.path def import_check(module_name, apt_pkg_suffix, import_error=None, debug_fail=0): """Check for possible issues during the import of the given module ...and print warnings as appropriate. """ if import_error is None or debug_fail > 0: try: module = __import__(module_name) if debug_fail > 0: import __nonexistant_module__ as module raise AssertionError except ImportError as ex: import_error = ex else: return module python_name = 'python' if sys.version_info.major >= 3: python_name += str(sys.version_info.major) python_exe = os.path.join("/usr/bin", python_name) python_pkg = python_name + '-minimal' apt_pkg = '-'.join((python_name, apt_pkg_suffix)) paragraphs = [ '{:s}: {!s}. {:s} sudo apt-get install {:s}'.format( type(import_error).__name__, import_error, _("Do you have the '{package:s}' package installed? You can do so with:") .format(package=apt_pkg), apt_pkg) ] if not samefile(python_exe, sys.executable) or debug_fail: questionable_interpreter_msg = len(paragraphs) paragraphs.append(': '.join(( _('Warning'), _("The current Python interpreter is '{py_exe:s}'. Please use the " "default '{py_exe_default:s}' if you encounter issues with the " "import of the '{module:s}' module.") .format(py_exe=sys.executable, py_exe_default=python_exe, module=module_name)))) else: questionable_interpreter_msg = None if not pkg.check_integrity(python_pkg, paragraphs, debug_fail): msg = ( _("Please make sure that the '{package:s}' package wasn't corrupted and " "that '{py_exe:s}' refers to the Python interpreter from the same " "package.") .format(package=python_pkg, py_exe=python_exe)) if questionable_interpreter_msg is not None: paragraphs[questionable_interpreter_msg] = ' '.join(( paragraphs[questionable_interpreter_msg], msg)) else: paragraphs.append(': '.join((_('Warning'), msg))) try: stderr = termwrap.get(sys.stderr, ignore_errors=False) except EnvironmentError as ex: print(_('Warning'), _('Cannot wrap text output due a failure to get the terminal size'), ex, sep=': ', end='\n\n', file=sys.stderr) stderr.print_all(paragraphs) sys.exit(127)
autoimpute/imputations/series/ffill.py
gjdv/autoimpute
191
12641830
<reponame>gjdv/autoimpute<gh_stars>100-1000 """This module implements forward & backward imputation via two Imputers. The LOCFImputer carries the last observation forward (locf) to impute missing data in a time series. NOCBImputer carries the next observation backward (nocb) to impute missing data in a time series. Dataframe imputers utilize these classes when each's strategy is requested. Use SingleImputer or MultipleImputer with strategy = `locf` or `nocb` to broadcast either strategy across all the columns in a dataframe, or specify either strategy for a given column. """ import pandas as pd from sklearn.utils.validation import check_is_fitted from autoimpute.imputations import method_names from .base import ISeriesImputer methods = method_names # pylint:disable=attribute-defined-outside-init # pylint:disable=unnecessary-pass # pylint:disable=unused-argument class LOCFImputer(ISeriesImputer): """Impute missing values by carrying the last observation forward. LOCFImputer carries the last observation forward to impute missing data. The imputer can be used directly, but such behavior is discouraged. LOCFImputer does not have the flexibility / robustness of dataframe imputers, nor is its behavior identical. Preferred use is MultipleImputer(strategy="locf"). """ # class variables strategy = methods.LOCF def __init__(self, start=None): """Create an instance of the LOCFImputer class. Args: start (any, optional): can be any value to impute first if first is missing. Default is None, which ends up taking first observed value found. Can also use "mean" to start with mean of the series. Returns: self. Instance of class. """ self.start = start def _handle_start(self, v, X): "private method to handle start values." if v is None: v = X.loc[X.first_valid_index()] if v == "mean": v = X.mean() return v def fit(self, X, y=None): """Fit the Imputer to the dataset. Args: X (pd.Series): Dataset to fit the imputer. y (None): ignored, None to meet requirements of base class Returns: self. Instance of the class. """ self.statistics_ = {"param": None, "strategy": self.strategy} return self def impute(self, X): """Perform imputations using the statistics generated from fit. The impute method handles the actual imputation. Missing values in a given dataset are replaced with the last observation carried forward. Args: X (pd.Series): Dataset to impute missing data from fit. Returns: np.array -- imputed dataset. """ # check if fitted then impute with mean if first value # or impute with observation carried forward otherwise check_is_fitted(self, "statistics_") # handle start... if pd.isnull(X.iloc[0]): ix = X.head(1).index[0] X.fillna( {ix: self._handle_start(self.start, X)}, inplace=True ) return X.fillna(method="ffill", inplace=False) def fit_impute(self, X, y=None): """Convenience method to perform fit and imputation in one go.""" return self.fit(X, y).impute(X) class NOCBImputer(ISeriesImputer): """Impute missing data by carrying the next observation backward. NOCBImputer carries the next observation backward to impute missing data. The imputer can be used directly, but such behavior is discouraged. NOCBImputer does not have the flexibility / robustness of dataframe imputers, nor is its behavior identical. Preferred use is MultipleImputer(strategy="nocb"). """ # class variables strategy = methods.NOCB def __init__(self, end=None): """Create an instance of the NOCBImputer class. Args: end (any, optional): can be any value to impute end if end is missing. Default is None, which ends up taking last observed value found. Can also use "mean" to end with mean of the series. Returns: self. Instance of class. """ self.end = end def _handle_end(self, v, X): "private method to handle end values." if v is None: v = X.loc[X.last_valid_index()] if v == "mean": v = X.mean() return v def fit(self, X, y=None): """Fit the Imputer to the dataset and calculate the mean. Args: X (pd.Series): Dataset to fit the imputer y (None): ignored, None to meet requirements of base class Returns: self. Instance of the class. """ self.statistics_ = {"param": None, "strategy": self.strategy} return self def impute(self, X): """Perform imputations using the statistics generated from fit. The impute method handles the actual imputation. Missing values in a given dataset are replaced with the next observation carried backward. Args: X (pd.Series): Dataset to impute missing data from fit. Returns: np.array -- imputed dataset. """ # check if fitted then impute with mean if first value # or impute with observation carried backward otherwise check_is_fitted(self, "statistics_") # handle end... if pd.isnull(X.iloc[-1]): ix = X.tail(1).index[0] X.fillna( {ix: self._handle_end(self.end, X)}, inplace=True ) return X.fillna(method="bfill", inplace=False) def fit_impute(self, X, y=None): """Convenience method to perform fit and imputation in one go.""" return self.fit(X, y).impute(X)
panoptic_mapping_utils/src/detectron2/detectron_player.py
YuePanEdward/panoptic_mapping
101
12641831
#!/usr/bin/env python3 import os import json import csv import rospy from sensor_msgs.msg import Image from cv_bridge import CvBridge import cv2 from PIL import Image as PilImage import numpy as np import tf from panoptic_mapping_msgs.msg import DetectronLabel, DetectronLabels class DetectronPlayer(object): def __init__(self): """ Initialize ros node and read params """ # params self.data_path = rospy.get_param( '~data_path', '/home/lukas/Documents/Datasets/flat_dataset/run1') self.global_frame_name = rospy.get_param('~global_frame_name', 'world') # ROS self.img_pub = rospy.Publisher("~predicted_image", Image, queue_size=10) self.depth_pub = rospy.Publisher("~depth_image", Image, queue_size=10) self.label_pub = rospy.Publisher("~labels", DetectronLabels, queue_size=10) self.img_sub = rospy.Subscriber("~id_image_in", Image, self.img_callback, queue_size=10) self.tf_broadcaster = tf.TransformBroadcaster() # setup self.cv_bridge = CvBridge() stamps_file = os.path.join(self.data_path, 'timestamps.csv') self.stamp_to_id = {} if not os.path.isfile(stamps_file): rospy.logfatal("No timestamp file '%s' found." % stamps_file) with open(stamps_file, 'r') as read_obj: csv_reader = csv.reader(read_obj) for row in csv_reader: if row[0] == "ImageID": continue self.stamp_to_id[str(row[1])] = str(row[0]) def img_callback(self, id_img): # Verify lookups for requiered datasets. timestamp = str( id_img.header.stamp.secs) + "%09d" % id_img.header.stamp.nsecs if timestamp not in self.stamp_to_id: rospy.logwarn( "No prediction for message with timestamp '%s' found," " skipping image." % timestamp) return prediction_file = os.path.join( self.data_path, self.stamp_to_id[timestamp] + "_predicted.png") if not os.path.isfile(prediction_file): rospy.logwarn("Could not find file '%s', skipping image." % prediction_file) return labels_file = os.path.join( self.data_path, self.stamp_to_id[timestamp] + "_labels.json") if not os.path.isfile(labels_file): rospy.logwarn("Could not find file '%s', skipping image." % labels_file) return # Load and publish image. cv_img = cv2.imread(prediction_file) img_msg = self.cv_bridge.cv2_to_imgmsg(cv_img[:, :, 0], "8UC1") img_msg.header.stamp = id_img.header.stamp img_msg.header.frame_id = id_img.header.frame_id self.img_pub.publish(img_msg) # Load and publish labels. label_msg = DetectronLabels() label_msg.header.stamp = img_msg.header.stamp with open(labels_file) as json_file: data = json.load(json_file) for d in data: if 'instance_id' not in d: d['instance_id'] = 0 if 'score' not in d: d['score'] = 0 label = DetectronLabel() label.id = d['id'] label.instance_id = d['instance_id'] label.is_thing = d['isthing'] label.category_id = d['category_id'] label.score = d['score'] label_msg.labels.append(label) self.label_pub.publish(label_msg) # Load and publish depth image. These are optional. depth_file = os.path.join(self.data_path, self.stamp_to_id[timestamp] + "_depth.tiff") if os.path.isfile(depth_file): cv_img = PilImage.open(depth_file) img_msg = self.cv_bridge.cv2_to_imgmsg(np.array(cv_img), "32FC1") img_msg.header.stamp = id_img.header.stamp # img_msg.header.frame_id = id_img.header.frame_id img_msg.header.frame_id = "test_frame" self.depth_pub.publish(img_msg) # Load and publish transform. pose_file = os.path.join(self.data_path, self.stamp_to_id[timestamp] + "_pose.txt") if os.path.isfile(pose_file): pose_data = [float(x) for x in open(pose_file, 'r').read().split()] transform = np.eye(4) for row in range(4): for col in range(4): transform[row, col] = pose_data[row * 4 + col] rotation = tf.transformations.quaternion_from_matrix(transform) self.tf_broadcaster.sendTransform( (transform[0, 3], transform[1, 3], transform[2, 3]), rotation, id_img.header.stamp, "test_frame", self.global_frame_name) if __name__ == '__main__': rospy.init_node('detectron_player', anonymous=True) detectron_player = DetectronPlayer() rospy.spin()
test_project/select2_djhacker_formfield/urls.py
robertispas/django-autocomplete-light
1,368
12641852
<gh_stars>1000+ from dal import autocomplete from django.conf.urls import url from .models import TModel urlpatterns = [ url( 'test-autocomplete/$', autocomplete.Select2QuerySetView.as_view(model=TModel), name='select2_djhacker_formfield', ), ] import djhacker from django import forms djhacker.formfield( TModel.test, forms.ModelChoiceField, widget=autocomplete.ModelSelect2(url='select2_djhacker_formfield') )
examples/issues/issue138.py
tgolsson/appJar
666
12641866
import sys sys.path.append("../../") from appJar import gui def showDate(btn): print(app.getDatePicker("dp")) app=gui() app.startToggleFrame("Birthday") app.addDatePicker("dp") app.addButton("GET", showDate) app.stopToggleFrame() app.setDatePickerRange("dp", 1900, 2100) app.setDatePicker("dp") app.setDatePickerChangeFunction("dp", showDate) app.go()
RecoEgamma/PhotonIdentification/python/egmPhotonIDs_cfi.py
ckamtsikis/cmssw
852
12641889
import FWCore.ParameterSet.Config as cms egmPhotonIDs = cms.EDProducer( "VersionedPhotonIdProducer", physicsObjectSrc = cms.InputTag('gedPhotons'), physicsObjectIDs = cms.VPSet( ) )
Clients/ParaView/Testing/XML/AnimatedExportSceneVerify.py
xj361685640/ParaView
815
12641893
import argparse import json import os import sys import zipfile parser = argparse.ArgumentParser(description='Verify AnimatedExportScene output.') parser.add_argument('-T', help='Test output directory') parser.add_argument('-N', help='Test name') args = parser.parse_args(sys.argv[1:]) # Open the vtkjs archive written by the XML test test_output_dir = args.T test_name = args.N archive_file_name = test_output_dir + os.sep + test_name + '.vtkjs' with zipfile.ZipFile(archive_file_name, mode='r') as archive: assert("index.json" in archive.namelist()) with archive.open("index.json", mode='r') as index: indexStr = index.read() indexObj = json.loads(indexStr) # Check if we have everything for a basic scene assert("version" in indexObj) assert("background" in indexObj) assert("lookupTables" in indexObj) assert("centerOfRotation" in indexObj) assert("scene" in indexObj) assert("camera" in indexObj) assert("focalPoint" in indexObj["camera"]) assert("position" in indexObj["camera"]) assert("viewUp" in indexObj["camera"]) # Check if scene is correct assert(len(indexObj["scene"]) == 1) source = indexObj["scene"][0] sourceType = source["type"] assert(sourceType == "vtkHttpDataSetSeriesReader") assert("actor" in source) assert("actorRotation" in source) assert("mapper" in source) assert("property" in source) # Check that animation is correct assert("animation" in indexObj) assert(indexObj["animation"]["type"] == "vtkTimeStepBasedAnimationHandler") assert(len(indexObj["animation"]["timeSteps"]) == 10) for step in indexObj["animation"]["timeSteps"]: assert("time" in step) # Check if the folder for the source is here and correct url = source[sourceType]["url"] + "/" assert(url + "index.json" in archive.namelist()) with archive.open(url + "index.json", mode='r') as sourceIndex: sourceIndexObj = json.loads(sourceIndex.read()) assert(len(sourceIndexObj["series"]) == 10) for step in sourceIndexObj["series"]: assert("timeStep" in step) indexStepPath = url + step["url"] + "/index.json" assert(indexStepPath in archive.namelist()) # Check that there's only 26 data array assert(sum(map(lambda x : x.startswith("data/"), archive.namelist())) == 26)
tests/components/zha/test_logbook.py
mib1185/core
30,023
12641898
<gh_stars>1000+ """ZHA logbook describe events tests.""" from unittest.mock import patch import pytest import zigpy.profiles.zha import zigpy.zcl.clusters.general as general from homeassistant.components.zha.core.const import ZHA_EVENT from homeassistant.const import CONF_DEVICE_ID, CONF_UNIQUE_ID, Platform from homeassistant.helpers import device_registry as dr from homeassistant.setup import async_setup_component from .conftest import SIG_EP_INPUT, SIG_EP_OUTPUT, SIG_EP_PROFILE, SIG_EP_TYPE from tests.components.logbook.common import MockRow, mock_humanify ON = 1 OFF = 0 SHAKEN = "device_shaken" COMMAND = "command" COMMAND_SHAKE = "shake" COMMAND_HOLD = "hold" COMMAND_SINGLE = "single" COMMAND_DOUBLE = "double" DOUBLE_PRESS = "remote_button_double_press" SHORT_PRESS = "remote_button_short_press" LONG_PRESS = "remote_button_long_press" LONG_RELEASE = "remote_button_long_release" UP = "up" DOWN = "down" @pytest.fixture(autouse=True) def sensor_platform_only(): """Only setup the sensor and required base platforms to speed up tests.""" with patch("homeassistant.components.zha.PLATFORMS", (Platform.SENSOR,)): yield @pytest.fixture async def mock_devices(hass, zigpy_device_mock, zha_device_joined): """IAS device fixture.""" zigpy_device = zigpy_device_mock( { 1: { SIG_EP_INPUT: [general.Basic.cluster_id], SIG_EP_OUTPUT: [general.OnOff.cluster_id], SIG_EP_TYPE: zigpy.profiles.zha.DeviceType.ON_OFF_SWITCH, SIG_EP_PROFILE: zigpy.profiles.zha.PROFILE_ID, } } ) zha_device = await zha_device_joined(zigpy_device) zha_device.update_available(True) await hass.async_block_till_done() return zigpy_device, zha_device async def test_zha_logbook_event_device_with_triggers(hass, mock_devices): """Test zha logbook events with device and triggers.""" zigpy_device, zha_device = mock_devices zigpy_device.device_automation_triggers = { (SHAKEN, SHAKEN): {COMMAND: COMMAND_SHAKE}, (UP, DOUBLE_PRESS): {COMMAND: COMMAND_DOUBLE, "endpoint_id": 1}, (DOWN, DOUBLE_PRESS): {COMMAND: COMMAND_DOUBLE, "endpoint_id": 2}, (SHORT_PRESS, SHORT_PRESS): {COMMAND: COMMAND_SINGLE}, (LONG_PRESS, LONG_PRESS): {COMMAND: COMMAND_HOLD}, (LONG_RELEASE, LONG_RELEASE): {COMMAND: COMMAND_HOLD}, } ieee_address = str(zha_device.ieee) ha_device_registry = dr.async_get(hass) reg_device = ha_device_registry.async_get_device({("zha", ieee_address)}) hass.config.components.add("recorder") assert await async_setup_component(hass, "logbook", {}) events = mock_humanify( hass, [ MockRow( ZHA_EVENT, { CONF_DEVICE_ID: reg_device.id, COMMAND: COMMAND_SHAKE, "device_ieee": str(ieee_address), CONF_UNIQUE_ID: f"{str(ieee_address)}:1:0x0006", "endpoint_id": 1, "cluster_id": 6, "params": { "test": "test", }, }, ), MockRow( ZHA_EVENT, { CONF_DEVICE_ID: reg_device.id, COMMAND: COMMAND_DOUBLE, "device_ieee": str(ieee_address), CONF_UNIQUE_ID: f"{str(ieee_address)}:1:0x0006", "endpoint_id": 1, "cluster_id": 6, "params": { "test": "test", }, }, ), MockRow( ZHA_EVENT, { CONF_DEVICE_ID: reg_device.id, COMMAND: COMMAND_DOUBLE, "device_ieee": str(ieee_address), CONF_UNIQUE_ID: f"{str(ieee_address)}:1:0x0006", "endpoint_id": 2, "cluster_id": 6, "params": { "test": "test", }, }, ), ], ) assert events[0]["name"] == "FakeManufacturer FakeModel" assert events[0]["domain"] == "zha" assert ( events[0]["message"] == "Device Shaken event was fired with parameters: {'test': 'test'}" ) assert events[1]["name"] == "FakeManufacturer FakeModel" assert events[1]["domain"] == "zha" assert ( events[1]["message"] == "Up - Remote Button Double Press event was fired with parameters: {'test': 'test'}" ) async def test_zha_logbook_event_device_no_triggers(hass, mock_devices): """Test zha logbook events with device and without triggers.""" zigpy_device, zha_device = mock_devices ieee_address = str(zha_device.ieee) ha_device_registry = dr.async_get(hass) reg_device = ha_device_registry.async_get_device({("zha", ieee_address)}) hass.config.components.add("recorder") assert await async_setup_component(hass, "logbook", {}) events = mock_humanify( hass, [ MockRow( ZHA_EVENT, { CONF_DEVICE_ID: reg_device.id, COMMAND: COMMAND_SHAKE, "device_ieee": str(ieee_address), CONF_UNIQUE_ID: f"{str(ieee_address)}:1:0x0006", "endpoint_id": 1, "cluster_id": 6, "params": { "test": "test", }, }, ), ], ) assert events[0]["name"] == "FakeManufacturer FakeModel" assert events[0]["domain"] == "zha" assert ( events[0]["message"] == "Shake event was fired with parameters: {'test': 'test'}" ) async def test_zha_logbook_event_device_no_device(hass, mock_devices): """Test zha logbook events without device and without triggers.""" hass.config.components.add("recorder") assert await async_setup_component(hass, "logbook", {}) events = mock_humanify( hass, [ MockRow( ZHA_EVENT, { CONF_DEVICE_ID: "non-existing-device", COMMAND: COMMAND_SHAKE, "device_ieee": "fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b", CONF_UNIQUE_ID: "90:fd:9f:ff:fe:fe:d8:a1:1:0x0006", "endpoint_id": 1, "cluster_id": 6, "params": { "test": "test", }, }, ), ], ) assert events[0]["name"] == "Unknown device" assert events[0]["domain"] == "zha" assert ( events[0]["message"] == "Shake event was fired with parameters: {'test': 'test'}" )
demo_a3c_ale.py
wuyx/Asynchronous-Methods-for-Deep-Reinforcement-Learning
443
12641908
<reponame>wuyx/Asynchronous-Methods-for-Deep-Reinforcement-Learning<gh_stars>100-1000 import argparse import os import numpy as np import chainer from chainer import serializers import ale import random_seed from dqn_phi import dqn_phi from a3c_ale import A3CFF from a3c_ale import A3CLSTM def eval_performance(rom, model, deterministic=False, use_sdl=False, record_screen_dir=None): env = ale.ALE(rom, treat_life_lost_as_terminal=False, use_sdl=use_sdl, record_screen_dir=record_screen_dir) model.reset_state() test_r = 0 while not env.is_terminal: s = chainer.Variable(np.expand_dims(dqn_phi(env.state), 0)) pout = model.pi_and_v(s)[0] model.unchain_backward() if deterministic: a = pout.most_probable_actions[0] else: a = pout.action_indices[0] test_r += env.receive_action(a) return test_r def main(): import logging logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser() parser.add_argument('rom', type=str) parser.add_argument('model', type=str) parser.add_argument('--seed', type=int, default=0) parser.add_argument('--use-sdl', action='store_true') parser.add_argument('--n-runs', type=int, default=10) parser.add_argument('--deterministic', action='store_true') parser.add_argument('--record-screen-dir', type=str, default=None) parser.add_argument('--use-lstm', action='store_true') parser.set_defaults(use_sdl=False) parser.set_defaults(use_lstm=False) parser.set_defaults(deterministic=False) args = parser.parse_args() random_seed.set_random_seed(args.seed) n_actions = ale.ALE(args.rom).number_of_actions # Load an A3C-DQN model if args.use_lstm: model = A3CLSTM(n_actions) else: model = A3CFF(n_actions) serializers.load_hdf5(args.model, model) scores = [] for i in range(args.n_runs): episode_record_dir = None if args.record_screen_dir is not None: episode_record_dir = os.path.join(args.record_screen_dir, str(i)) os.makedirs(episode_record_dir) score = eval_performance( args.rom, model, deterministic=args.deterministic, use_sdl=args.use_sdl, record_screen_dir=episode_record_dir) print('Run {}: {}'.format(i, score)) scores.append(score) print('Average: {}'.format(sum(scores) / args.n_runs)) if __name__ == '__main__': main()
sampyl/tests/test_state.py
wilsonify/sampyl
308
12641912
from ..core import np from ..state import State state1 = State([('x', 1)]) state2 = State([('x', np.array([1, 2, 3]))]) state3 = State([('x', np.array([1,2,3])), ('y', 1)]) state4 = State([('x', np.array([2.]))]) state5 = State([('x', np.array([2,1,4])), ('y', 2)]) def test_add_states(): new = state3 + state5 print(new) assert(type(new) == State) assert(np.all(new['x'] == np.array([3, 3, 7]))) assert(new['y'] == 3) def test_add_list(): new = state3 + [np.array([2, 3, 4]), 2] assert(type(new) == State) assert(np.all(new['x'] == np.array([3, 5, 7]))) assert(new['y'] == 3) def test_add_multi_array(): new = state2 + np.array([2, 3, 4]) assert(type(new) == State) assert(np.all(new['x'] == np.array([3, 5, 7]))) def test_add_single_array(): new = state4 + np.array([1.]) assert(type(new) == State) assert(len(new) == 1) assert(new['x'] == np.array([3.])) def test_add_int(): new = state1 + 1 assert(type(new)==State) assert(new['x'] == 2) def test_add_float(): new = state1 + 1. assert(type(new)==State) assert(new['x'] == 2.) def test_radd_int(): new = 1 + state1 assert(type(new)==State) assert(new['x'] == 2) def test_radd_float(): new = 1. + state1 assert(type(new)==State) assert(new['x'] == 2.) def test_mul_int(): new = state1 * 2 assert(type(new)==State) assert(new['x'] == 2) def test_mul_float(): new = state1 * 2. assert(type(new)==State) assert(new['x'] == 2.) def test_rmul_int(): new = 2 * state1 assert(type(new)==State) assert(new['x'] == 2) def test_rmul_float(): new = 2. * state1 assert(type(new)==State) assert(new['x'] == 2.)
test_celluloid.py
maochongyuan/celluloid_animationPython
1,086
12641914
"""Test animations.""" # pylint: disable=wrong-import-position import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from celluloid import Camera def test_single(): """Test plt.figure()""" fig = plt.figure() camera = Camera(fig) for _ in range(10): plt.plot(range(5)) plt.plot(-np.arange(5)) artists = camera.snap() assert len(artists) == 2 # pylint: disable=protected-access assert sum(len(x) for x in camera._photos) == 2 * 10 anim = camera.animate() assert len(list(anim.frame_seq)) == 10 def test_two_axes(): """Test subplots.""" fig, axes = plt.subplots(2) camera = Camera(fig) axes[0].plot(np.zeros(100)) axes[1].plot(np.zeros(100)) artists = camera.snap() assert len(artists) == 2 axes[0].plot(np.ones(100)) axes[1].plot(np.ones(100)) artists = camera.snap() # pylint: disable=protected-access assert sum(len(x) for x in camera._photos) == 4 anim = camera.animate() assert len(list(anim.frame_seq)) == 2 def test_legends(): """Test subplots.""" camera = Camera(plt.figure()) plt.legend(plt.plot(range(5)), ['hello']) artists = camera.snap() assert len(artists) == 2 plt.legend(plt.plot(range(5)), ['world']) artists = camera.snap() assert len(artists) == 2 # pylint: disable=protected-access assert camera._photos[0][1].texts[0]._text == 'hello' assert camera._photos[1][1].texts[0]._text == 'world' # pylint: disable=protected-access assert sum(len(x) for x in camera._photos) == 4 anim = camera.animate() assert len(list(anim.frame_seq)) == 2 def test_images(): """Test subplots.""" camera = Camera(plt.figure()) plt.imshow(np.ones((5, 5))) artists = camera.snap() assert len(artists) == 1 plt.imshow(np.zeros((5, 5))) artists = camera.snap() assert len(artists) == 1 # pylint: disable=protected-access assert sum(len(x) for x in camera._photos) == 2 anim = camera.animate() assert len(list(anim.frame_seq)) == 2
build/toolchain/gcc_compile_wrapper.py
fantasialin/cpp_sandbox
2,151
12641917
<reponame>fantasialin/cpp_sandbox<filename>build/toolchain/gcc_compile_wrapper.py<gh_stars>1000+ #!/usr/bin/env python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Runs a compilation command. This script exists to avoid using complex shell commands in gcc_toolchain.gni's tool("cxx") and tool("cc") in case the host running the compiler does not have a POSIX-like shell (e.g. Windows). """ import argparse import sys import wrapper_utils def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--resource-whitelist', help='Generate a resource whitelist for this target.', metavar='PATH') parser.add_argument('command', nargs=argparse.REMAINDER, help='Compilation command') args = parser.parse_args() returncode, stderr = wrapper_utils.CaptureCommandStderr( wrapper_utils.CommandToRun(args.command)) used_resources = wrapper_utils.ExtractResourceIdsFromPragmaWarnings(stderr) sys.stderr.write(stderr) if args.resource_whitelist: with open(args.resource_whitelist, 'w') as f: if used_resources: f.write('\n'.join(str(resource) for resource in used_resources)) f.write('\n') return returncode if __name__ == "__main__": sys.exit(main())
usaspending_api/download/tests/unit/test_base_download_helpers.py
ststuck/usaspending-api
217
12641943
<reponame>ststuck/usaspending-api<filename>usaspending_api/download/tests/unit/test_base_download_helpers.py<gh_stars>100-1000 import json import pytest from datetime import datetime, timezone from model_mommy import mommy from unittest.mock import patch from usaspending_api.broker.lookups import EXTERNAL_DATA_TYPE_DICT from usaspending_api.download.lookups import JOB_STATUS from usaspending_api.download.v2.base_download_viewset import BaseDownloadViewSet JSON_REQUEST = {"dummy_key": "dummy_value"} @pytest.fixture def common_test_data(db): for js in JOB_STATUS: mommy.make("download.JobStatus", job_status_id=js.id, name=js.name, description=js.desc) download_jobs = [ { "download_job_id": 1, "file_name": "oldest_job.zip", "job_status_id": 1, "json_request": json.dumps(JSON_REQUEST), "update_date": datetime(2021, 1, 15, 12, 0, 0, 0, timezone.utc), }, { "download_job_id": 2, "file_name": "yesterday.zip", "job_status_id": 1, "json_request": json.dumps(JSON_REQUEST), "update_date": datetime(2021, 1, 16, 12, 0, 0, 0, timezone.utc), }, ] for job in download_jobs: with patch("django.utils.timezone.now") as mock_now: mock_now.return_value = job["update_date"] mommy.make("download.DownloadJob", **job) mommy.make( "submissions.DABSSubmissionWindowSchedule", submission_reveal_date=datetime(2021, 1, 1, 12, 0, 0, 0, timezone.utc), ) def test_elasticsearch_download_cached(common_test_data): external_load_dates = [ # FABS and FPDS dates are much newer to show they aren't used for ES downloads { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["fabs"], "last_load_date": datetime(2021, 1, 30, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["fpds"], "last_load_date": datetime(2021, 1, 30, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["es_transactions"], "last_load_date": datetime(2021, 1, 17, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["es_awards"], "last_load_date": datetime(2021, 1, 17, 16, 0, 0, 0, timezone.utc), }, ] for load_date in external_load_dates: mommy.make("broker.ExternalDataLoadDate", **load_date) es_transaction_request = {**JSON_REQUEST, "download_types": ["elasticsearch_transactions", "sub_awards"]} es_award_request = {**JSON_REQUEST, "download_types": ["elasticsearch_awards", "sub_awards"]} download_jobs = [ { "download_job_id": 10, "file_name": "es_transaction_job_wrong.zip", "job_status_id": 1, "json_request": json.dumps(es_transaction_request), "update_date": datetime(2021, 1, 17, 10, 0, 0, 0, timezone.utc), }, { "download_job_id": 11, "file_name": "es_transaction_job_right.zip", "job_status_id": 1, "json_request": json.dumps(es_transaction_request), "update_date": datetime(2021, 1, 17, 12, 30, 0, 0, timezone.utc), }, { "download_job_id": 20, "file_name": "es_award_job_wrong.zip", "job_status_id": 1, "json_request": json.dumps(es_award_request), "update_date": datetime(2021, 1, 17, 13, 0, 0, 0, timezone.utc), }, { "download_job_id": 21, "file_name": "es_award_job_right.zip", "job_status_id": 1, "json_request": json.dumps(es_award_request), "update_date": datetime(2021, 1, 17, 17, 0, 0, 0, timezone.utc), }, ] for job in download_jobs: with patch("django.utils.timezone.now") as mock_now: mock_now.return_value = job["update_date"] mommy.make("download.DownloadJob", **job) result = BaseDownloadViewSet._get_cached_download( json.dumps(es_transaction_request), es_transaction_request["download_types"] ) assert result == {"download_job_id": 11, "file_name": "es_transaction_job_right.zip"} result = BaseDownloadViewSet._get_cached_download(json.dumps(es_award_request), es_award_request["download_types"]) assert result == {"download_job_id": 21, "file_name": "es_award_job_right.zip"} def test_elasticsearch_cached_download_not_found(common_test_data): external_load_dates = [ # FABS and FPDS dates are much newer to show they aren't used for ES downloads { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["fabs"], "last_load_date": datetime(2021, 1, 30, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["fpds"], "last_load_date": datetime(2021, 1, 30, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["es_transactions"], "last_load_date": datetime(2021, 1, 17, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["es_awards"], "last_load_date": datetime(2021, 1, 17, 16, 0, 0, 0, timezone.utc), }, ] for load_date in external_load_dates: mommy.make("broker.ExternalDataLoadDate", **load_date) result = BaseDownloadViewSet._get_cached_download( json.dumps(JSON_REQUEST), ["elasticsearch_transactions", "sub_awards"] ) assert result is None result = BaseDownloadViewSet._get_cached_download(json.dumps(JSON_REQUEST), ["elasticsearch_awards", "sub_awards"]) assert result is None def test_non_elasticsearch_download_cached(common_test_data): external_load_dates = [ { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["fabs"], "last_load_date": datetime(2021, 1, 17, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["fpds"], "last_load_date": datetime(2021, 1, 17, 13, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["es_transactions"], "last_load_date": datetime(2021, 1, 17, 14, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["es_awards"], "last_load_date": datetime(2021, 1, 17, 16, 0, 0, 0, timezone.utc), }, ] for load_date in external_load_dates: mommy.make("broker.ExternalDataLoadDate", **load_date) download_jobs = [ { "download_job_id": 10, "file_name": "10_download_job.zip", "job_status_id": 1, "json_request": json.dumps(JSON_REQUEST), "update_date": datetime(2021, 1, 17, 10, 0, 0, 0, timezone.utc), }, { "download_job_id": 11, "file_name": "11_download_job.zip", "job_status_id": 1, "json_request": json.dumps(JSON_REQUEST), "update_date": datetime(2021, 1, 17, 12, 30, 0, 0, timezone.utc), }, { "download_job_id": 20, "file_name": "20_download_job.zip", "job_status_id": 1, "json_request": json.dumps(JSON_REQUEST), "update_date": datetime(2021, 1, 17, 13, 0, 0, 0, timezone.utc), }, { "download_job_id": 21, "file_name": "21_download_job.zip", "job_status_id": 1, "json_request": json.dumps(JSON_REQUEST), "update_date": datetime(2021, 1, 17, 17, 0, 0, 0, timezone.utc), }, ] for job in download_jobs: with patch("django.utils.timezone.now") as mock_now: mock_now.return_value = job["update_date"] mommy.make("download.DownloadJob", **job) # Grab latest valid download result = BaseDownloadViewSet._get_cached_download(json.dumps(JSON_REQUEST)) assert result == {"download_job_id": 21, "file_name": "21_download_job.zip"} # FABS date updated; download no longer cached mommy.make( "broker.ExternalDataLoadDate", external_data_type__external_data_type_id=EXTERNAL_DATA_TYPE_DICT["fabs"], last_load_date=datetime(2021, 1, 18, 12, 0, 0, 0, timezone.utc), ) result = BaseDownloadViewSet._get_cached_download(json.dumps(JSON_REQUEST)) assert result is None # New download comes through and is cached with patch("django.utils.timezone.now") as mock_now: job = { "download_job_id": 30, "file_name": "30_download_job.zip", "job_status_id": 1, "json_request": json.dumps(JSON_REQUEST), "update_date": datetime(2021, 1, 18, 13, 0, 0, 0, timezone.utc), } mock_now.return_value = job["update_date"] mommy.make("download.DownloadJob", **job) result = BaseDownloadViewSet._get_cached_download(json.dumps(JSON_REQUEST)) assert result == {"download_job_id": 30, "file_name": "30_download_job.zip"} # New submission_reveal_date is set in DABSSubmissionWindowSchedule; clears the cache mommy.make( "submissions.DABSSubmissionWindowSchedule", submission_reveal_date=datetime(2021, 1, 19, 6, 0, 0, 0, timezone.utc), ) result = BaseDownloadViewSet._get_cached_download(json.dumps(JSON_REQUEST)) assert result is None # Download after the new submission_reveal_date is cached with patch("django.utils.timezone.now") as mock_now: job = { "download_job_id": 31, "file_name": "31_download_job.zip", "job_status_id": 1, "json_request": json.dumps(JSON_REQUEST), "update_date": datetime(2021, 1, 19, 6, 15, 0, 0, timezone.utc), } mock_now.return_value = job["update_date"] mommy.make("download.DownloadJob", **job) result = BaseDownloadViewSet._get_cached_download(json.dumps(JSON_REQUEST)) assert result == {"download_job_id": 31, "file_name": "31_download_job.zip"} def test_non_elasticsearch_cached_download_not_found(common_test_data): external_load_dates = [ # FABS and FPDS dates are much newer to show they aren't used for ES downloads { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["fabs"], "last_load_date": datetime(2021, 1, 30, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["fpds"], "last_load_date": datetime(2021, 1, 30, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["es_transactions"], "last_load_date": datetime(2021, 1, 17, 12, 0, 0, 0, timezone.utc), }, { "external_data_type__external_data_type_id": EXTERNAL_DATA_TYPE_DICT["es_awards"], "last_load_date": datetime(2021, 1, 17, 16, 0, 0, 0, timezone.utc), }, ] for load_date in external_load_dates: mommy.make("broker.ExternalDataLoadDate", **load_date) result = BaseDownloadViewSet._get_cached_download(json.dumps(JSON_REQUEST)) assert result is None
ocr/tess/mark_wide_boxes.py
susannahsoon/oldperth
302
12641969
<reponame>susannahsoon/oldperth #!/usr/bin/env python """Draw white lines where wide boxes would be split. This encourages Tesseract to split these letter itself, by forcing them into separate connected components. """ import os.path import sys from PIL import Image, ImageDraw import numpy as np from split_wide_boxes import split_box from box import BoxLine, load_box_file if __name__ == '__main__': _, box_path, image_path = sys.argv im = Image.open(image_path) w, h = im.size boxes = load_box_file(box_path) draw = ImageDraw.Draw(im) px = np.asarray(im) line_count = 0 for box in boxes: y1 = h - box.top y2 = h - box.bottom x1 = box.left x2 = box.right # reinforce existing vertical splits # draw.line((x1, y2, x2, y2), fill='white') splits = split_box(box) if len(splits) == 1: continue # Draw white lines in all the boundary pixels. for subbox in splits[1:]: x1 = subbox.left x2 = subbox.right # TODO: Optimization: draw the line @ the least dark x-value counts = [(-np.sum(px[y1:y2+1, x1 + dx]), x1 + dx) for dx in (-2, -1, 0, 1, 2)] #print '%d, %d, %d %r' % (x, y1, y2, counts) counts.sort() x = counts[0][1] draw.line((x, y2, x, y1), fill='rgb(246,246,246)') line_count += 1 base, ext = os.path.splitext(image_path) out_path = base + '.separated' + ext im.save(out_path) print 'Drew %d separating lines in %s' % (line_count, out_path)
Backtracking/017. Letter Combinations of a Phone Number.py
beckswu/Leetcode
138
12642000
""" 17. Letter Combinations of a Phone Number Given a digit string, return all possible letter combinations that the number could represent. A mapping of digit to letters (just like on the telephone buttons) is given below. Input:Digit string "23" Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]. Note: Although the above answer is in lexicographical order, your answer could be in any order you want. """ class Solution: def letterCombinations(self, digits): """ :type digits: str :rtype: List[str] """ if len(digits) == 0: return [] lookup, result = ["", "", "abc", "def", "ghi", "jkl", "mno", \ "pqrs", "tuv", "wxyz"], [] self.backtracking(digits,lookup,result,"",0) return result def backtracking(self, digits, lookup,result, cur, index): if index == len(digits): result.append(cur) return for i in lookup[int(digits[index])]: self.backtracking(digits,lookup,result,cur+i, index+1) import functools class Solution: def letterCombinations(self, digits: str) -> List[str]: if not digits: return [] kp = {'2':'abc', '3':'def','4':'ghi','5':'jkl','6':'mno','7':'pqrs','8':'tuv','9':'wxyz'} return functools.reduce(lambda acc, digit: [x+y for x in acc for y in kp[digit]],digits, [''])
web/dbpatterns/terrain.py
fatiherikli/dbpatterns
133
12642058
<gh_stars>100-1000 import logging import os import sys from django.conf import settings from django.core.management import call_command from django.test.simple import DjangoTestSuiteRunner from lettuce import * from documents.models import Document from newsfeed.models import Entry from notifications.models import Notification @before.all def switch_to_test_database(): """ Switching to the test database """ logging.info("Setting up a test database ...\n") try: from south.management.commands import patch_for_test_db_setup patch_for_test_db_setup() except ImportError: pass world.test_runner = DjangoTestSuiteRunner(interactive=False) world.test_runner.setup_test_environment() world.test_db = world.test_runner.setup_databases() call_command('syncdb', **{ 'settings': settings.SETTINGS_MODULE, 'interactive': False, 'verbosity': 0}) # Reload mongodb database settings.MONGODB_DATABASE = settings.MONGODB_TEST_DATABASE for model in [Document, Entry, Notification]: model.objects.load() model.objects.collection.remove() @after.all def after_all(total): logging.info("Destroy test database ...\n") # Destroy database. world.test_runner.teardown_databases(world.test_db) # Tear Down the test environment. world.test_runner.teardown_test_environment() @after.each_scenario def before_each_feature(scenario): logging.info("Flusing db ... \n") call_command('flush', **{ 'settings': settings.SETTINGS_MODULE, 'interactive': False}) def setup_test_directory(): sys.path.append(os.path.join(os.path.dirname(__file__), "../../tests")) __import__("steps") setup_test_directory()
tests/v2/stop.py
tombry/virlutils
133
12642086
from . import BaseCMLTest from click.testing import CliRunner import requests_mock import os class CMLStopTests(BaseCMLTest): def test_cml_stop(self): with requests_mock.Mocker() as m: m.put(self.get_api_path("labs/{}/nodes/n1/state/stop".format(self.get_test_id())), json=None) self.setup_mocks(m) virl = self.get_virl() runner = CliRunner() result = runner.invoke(virl, ["stop", "rtr-1"]) self.assertEqual(0, result.exit_code) self.assertNotIn("Node rtr-1 is already stopped", result.output) def test_cml_stop_already_stopped(self): with requests_mock.Mocker() as m: # Mock the request to return what we expect from the API. self.setup_mocks(m) virl = self.get_virl() runner = CliRunner() result = runner.invoke(virl, ["stop", "rtr-2"]) self.assertEqual(0, result.exit_code) self.assertIn("Node rtr-2 is already stopped", result.output) def test_cml_stop_bogus_node(self): with requests_mock.Mocker() as m: # Mock the request to return what we expect from the API. self.setup_mocks(m) virl = self.get_virl() runner = CliRunner() result = runner.invoke(virl, ["stop", "rtr-3"]) self.assertEqual(1, result.exit_code) self.assertIn("Node rtr-3 was not found in lab {}".format(self.get_test_id()), result.output) def test_cml_stop_bogus_lab(self): src_dir = os.path.realpath(".virl") try: os.remove(".virl/current_cml_lab") except OSError: pass with open(".virl/cached_cml_labs/123456", "w") as fd: fd.write("lab: bogus\n") os.symlink("{}/cached_cml_labs/123456".format(src_dir), "{}/current_cml_lab".format(src_dir)) with requests_mock.Mocker() as m: # Mock the request to return what we expect from the API. self.setup_mocks(m) virl = self.get_virl() runner = CliRunner() result = runner.invoke(virl, ["stop", "rtr-1"]) os.remove(".virl/current_cml_lab") os.remove(".virl/cached_cml_labs/123456") self.assertEqual(1, result.exit_code) self.assertIn("Unable to find lab 123456", result.output) def test_cml_stop_no_current_lab(self): try: os.remove(".virl/current_cml_lab") except OSError: pass with requests_mock.Mocker() as m: # Mock the request to return what we expect from the API. self.setup_mocks(m) virl = self.get_virl() runner = CliRunner() result = runner.invoke(virl, ["stop", "rtr-1"]) self.assertEqual(1, result.exit_code) self.assertIn("No current lab set", result.output)
AutotestWebD/apps/common/model/ExcelRead.py
yangjourney/sosotest
422
12642093
import xlrd import os import sys,random import logging from copy import deepcopy rootpath = os.path.dirname(os.path.realpath(__file__)).replace("\\","/") rootpath = rootpath.split("/apps")[0] syspath=sys.path sys.path=[] sys.path.append(rootpath) #指定搜索路径绝对目录 sys.path.extend([rootpath+i for i in os.listdir( rootpath) if i[0]!="."])#将工程目录下的一级目录添加到python搜索路径中 sys.path.extend(syspath) from apps.common.func.InitDjango import * from all_models.models import TbUiTask,TbUiTaskExecute from all_models.models import TbUiTestCase,TbUiTestCaseStep from all_models.models import TbUiGlobalText,TbUiGlobalVars,TbUiPageObject,TbUiPageObjectElements,TbUiFunctions,TbUiFunctionsTestcase,TbUiFunctionsTestcaseStep from all_models.models import TbBusinessLine,TbModules,TbSource,TbConfigHttp from apps.common.func.CommonFunc import * class ExcelProcesser(object): def __init__(self,excelFilePath): self.excelFilePath = excelFilePath self.businessLineDict = {} #key是name,value是id self.moduleDict = {} #key是name,value是id self.sourceDict = {} #key是name,value是id self.httpConfKeyList = [] businessLineSets = TbBusinessLine.objects.filter(state=1).all() for tmpObj in businessLineSets: self.businessLineDict[tmpObj.bussinessLineName] = tmpObj.id moduleSets = TbModules.objects.filter(state=1).all() for tmpObj in moduleSets: self.moduleDict[tmpObj.moduleName] = tmpObj.id sourceSets = TbSource.objects.filter(state=1).all() for tmpObj in sourceSets: self.sourceDict[tmpObj.sourceName] = tmpObj.id configHttpSets = TbConfigHttp.objects.filter(state=1).all() for tmpObj in configHttpSets: self.httpConfKeyList.append(tmpObj.httpConfKey) self.specialTagList = ["#",#注释符号 ] def getAllDatas(self): textDict = {} gvarDict = {} pageObjectDict = {} commonCaseDict = {} caseList = [] #step1 获取textDict retBl,retReason,textDict = self.getTEXTDict() if retBl == False: retReason = "获取全局文本失败,请检查。原因:%s" % retReason logging.error(retReason) return False,retReason,textDict,gvarDict,pageObjectDict,commonCaseDict,caseList #step2 获取gvarDict retBl, retReason,gvarDict = self.getGVARDict() if retBl == False: retReason = "获取全局变量失败,请检查。原因:%s" % retReason logging.error(retReason) return False,retReason,textDict,gvarDict,pageObjectDict,commonCaseDict,caseList allSheetNameList = self.getAllSheetNameList() #step3 获取pageObjectDict # 生成pageObjectdict pageObjectDict = {} for tmpSheetName in allSheetNameList: if tmpSheetName.startswith("PageObject_") : tmpPODict = self.getPageObjectDictBySheetName(tmpSheetName) pageObjectDict.update(tmpPODict) #step4 获取commonCaseDict commonCaseDict = {} # 生成通用方法,可以在sheet case中调用。 for tmpSheetName in allSheetNameList: if tmpSheetName.startswith("Function_"): retBl,retReason,tmpCommonCaseDict = self.getCommonCaseDictBySheetName(tmpSheetName) if retBl: commonCaseDict[tmpSheetName.split("Function_")[1]] = tmpCommonCaseDict else: retReason = "生成Function用例时发生错误,原因:%s" % retReason logging.error(retReason) return False, retReason, textDict, gvarDict, pageObjectDict, commonCaseDict, caseList # step5 获取caseList # 生成要执行的caseList caseList = [] # 如果sheetName为空,使用所有带Case的sheet for tmpCaseSheetName in allSheetNameList: if tmpCaseSheetName.startswith("Testcase_"): retBl,retReason,retTmpCaseList = self.getCaseListBySheetName(tmpCaseSheetName) if retBl: caseList += retTmpCaseList else: retReason = "生成用例时发生错误,原因:%s" % retReason logging.error(retReason) return False, retReason, textDict, gvarDict, pageObjectDict, commonCaseDict, caseList return True, "", textDict, gvarDict, pageObjectDict, commonCaseDict, caseList def getDataListBySheetName(self,sheetName): if ((os.path.exists(self.excelFilePath)) == False): logging.info("不存在文件[%s],请检查!" % self.excelFilePath) return [] else: data = xlrd.open_workbook(self.excelFilePath) if sheetName not in self.getAllSheetNameList(): return [] table = data.sheet_by_name(sheetName) maxRowsNum = table.nrows maxColsNum = table.ncols allDataList = [] for rowIndex in range(0,maxRowsNum): tmpRowValueList = [] for colIndex in range(0,maxColsNum): # tmpRowValueList.append(table.cell(rowIndex,colIndex).value) tmpRowValueList.append(str(table.cell(rowIndex,colIndex).value).strip()) allDataList.append(tmpRowValueList) return allDataList def getTEXTDict(self,sheetName = "$TEXT"): commonEnvStartColNum = 2 #return 结果bool,原因string,数据dict dataList = self.getDataListBySheetName(sheetName) print("----------------------------------") print(dataList) if len(dataList) == 0: return True,"",{} envDict = {} envList = dataList[0] for envIndex in range(commonEnvStartColNum,len(envList)): if (envList[envIndex] not in self.httpConfKeyList) and envList[envIndex] != "common": return False,"环境key[%s]不在系统中" % envList[envIndex],{} else: envDict[str(envIndex)] = envList[envIndex] retTextDict = {} for i in range(1,len(dataList)): tmpTextStr = "" tmpEnvData = dataList[i] tmpTextObj = TbUiGlobalText() tmpTextObj.textDesc = tmpEnvData[0] tmpTextObj.textKey = tmpEnvData[1] for env2Index in range(commonEnvStartColNum,len(tmpEnvData)): tmpTextStr += "[CONF=%s]%s[ENDCONF]" % (envDict[str(env2Index)],tmpEnvData[env2Index]) tmpTextObj.textValue = tmpTextStr retTextDict[tmpTextObj.textKey] = tmpTextObj return True,"",retTextDict def getGVARDict(self,sheetName = "$GVAR"): commonEnvStartColNum = 2 # return 结果bool,原因string,数据dict dataList = self.getDataListBySheetName(sheetName) if len(dataList) == 0: return True, "", {} envDict = {} envList = dataList[0] for envIndex in range(commonEnvStartColNum, len(envList)): if (envList[envIndex] not in self.httpConfKeyList) and envList[envIndex] != "common": return False, "环境key[%s]不在系统中" % envList[envIndex], {} else: envDict[str(envIndex)] = envList[envIndex] retTextDict = {} for i in range(1, len(dataList)): tmpTextStr = "" tmpEnvData = dataList[i] tmpTextObj = TbUiGlobalVars() tmpTextObj.varDesc = tmpEnvData[0] tmpTextObj.varKey = tmpEnvData[1] for env2Index in range(commonEnvStartColNum, len(tmpEnvData)): tmpTextStr += "[CONF=%s]%s[ENDCONF]" % (envDict[str(env2Index)], tmpEnvData[env2Index]) tmpTextObj.varValue = tmpTextStr retTextDict[tmpTextObj.varKey] = tmpTextObj return True, "", retTextDict def getCaseListBySheetName(self,sheetName,execCaseId = ""): if sheetName.startswith("Testcase_") == False: return False, "sheetName必须是Testcase_开头!", [] # 业务线错误,中止,返回空 dataList = self.getDataListBySheetName(sheetName) caseList = [] execCaseIdList = [] if execCaseId.strip() != "": execCaseIdList = execCaseId.split(",") tmpUITestCaseDict = {} tmpUITestCaseDict['case'] = TbUiTestCase() tmpUITestCaseDict['caseSteps'] = [] for i in range(1,len(dataList)): tmpRow = dataList[i] stepNumIndex = 0 if tmpRow[2].strip()!="" and tmpRow[2] not in self.specialTagList: if tmpUITestCaseDict['case'].caseId != "": if len(execCaseIdList) == 0 or (len(execCaseIdList) >0 and tmpUITestCaseDict['case'].caseId in execCaseIdList): caseList.append(tmpUITestCaseDict) #添加上一个用例 stepNumIndex = 0 #重置步骤编号 #找到一个新用例 tmpUITestCase = TbUiTestCase() #清空上一个用例信息 businessLineName = tmpRow[0].strip() if businessLineName not in self.businessLineDict.keys(): retReason = "Case[%s]的业务线[%s]错误,请检查!" % (tmpRow[2],businessLineName) logging.error(retReason) return False,retReason,[] #业务线错误,中止,返回空 tmpUITestCase.businessLineId = self.businessLineDict[businessLineName] moduleName = tmpRow[1].strip() if moduleName not in self.moduleDict.keys(): retReason = "Case[%s]的业务线[%s]错误,请检查!" % (tmpRow[2],moduleName) logging.error(retReason) return False,retReason,[] #模块错误,中止 tmpUITestCase.moduleName = self.moduleDict[moduleName] tmpUITestCase.caseId = tmpRow[2] tmpUITestCase.title = tmpRow[3] tmpUITestCase.casedesc = tmpRow[4] tmpUITestCaseDict = {} tmpUITestCaseDict['case'] = tmpUITestCase tmpUITestCaseDict['caseSteps'] = [] else: #找到的行不是用例,那肯定就是步骤 tmpUITestcaseStep = TbUiTestCaseStep() stepNumIndex += 1 tmpUITestcaseStep.caseId = tmpUITestCaseDict['case'].caseId tmpUITestcaseStep.stepNum = stepNumIndex tmpUITestcaseStep.specialTag = tmpRow[2] tmpUITestcaseStep.stepTitle = tmpRow[3] tmpUITestcaseStep.stepDesc = tmpRow[4] tmpUITestcaseStep.operate = tmpRow[5] tmpUITestcaseStep.params = tmpRow[6] if tmpUITestcaseStep.operate.strip() != "" and tmpUITestcaseStep.params.strip() != "": #关键字和参数不能为空才是真的有效的。 tmpUITestCaseDict['caseSteps'].append(tmpUITestcaseStep) if i == len(dataList)-1 and tmpUITestCaseDict['case'].caseId != "": #执行完最后一步的时候,判断是否要把最后一个case加入到caseList if len(execCaseIdList) == 0 or (len(execCaseIdList) >0 and tmpUITestCaseDict['case'].caseId in execCaseIdList): caseList.append(tmpUITestCaseDict) #把最后一个用例加进来 return True,"",caseList def getCommonCaseDictBySheetName(self,sheetName): if sheetName.startswith("Function_") == False: return False, "sheetName必须是Function_开头!", [] # 业务线错误,中止,返回空 dataList = self.getDataListBySheetName(sheetName) caseList = [] commonFuncKey = sheetName.split("Function_")[1] tmpUITestCaseDict = {} tmpUITestCaseDict['function'] = TbUiFunctionsTestcase() tmpUITestCaseDict['functionSteps'] = [] stepNumIndex = 0 for i in range(1, len(dataList)): tmpRow = dataList[i] if tmpRow[2].strip()!="" and tmpRow[2] not in self.specialTagList: #找到一个新的用例:如果上一个的name不是空,那么就加入到case列表 if tmpUITestCaseDict['function'].functionName != "": caseList.append(tmpUITestCaseDict) # 添加上一个用例 stepNumIndex = 0 # 重置步骤编号 # 找到一个新用例 tmpUITestCase = TbUiFunctionsTestcase() # 清空上一个用例信息 businessLineName = tmpRow[0].strip() if businessLineName not in self.businessLineDict.keys(): retReason = "Function[%s]的业务线[%s]错误,请检查!" % (tmpRow[2], businessLineName) logging.error(retReason) return False, retReason, [] # 业务线错误,中止,返回空 tmpUITestCase.businessLineId = self.businessLineDict[businessLineName] moduleName = tmpRow[1].strip() if moduleName not in self.moduleDict.keys(): retReason = "Function[%s]的业务线[%s]错误,请检查!" % (tmpRow[2], moduleName) logging.error(retReason) return False, retReason, [] # 模块错误,中止 tmpUITestCase.moduleName = self.moduleDict[moduleName] tmpUITestCase.commonFuncKey = commonFuncKey tmpUITestCase.functionName = tmpRow[2] tmpUITestCase.title = tmpRow[3] tmpUITestCase.casedesc = tmpRow[4] tmpUITestCaseDict = {} tmpUITestCaseDict['function'] = tmpUITestCase tmpUITestCaseDict['functionSteps'] = [] else: # 找到的行不是用例,那肯定就是步骤 tmpUITestcaseStep = TbUiFunctionsTestcaseStep() stepNumIndex += 1 tmpUITestcaseStep.commonFuncKey = commonFuncKey tmpUITestcaseStep.functionName = tmpUITestCaseDict['function'].functionName tmpUITestcaseStep.stepNum = stepNumIndex tmpUITestcaseStep.specialTag = tmpRow[2] tmpUITestcaseStep.stepTitle = tmpRow[3] tmpUITestcaseStep.stepDesc = tmpRow[4] tmpUITestcaseStep.operate = tmpRow[5] tmpUITestcaseStep.params = tmpRow[6] if tmpUITestcaseStep.operate.strip() != "" and tmpUITestcaseStep.params.strip() != "": # 关键字和参数不能为空才是真的有效的。 tmpUITestCaseDict['functionSteps'].append(tmpUITestcaseStep) if i == len(dataList) - 1 and tmpUITestCaseDict['function'].functionName != "": # 执行完最后一步的时候,判断是否要把最后一个case加入到caseList caseList.append(tmpUITestCaseDict) # 把最后一个用例加进来 #跟获取用例一样 caseDict = {} for tmpCase in caseList: caseDict[tmpCase['function'].functionName] = tmpCase return True,"",caseDict def getPageObjectDictBySheetName(self,sheetName = ""): dataList = self.getDataListBySheetName(sheetName) poDict = {} currentPageObjName = "" for i in range(1, len(dataList)): tmpRow = dataList[i] if tmpRow[0].strip() != "" : #这是一个新的pageObject,生成对应的对象 dict tmpPageObjectModel = TbUiPageObject() tmpPageObjectModel.poKey = tmpRow[0].strip() tmpPageObjectModel.poTitle = tmpRow[1].strip() tmpPageObjectModel.poDesc = tmpRow[2].strip() currentPageObjName = tmpRow[0].strip() if currentPageObjName not in poDict.keys(): poDict[currentPageObjName] = {} poDict[currentPageObjName]['po'] = tmpPageObjectModel poDict[currentPageObjName]['elements'] = [] else: #如果是空,那么就是一个element选项 tmpElementModel = TbUiPageObjectElements() tmpElementModel.poKey = poDict[currentPageObjName]['po'].poKey tmpElementModel.elementTitle = tmpRow[1] tmpElementModel.elementDesc = tmpRow[2] tmpElementModel.elementKey = tmpRow[3] tmpElementModel.elementType = tmpRow[4] tmpElementModel.elementValue = tmpRow[5] if currentPageObjName != "" and currentPageObjName in poDict.keys(): poDict[currentPageObjName]['elements'].append(tmpElementModel) return poDict def getAllSheetNameList(self): casefile = self.excelFilePath if ((os.path.exists(casefile)) == False): logging.info("不存在文件[%s],请检查!" % casefile) return [] else: data = xlrd.open_workbook(casefile) allSheetsObj = data.sheets() allName = [] for tmpSheetObj in allSheetsObj: allName.append(tmpSheetObj.name) return allName class ExcelDataUpdateDB(object): def __init__(self,sessionName,textDict = {},gvarDict = {},poDict = {},functionDict = {},caseList = [] ,upType = "add"): self.sessionName = sessionName self.textDict = textDict self.gvarDict = gvarDict self.poDict = poDict self.functionDict = functionDict self.caseList = caseList self.upType = upType def textUpdate(self): msg = "" result = True for k,v in self.textDict.items(): dbV = TbUiGlobalText.objects.filter(textKey=k).all() # 查找这个text,找到后判断这个text是不是自己添加的,如果是自己添加的就更新,如果不是就记录下来 最后给提示 if dbV: # print(dbModelToDict(v)) if dbV[0].addBy != self.sessionName: msg += "\n[%s]text不是当前用户添加,text未更新" % dbV[0].textKey result = False continue v.id = dbV[0].id v.addTime = dbV[0].addTime v.save(force_update=True) # print("#找到这个text") else: # print("#没有找到这个text") # print(v) v.addBy = self.sessionName v.save(force_insert=True) return result,msg def gvarUpdate(self): msg = "" result = True for k,v in self.gvarDict.items(): dbV = TbUiGlobalVars.objects.filter(varKey = k).all() if dbV: if dbV[0].addBy != self.sessionName: msg += "\n[%s]gvar不是当前用户添加,gvar未更新" % dbV[0].varKey result = False continue v.id = dbV[0].id v.addTime = dbV[0].addTime v.save(force_update=True) else: v.addBy = self.sessionName v.save(force_insert=True) return result, msg def poAndElementUpdate(self): poMsg = "" poResult= True elemetMsg = "" elementResult = True for k,v in self.poDict.items(): poKey = k po = v['po'] poFromDb = TbUiPageObject.objects.filter(poKey = poKey).all() if poFromDb: if poFromDb[0].addBy != self.sessionName: poMsg += "\n[%s]object page不是当前用户添加,object page未更新" % poFromDb[0].poKey poResult = False else: po.id = poFromDb[0].id po.addTime = poFromDb[0].addTime po.save(force_update=True) else: po.addBy = self.sessionName po.save(force_insert=True) elementsList = v['elements'] for tmpElement in elementsList: tmpEleFromDb = TbUiPageObjectElements.objects.filter(poKey=poKey,elementKey = tmpElement.elementKey).all() if tmpEleFromDb: if tmpEleFromDb[0].addBy != self.sessionName: elemetMsg += "\n[%s]element不是当前用户添加,element未更新" % tmpEleFromDb[0].elementKey elementResult = False continue tmpElement.id = tmpEleFromDb[0].id tmpElement.addTime = tmpEleFromDb[0].addTime tmpElement.save(force_update=True) else: tmpElement.addBy = self.sessionName tmpElement.save(force_insert=True) return poResult,poMsg,elementResult,elemetMsg def funcUpdate(self): funcMsg = "" funcResult = True for k,v in self.functionDict.items(): # ui functions ####################################################################################### tmpUiFunction = TbUiFunctions.objects.filter(commonFuncKey = k).all() if tmpUiFunction: #有直接进行更新: tmpUiFunction = tmpUiFunction[0] tmpUiFunction.save(force_update=True) else: #没有对应的func,创建func tmpUiFunction = TbUiFunctions() tmpUiFunction.commonFuncKey = k tmpUiFunction.commonFuncTitle = "默认值,请修改" tmpUiFunction.commonFuncDesc = "默认值,请修改" tmpUiFunction.addBy = self.sessionName tmpUiFunction.save(force_insert=True) for k2,v2 in v.items(): #对function testcase进行便利 tmpUiFuncTestcase = TbUiFunctionsTestcase.objects.filter(commonFuncKey = k,functionName = k2).all() if tmpUiFuncTestcase: #存在,那么就更新。 tmpFuntion = v2['function'] if tmpUiFuncTestcase[0].addBy != self.sessionName: funcMsg += "\n[%s] 的创建人不是当前用户,function更新失败" % tmpFuntion.functionName funcResult = False continue tmpFuntion.id = tmpUiFuncTestcase[0].id tmpFuntion.addTime = tmpUiFuncTestcase[0].addTime tmpFuntion.modBy = self.sessionName tmpFuntion.save(force_update=True) else: tmpFuntion = v2['function'] tmpFuntion.addBy = self.sessionName tmpFuntion.save(force_insert=True) #开始保存步骤。 funcSteps = v2['functionSteps'] funcStepsInDb = TbUiFunctionsTestcaseStep.objects.filter(commonFuncKey = k,functionName = k2).all() if len(funcSteps) <= len(funcStepsInDb): #如果实际的小于数据库中的,直接更新实际的到数据库中,多余的步骤为0 for dbFuncStepi in range(0,len(funcStepsInDb)): #TODO pass根据步骤的长度决定是插入还是更新。 if dbFuncStepi < len(funcSteps): #更新步骤到db中 funcSteps[dbFuncStepi].id = funcStepsInDb[dbFuncStepi].id funcSteps[dbFuncStepi].state = 1 funcSteps[dbFuncStepi].addTime = funcStepsInDb[dbFuncStepi].addTime funcSteps[dbFuncStepi].modBy = self.sessionName funcSteps[dbFuncStepi].save(force_update=True) else: #更新数据库的步骤的state为0 funcStepsInDb[dbFuncStepi].state = 0 funcStepsInDb[dbFuncStepi].modBy = self.sessionName funcStepsInDb[dbFuncStepi].save(force_update=True) else: #如果实际的大于数据库中的 for realFuncStepi in range(0,len(funcSteps)): if realFuncStepi < len(funcStepsInDb): #更新到db中 funcSteps[realFuncStepi].id = funcStepsInDb[realFuncStepi].id funcSteps[realFuncStepi].addTime = funcStepsInDb[realFuncStepi].addTime funcSteps[realFuncStepi].state = 1 funcSteps[realFuncStepi].modBy = self.sessionName funcSteps[realFuncStepi].save(force_update=True) else: #插入到db中 funcSteps[realFuncStepi].addBy = self.sessionName funcSteps[realFuncStepi].save(force_insert=True) return funcResult,funcMsg def caseUpdate(self): caseMsg = "" caseResult = True for tmpCaseDict in self.caseList: tmpCase = tmpCaseDict['case'] tmpCaseSteps = tmpCaseDict['caseSteps'] if self.upType == "add": tmpCase.caseId = "TMPCASEID_%s" % random.randint(0,10000000) tmpCase.save(force_insert=True) tmpCase.caseId = "TC_UI_%d" % tmpCase.id tmpCase.addBy = self.sessionName tmpCase.save(force_update=True) else: tmpUiTestcase = TbUiTestCase.objects.filter(caseId = tmpCase.caseId).all() if tmpUiTestcase: # 存在,那么就更新。 tmpCase.id = tmpUiTestcase[0].id if tmpUiTestcase[0].addBy != self.sessionName: print(tmpUiTestcase[0].addBy) print("+++++++++++++++++++++++++++++++++") caseMsg += "\n [%s]的创建人不是当前用户,跳过更新" % tmpUiTestcase[0].caseId continue else: tmpCase.addBy = self.sessionName tmpCase.addTime = tmpUiTestcase[0].addTime tmpCase.save(force_update=True) else: print("不存在%s" % tmpCase.caseId) continue # 开始保存步骤。 caseSteps = tmpCaseSteps caseStepsInDb = TbUiTestCaseStep.objects.filter(caseId = tmpCase.caseId).all() if len(caseSteps) <= len(caseStepsInDb): # 如果实际的小于数据库中的,直接更新实际的到数据库中,多余的步骤为0 for dbFuncStepi in range(0, len(caseStepsInDb)): # TODO pass根据步骤的长度决定是插入还是更新。 if dbFuncStepi < len(caseSteps): # 更新步骤到db中 caseSteps[dbFuncStepi].id = caseStepsInDb[dbFuncStepi].id caseSteps[dbFuncStepi].caseId = tmpCase.caseId caseSteps[dbFuncStepi].state = 1 caseSteps[dbFuncStepi].addTime = caseStepsInDb[dbFuncStepi].addTime caseSteps[dbFuncStepi].save(force_update=True) else: # 更新数据库的步骤的state为0 caseStepsInDb[dbFuncStepi].state = 0 caseStepsInDb[dbFuncStepi].caseId = tmpCase.caseId caseStepsInDb[dbFuncStepi].save(force_update=True) else: # 如果实际的大于数据库中的 for realFuncStepi in range(0, len(caseSteps)): if realFuncStepi < len(caseStepsInDb): # 更新到db中 caseSteps[realFuncStepi].id = caseStepsInDb[realFuncStepi].id caseSteps[realFuncStepi].caseId = tmpCase.caseId caseSteps[realFuncStepi].addTime = caseStepsInDb[realFuncStepi].addTime caseSteps[realFuncStepi].state = 1 caseSteps[realFuncStepi].save(force_update=True) else: # 插入到db中 caseSteps[realFuncStepi].addBy = self.sessionName caseSteps[realFuncStepi].caseId = tmpCase.caseId caseSteps[realFuncStepi].save(force_insert=True) return caseResult,caseMsg if __name__ == '__main__': excelFilePath = "D:/autotest/AutotestPlatform/RobotUiTest/testData/StandardTemplate.xls" sheetName = "Testcase_OnlyWeb" excelObj = ExcelProcesser(excelFilePath) retBl,retReason,textDict,gvarDict,poDict,functionDict,caseList = excelObj.getAllDatas() # print(retBl) # print(retReason) # print(textDict) # print(gvarDict) # print(poDict) print("----------------------------------------------------") print(functionDict) # print(caseList) updateDb = ExcelDataUpdateDB(sessionName="1",textDict=textDict,gvarDict=gvarDict,poDict=poDict,functionDict=functionDict,caseList=caseList,upType="update") #saveText textResult,textMsg = updateDb.textUpdate() gvarResult,gvarMsg = updateDb.gvarUpdate() #poDict poResult,poMsg,elementResult,elementMsg = updateDb.poAndElementUpdate() funcResult,funcMsg = updateDb.funcUpdate() caseResult,caseMsg = updateDb.caseUpdate() print(caseResult) print(caseMsg) if textResult: textMsg = "text更新成功" textMsg = "textMsg:%s" % textMsg #testSaveText # for k,v in textDict.items(): # dbV = TbUiGlobalText.objects.filter(textKey = k).all() # #查找这个text,找到后判断这个text是不是自己添加的,如果是自己添加的就更新,如果不是就记录下来 最后给提示 # if dbV: # v.id = dbV[0].id # v.addTime = dbV[0].addTime # v.save(force_update=True) # print("#找到这个text") # from apps.common.func.CommonFunc import * # print(dbModelToDict(v)) # else: # print("#没有找到这个text") # print(v) # v.save(force_insert=True) # # #testSaveGvar # for k,v in gvarDict.items(): # dbV = TbUiGlobalVars.objects.filter(varKey = k).all() # if dbV: # v.id = dbV[0].id # v.addTime = dbV[0].addTime # v.save(force_update=True) # else: # v.save(force_insert=True) # # #testSavePageObjectandElemnts####################################################################################### # for k,v in poDict.items(): # poKey = k # po = v['po'] # poFromDb = TbUiPageObject.objects.filter(poKey = poKey).all() # if poFromDb: # po.id = poFromDb[0].id # po.addTime = poFromDb[0].addTime # po.save(force_update=True) # else: # po.save(force_insert=True) # # elementsList = v['elements'] # for tmpElement in elementsList: # tmpEleFromDb = TbUiPageObjectElements.objects.filter(poKey=poKey,elementKey = tmpElement.elementKey).all() # if tmpEleFromDb: # tmpElement.id = tmpEleFromDb[0].id # tmpElement.addTime = tmpEleFromDb[0].addTime # tmpElement.save(force_update=True) # else: # tmpElement.save(force_insert=True) # # for k,v in functionDict.items(): # # ui functions ####################################################################################### # tmpUiFunction = TbUiFunctions.objects.filter(commonFuncKey = k).all() # if tmpUiFunction: # #有直接进行更新: # tmpUiFunction = tmpUiFunction[0] # else: # #没有对应的func,创建func # tmpUiFunction = TbUiFunctions() # tmpUiFunction.commonFuncKey = k # tmpUiFunction.commonFuncTitle = "默认值,请修改" # tmpUiFunction.commonFuncDesc = "默认值,请修改" # tmpUiFunction.save(force_insert=True) # # for k2,v2 in v.items(): # #对function testcase进行便利 # tmpUiFuncTestcase = TbUiFunctionsTestcase.objects.filter(commonFuncKey = k,functionName = k2).all() # if tmpUiFuncTestcase: # #存在,那么就更新。 # tmpFuntion = v2['function'] # tmpFuntion.id = tmpUiFuncTestcase[0].id # tmpFuntion.addTime = tmpUiFuncTestcase[0].addTime # tmpFuntion.save(force_update=True) # else: # tmpFuntion = v2['function'] # tmpFuntion.save(force_insert=True) # #开始保存步骤。 # funcSteps = v2['functionSteps'] # funcStepsInDb = TbUiFunctionsTestcaseStep.objects.filter(commonFuncKey = k,functionName = k2).all() # if len(funcSteps) <= len(funcStepsInDb): # #如果实际的小于数据库中的,直接更新实际的到数据库中,多余的步骤为0 # for dbFuncStepi in range(0,len(funcStepsInDb)): # #TODO pass根据步骤的长度决定是插入还是更新。 # if dbFuncStepi < len(funcSteps): # #更新步骤到db中 # funcSteps[dbFuncStepi].id = funcStepsInDb[dbFuncStepi].id # funcSteps[dbFuncStepi].state = 1 # funcSteps[dbFuncStepi].addTime = funcStepsInDb[dbFuncStepi].addTime # funcSteps[dbFuncStepi].save(force_update=True) # else: # #更新数据库的步骤的state为0 # funcStepsInDb[dbFuncStepi].state = 0 # funcStepsInDb[dbFuncStepi].save(force_update=True) # else: # #如果实际的大于数据库中的 # for realFuncStepi in range(0,len(funcSteps)): # if realFuncStepi < len(funcStepsInDb): # #更新到db中 # funcSteps[realFuncStepi].id = funcStepsInDb[realFuncStepi].id # funcSteps[realFuncStepi].addTime = funcStepsInDb[realFuncStepi].addTime # funcSteps[realFuncStepi].state = 1 # funcSteps[realFuncStepi].save(force_update=True) # else: # #插入到db中 # funcSteps[realFuncStepi].save(force_insert=True) # # # ui functions ####################################################################################### # # #testcases ####################################################################################### # upType = "update" # update # for tmpCaseDict in caseList: # tmpCase = tmpCaseDict['case'] # tmpCaseSteps = tmpCaseDict['caseSteps'] # if upType == "add": # tmpCase.caseId = "TMPCASEID_%s" % random.randint(0,10000000) # tmpCase.save(force_insert=True) # tmpCase.caseId = "TC_UI_%d" % tmpCase.id # tmpCase.save(force_update=True) # else: # tmpUiTestcase = TbUiTestCase.objects.filter(caseId = tmpCase.caseId).all() # if tmpUiTestcase: # # 存在,那么就更新。 # tmpCase.id = tmpUiTestcase[0].id # tmpCase.addTime = tmpUiTestcase[0].addTime # tmpCase.save(force_update=True) # else: # print("不存在%s" % tmpCase.caseId) # continue # # 开始保存步骤。 # caseSteps = tmpCaseSteps # caseStepsInDb = TbUiTestCaseStep.objects.filter(caseId = tmpCase.caseId).all() # if len(caseSteps) <= len(caseStepsInDb): # # 如果实际的小于数据库中的,直接更新实际的到数据库中,多余的步骤为0 # for dbFuncStepi in range(0, len(caseStepsInDb)): # # TODO pass根据步骤的长度决定是插入还是更新。 # if dbFuncStepi < len(caseSteps): # # 更新步骤到db中 # caseSteps[dbFuncStepi].id = caseStepsInDb[dbFuncStepi].id # caseSteps[dbFuncStepi].caseId = tmpCase.caseId # caseSteps[dbFuncStepi].state = 1 # caseSteps[dbFuncStepi].addTime = caseStepsInDb[dbFuncStepi].addTime # caseSteps[dbFuncStepi].save(force_update=True) # else: # # 更新数据库的步骤的state为0 # caseStepsInDb[dbFuncStepi].state = 0 # caseStepsInDb[dbFuncStepi].caseId = tmpCase.caseId # caseStepsInDb[dbFuncStepi].save(force_update=True) # else: # # 如果实际的大于数据库中的 # for realFuncStepi in range(0, len(caseSteps)): # if realFuncStepi < len(caseStepsInDb): # # 更新到db中 # caseSteps[realFuncStepi].id = caseStepsInDb[realFuncStepi].id # caseSteps[realFuncStepi].caseId = tmpCase.caseId # caseSteps[realFuncStepi].addTime = caseStepsInDb[realFuncStepi].addTime # caseSteps[realFuncStepi].state = 1 # caseSteps[realFuncStepi].save(force_update=True) # else: # # 插入到db中 # caseSteps[realFuncStepi].caseId = tmpCase.caseId # caseSteps[realFuncStepi].save(force_insert=True) #testcases #######################################################################################
macropodus/summarize/feature_base/text_pronouns.py
leileixiao/Macropodus
485
12642125
# -*- coding: UTF-8 -*- # !/usr/bin/python # @time :2019/8/25 20:51 # @author :Mo # @paper :Sentence Extraction Based Single Document Summarization(2005) # @function :text summary of feature-base # @evaluate :bad, it is for english, and that's not clearly explain of formula from macropodus.preprocess.tools_ml import macropodus_cut, jieba_tag_cut from macropodus.data.words_common.stop_words import stop_words from macropodus.preprocess.tools_ml import extract_chinese from macropodus.preprocess.tools_ml import cut_sentence from macropodus.preprocess.tools_ml import get_ngrams from collections import Counter CHAR_PUMCTUATION = ',.:;?!`\'"[]{}<>。?!,、;:“” ‘’「」『』《》()[]〔〕【】——……—-~·《》〈〉﹏﹏.___' CHAR_ENGLISH = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" CHAR_NUMBER = "0123456789零一二两三四五六七八九" CHAR_CHINESE = "\u4e00-\u9fa5" ES_MIN = 1e-9 class TextPronounsSum: def __init__(self): self.algorithm = 'text_pronouns' self.stop_words = stop_words.values() self.len_ideal = 18 # 中心句子长度, 默认 def score_position(self): """ 文本长度得分 :param sentence: :return: """ score_position = [] for i, _ in enumerate(self.sentences): score_standard = i / (len(self.sentences)) if score_standard >= 0 and score_standard <= 0.1: score_position.append(0.17) elif score_standard > 0.1 and score_standard <= 0.2: score_position.append(0.23) elif score_standard > 0.2 and score_standard <= 0.3: score_position.append(0.14) elif score_standard > 0.3 and score_standard <= 0.4: score_position.append(0.08) elif score_standard > 0.4 and score_standard <= 0.5: score_position.append(0.05) elif score_standard > 0.5 and score_standard <= 0.6: score_position.append(0.04) elif score_standard > 0.6 and score_standard <= 0.7: score_position.append(0.06) elif score_standard > 0.7 and score_standard <= 0.8: score_position.append(0.04) elif score_standard > 0.8 and score_standard <= 0.9: score_position.append(0.04) elif score_standard > 0.9 and score_standard <= 1.0: score_position.append(0.15) else: score_position.append(0) return score_position def score_length(self): """ 文本长度得分 :param sentence: :return: """ score_length = [] for i, sentence in enumerate(self.sentences): score_len = 1 - abs(self.len_ideal - len(sentence)) / self.len_ideal score_length.append(score_len) return score_length def score_tag(self): """ 词性打分名词-动词-代词(n,v,r) :return: """ score_tag = [] for i, sen_tag_score in enumerate(self.sentences_tag_cut): sen_tag = sen_tag_score.values() tag_dict = dict(Counter(sen_tag)) tag_n = tag_dict.get('n', 0) + tag_dict.get('nr', 0) + tag_dict.get('ns', 0) + \ tag_dict.get('nt', 0) + tag_dict.get('nz', 0) + tag_dict.get('ng', 0) tag_v = tag_dict.get('v', 0) + tag_dict.get('vd', 0) + tag_dict.get('vn', 0) + tag_dict.get('vg', 0) tag_p = tag_dict.get('r', 0) score_sen_tag = (1.2 * tag_n + 1.0 * tag_v + 0.8 * tag_p)/(len(sen_tag_score) + 1) score_tag.append(score_sen_tag) return score_tag def score_title(self, words): """ 与标题重合部分词语 :param words: :return: """ mix_word = [word for word in words if word in self.title] len_mix_word = len(mix_word) len_title_word = len(self.title) return (len_mix_word + 1.0) / (len_mix_word + 2.0) / len_title_word def summarize(self, text, num=320, title=None): """ 文本句子排序 :param docs: list :return: list """ # 切句 if type(text) == str: self.sentences = cut_sentence(text) elif type(text) == list: self.sentences = text else: raise RuntimeError("text type must be list or str") self.title = title if self.title: self.title = macropodus_cut(title) # 切词,含词性标注 self.sentences_tag_cut = [jieba_tag_cut(extract_chinese(sentence)) for sentence in self.sentences] # 词语,不含词性标注 sentences_cut = [[jc for jc in jtc.keys() ] for jtc in self.sentences_tag_cut] # 去除停用词等 self.sentences_cut = [list(filter(lambda x: x not in self.stop_words, sc)) for sc in sentences_cut] # 词频统计 self.words = [] for sen in self.sentences_cut: self.words = self.words + sen self.word_count = dict(Counter(self.words)) # 按频次计算词语的得分, 得到self.word_freq=[{'word':, 'freq':, 'score':}] self.word_freqs = {} self.len_words = len(self.words) for k, v in self.word_count.items(): self.word_freqs[k] = v * 0.5 / self.len_words # uni_bi_tri_gram特征 [gram_uni, gram_bi, gram_tri] = get_ngrams("".join(self.sentences), ns=[1, 2, 3]) ngrams = gram_uni + gram_bi + gram_tri self.ngrams_count = dict(Counter(ngrams)) # 句子位置打分 scores_posi = self.score_position() # 句子长度打分 scores_length = self.score_length() # 句子词性打分, 名词(1.2)-代词(0.8)-动词(1.0) scores_tag = self.score_tag() res_rank = {} self.res_score = [] for i in range(len(sentences_cut)): sen_cut = self.sentences_cut[i] # 句子中的词语 # ngram得分 [gram_uni_, gram_bi_, gram_tri_] = get_ngrams(self.sentences[i], ns=[1, 2, 3]) # gram_uni_bi_tri(self.sentences[i]) n_gram_s = gram_uni_ + gram_bi_ + gram_tri_ score_ngram = sum([self.ngrams_count[ngs] if ngs in self.ngrams_count else 0 for ngs in n_gram_s]) / (len(n_gram_s) + 1) # 句子中词语的平均长度 score_word_length_avg = sum([len(sc) for sc in sen_cut])/(len(sen_cut)+1) score_posi = scores_posi[i] score_length = scores_length[i] score_tag = scores_tag[i] if self.title: # 有标题的文本打分合并 score_title = self.score_title(sen_cut) score_total = (score_title * 0.5 + score_ngram * 2.0 + score_word_length_avg * 0.5 + score_length * 0.5 + score_posi * 1.0 + score_tag * 0.6) / 6.0 # 可查阅各部分得分统计 self.res_score.append(["score_title", "score_ngram", "score_word_length_avg", "score_length", "score_posi", "score_tag"]) self.res_score.append([score_title, score_ngram, score_word_length_avg, score_length, score_posi, score_tag, self.sentences[i]]) else: # 无标题的文本打分合并 score_total = (score_ngram * 2.0 + score_word_length_avg * 0.5 + score_length * 0.5 + score_posi * 1.0 + score_tag * 0.6) / 5.0 # 可查阅各部分得分统计 self.res_score.append(["score_ngram", "score_word_length_avg", "score_length", "score_posi", "score_tag"]) self.res_score.append([score_ngram, score_word_length_avg, score_length, score_posi, score_tag, self.sentences[i]]) res_rank[self.sentences[i].strip()] = score_total # 最小句子数 num_min = min(num, int(len(self.word_count) * 0.6)) res_rank_sort = sorted(res_rank.items(), key=lambda rr: rr[1], reverse=True) res_rank_sort_reverse = [(rrs[1], rrs[0]) for rrs in res_rank_sort][0:num_min] return res_rank_sort_reverse if __name__ == '__main__': sen = "自然语言理解(NLU,Natural Language Understanding): 使计算机理解自然语言(人类语言文字)等,重在理解。" tp = TextPronounsSum() docs ="和投票目标的等级来决定新的等级.简单的说。" \ "是上世纪90年代末提出的一种计算网页权重的算法! " \ "当时,互联网技术突飞猛进,各种网页网站爆炸式增长。" \ "业界急需一种相对比较准确的网页重要性计算方法。" \ "是人们能够从海量互联网世界中找出自己需要的信息。" \ "百度百科如是介绍他的思想:PageRank通过网络浩瀚的超链接关系来确定一个页面的等级。" \ "Google把从A页面到B页面的链接解释为A页面给B页面投票。" \ "Google根据投票来源甚至来源的来源,即链接到A页面的页面。" \ "一个高等级的页面可以使其他低等级页面的等级提升。" \ "具体说来就是,PageRank有两个基本思想,也可以说是假设。" \ "即数量假设:一个网页被越多的其他页面链接,就越重)。" \ "质量假设:一个网页越是被高质量的网页链接,就越重要。" \ "总的来说就是一句话,从全局角度考虑,获取重要的信。" docs1 = "/article/details/98530760。" \ "CSDN\n。" \ "文本生成NLG,不同于文本理解NLU(例如分词、词向量、分类、实体提取。" \ "是重在文本生成的另一种关键技术(常用的有翻译、摘要、同义句生成等)。" \ "传统的文本生成NLG任务主要是抽取式的,生成式的方法看起来到现在使用也没有那么普遍。" \ "现在,我记录的是textrank,一种使用比较广泛的抽取式关键句提取算法。" \ "版权声明:本文为CSDN博主「大漠帝国」的原创文章,遵循CC 4.0 by-sa版权协议," \ "转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/rensihui" \ "CSDN是神" sums = tp.summarize(docs) for sum_ in sums: print(sum_) # ran_20 = range(20) # print(type(ran_20)) # print(ran_20) # idx = [1,2,3] # idx.pop(1) # print(idx) # print(max([1,2,3,4]))
testing/test_setupplan.py
markshao/pytest
9,225
12642154
from _pytest.pytester import Pytester def test_show_fixtures_and_test( pytester: Pytester, dummy_yaml_custom_test: None ) -> None: """Verify that fixtures are not executed.""" pytester.makepyfile( """ import pytest @pytest.fixture def arg(): assert False def test_arg(arg): assert False """ ) result = pytester.runpytest("--setup-plan") assert result.ret == 0 result.stdout.fnmatch_lines( ["*SETUP F arg*", "*test_arg (fixtures used: arg)", "*TEARDOWN F arg*"] ) def test_show_multi_test_fixture_setup_and_teardown_correctly_simple( pytester: Pytester, ) -> None: """Verify that when a fixture lives for longer than a single test, --setup-plan correctly displays the SETUP/TEARDOWN indicators the right number of times. As reported in https://github.com/pytest-dev/pytest/issues/2049 --setup-plan was showing SETUP/TEARDOWN on every test, even when the fixture should persist through multiple tests. (Note that this bug never affected actual test execution, which used the correct fixture lifetimes. It was purely a display bug for --setup-plan, and did not affect the related --setup-show or --setup-only.) """ pytester.makepyfile( """ import pytest @pytest.fixture(scope = 'class') def fix(): return object() class TestClass: def test_one(self, fix): assert False def test_two(self, fix): assert False """ ) result = pytester.runpytest("--setup-plan") assert result.ret == 0 setup_fragment = "SETUP C fix" setup_count = 0 teardown_fragment = "TEARDOWN C fix" teardown_count = 0 for line in result.stdout.lines: if setup_fragment in line: setup_count += 1 if teardown_fragment in line: teardown_count += 1 # before the fix this tests, there would have been a setup/teardown # message for each test, so the counts would each have been 2 assert setup_count == 1 assert teardown_count == 1 def test_show_multi_test_fixture_setup_and_teardown_same_as_setup_show( pytester: Pytester, ) -> None: """Verify that SETUP/TEARDOWN messages match what comes out of --setup-show.""" pytester.makepyfile( """ import pytest @pytest.fixture(scope = 'session') def sess(): return True @pytest.fixture(scope = 'module') def mod(): return True @pytest.fixture(scope = 'class') def cls(): return True @pytest.fixture(scope = 'function') def func(): return True def test_outside(sess, mod, cls, func): assert True class TestCls: def test_one(self, sess, mod, cls, func): assert True def test_two(self, sess, mod, cls, func): assert True """ ) plan_result = pytester.runpytest("--setup-plan") show_result = pytester.runpytest("--setup-show") # the number and text of these lines should be identical plan_lines = [ line for line in plan_result.stdout.lines if "SETUP" in line or "TEARDOWN" in line ] show_lines = [ line for line in show_result.stdout.lines if "SETUP" in line or "TEARDOWN" in line ] assert plan_lines == show_lines
test/test_cli.py
KOLANICH-libs/hyper
831
12642201
# -*- coding: utf-8 -*- import json import pytest from hyper.cli import KeyValue from hyper.cli import get_content_type_and_charset, main, parse_argument from hyper.cli import set_request_data, set_url_info from hyper.common.headers import HTTPHeaderMap # mock for testing class DummyUrlInfo(object): def __init__(self): self.path = '/' class DummyNamespace(object): def __init__(self, attrs): self.body = {} self.headers = HTTPHeaderMap() self.items = [] self.method = None self._url = '' self.url = DummyUrlInfo() for key, value in attrs.items(): setattr(self, key, value) class DummyResponse(object): def __init__(self, headers): self.headers = HTTPHeaderMap(headers.items()) def read(self): ctype = self.headers.get('content-type') if ctype is not None: if 'json' in ctype[0].decode('utf-8'): return b'{"data": "dummy"}' return b'<html>dummy</html>' def getheader(self, name): return self.headers.get(name) def getheaders(self): return self.headers class DummyConnection(object): def __init__(self, host, port, secure=False): self.host = host self.port = port self.response = DummyResponse({'content-type': 'application/json'}) self.secure = secure def request(self, method, path, body, headers): return method, path, body, headers def get_response(self): return self.response def _get_value(obj, key): if '.' in key: attr1, attr2 = key.split('.') return _get_value(getattr(obj, attr1), attr2) else: return getattr(obj, key) @pytest.mark.parametrize('argv', [ ['example.com'], ['example.com/'], ['http://example.com'], ['https://example.com'], ['https://example.com/'], ['https://example.com/httpbin/get'], ], ids=[ 'specified host only', 'specified host and path', 'specified host with url scheme http://', 'specified host with url scheme https://', 'specified host with url scheme https:// and root', 'specified host with url scheme https:// and path', ]) def test_cli_normal(monkeypatch, argv): monkeypatch.setattr('hyper.cli.HTTPConnection', DummyConnection) main(argv) assert True @pytest.mark.parametrize('argv', [ [], ['-h'], ['--version'], ], ids=[ 'specified no argument', 'specified "-h" option', 'specified "--version" option', ]) def test_cli_with_system_exit(argv): with pytest.raises(SystemExit): main(argv) @pytest.mark.parametrize(('argv', 'expected'), [ (['--debug', 'example.com'], {'debug': True}), (['get', 'example.com'], {'method': 'GET'}), (['GET', 'example.com', 'x-test:header'], {'method': 'GET', 'headers': {'x-test': 'header'}}), (['GET', 'example.com', 'param==test'], {'method': 'GET', 'url.path': '/?param=test'}), (['POST', 'example.com', 'data=test'], {'method': 'POST', 'body': '{"data": "test"}'}), (['GET', 'example.com', ':authority:example.org'], {'method': 'GET', 'headers': { ':authority': 'example.org'}}), (['GET', 'example.com', ':authority:example.org', 'x-test:header'], {'method': 'GET', 'headers': { ':authority': 'example.org', 'x-test': 'header'}}), ], ids=[ 'specified "--debug" option', 'specify host with lower get method', 'specified host and additional header', 'specified host and get parameter', 'specified host and post data', 'specified host and override default header', 'specified host and override default header and additional header', ]) def test_parse_argument(argv, expected): args = parse_argument(argv) for key, value in expected.items(): assert value == _get_value(args, key) @pytest.mark.parametrize(('response', 'expected'), [ (DummyResponse({}), ('unknown', 'utf-8')), (DummyResponse({'content-type': 'text/html; charset=latin-1'}), ('text/html', 'latin-1')), (DummyResponse({'content-type': 'application/json'}), ('application/json', 'utf-8')), ], ids=[ 'unknown conetnt type and default charset', 'text/html and charset=latin-1', 'application/json and default charset', ]) def test_get_content_type_and_charset(response, expected): ctype, charset = get_content_type_and_charset(response) assert expected == (ctype, charset) @pytest.mark.parametrize(('args', 'expected'), [ (DummyNamespace({}), {'headers': {}, 'method': 'GET'}), ( DummyNamespace( {'items': [ KeyValue('x-header', 'header', ':', ''), KeyValue('param', 'test', '==', ''), ]} ), {'headers': {'x-header': 'header'}, 'method': 'GET', 'url.path': '/?param=test', } ), ( DummyNamespace( {'items': [ KeyValue('data1', 'test1', '=', ''), KeyValue('data2', 'test2', '=', ''), ]} ), {'headers': {'content-type': 'application/json'}, 'method': 'POST', 'body': json.dumps({'data1': 'test1', 'data2': 'test2'}), } ), ], ids=[ 'set no request data', 'set header and GET parameters', 'set header and POST data', ]) def test_set_request_data(args, expected): set_request_data(args) for key, value in expected.items(): assert value == _get_value(args, key) @pytest.mark.parametrize(('args', 'expected'), [ (DummyNamespace({'_url': ''}), {'query': None, 'host': 'localhost', 'fragment': None, 'port': 443, 'netloc': None, 'scheme': 'https', 'path': '/', 'secure': True}), (DummyNamespace({'_url': 'example.com'}), {'host': 'example.com', 'port': 443, 'path': '/', 'secure': True}), (DummyNamespace({'_url': 'example.com/httpbin/get'}), {'host': 'example.com', 'port': 443, 'path': '/httpbin/get', 'secure': True}), (DummyNamespace({'_url': 'example.com:80'}), {'host': 'example.com', 'port': 80, 'path': '/', 'secure': True}), (DummyNamespace({'_url': 'http://example.com'}), {'host': 'example.com', 'port': 80, 'path': '/', 'scheme': 'http', 'secure': False}), (DummyNamespace({'_url': 'http://example.com/'}), {'host': 'example.com', 'port': 80, 'path': '/', 'scheme': 'http', 'secure': False}), (DummyNamespace({'_url': 'http://example.com:8080'}), {'host': 'example.com', 'port': 8080, 'path': '/', 'scheme': 'http', 'secure': False}), (DummyNamespace({'_url': 'https://example.com'}), {'host': 'example.com', 'port': 443, 'path': '/', 'scheme': 'https', 'secure': True}), (DummyNamespace({'_url': 'https://example.com/httpbin/get'}), {'host': 'example.com', 'port': 443, 'path': '/httpbin/get', 'scheme': 'https', 'secure': True}), (DummyNamespace({'_url': 'https://example.com:8443/httpbin/get'}), {'host': 'example.com', 'port': 8443, 'path': '/httpbin/get', 'scheme': 'https', 'secure': True}), ], ids=[ 'set no url (it means default settings)', 'set only hostname', 'set hostname with path', 'set hostname with port number', 'set url with http://', 'set url + "/" with http://', 'set url with http:// and port number', 'set url with https://', 'set url with path', 'set url with port number and path', ]) def test_set_url_info(args, expected): set_url_info(args) for key, value in expected.items(): assert value == getattr(args.url, key)
tfx/orchestration/experimental/kubernetes/node_wrapper.py
avelez93/tfx
1,813
12642242
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A wrapper to pass a node without its type information.""" from typing import Any, Dict from tfx.dsl.components.base import base_node class NodeWrapper(base_node.BaseNode): """Wrapper of a node. The wrapper is needed for container entrypoint to deserialize a component wihtout knowning it's original python class. This enables users to use container base component without re-compiling the tfx base image every time they change the component and spec definitions. """ def __init__(self, node: base_node.BaseNode): self.executor_spec = node.executor_spec self.driver_class = node.driver_class self._type = node.type self._id = node.id self._inputs = node.inputs self._outputs = node.outputs self._exec_properties = node.exec_properties @property def type(self) -> str: return self._type @property def id(self) -> str: return self._id @property def inputs(self) -> Dict[str, Any]: return self._inputs @property def outputs(self) -> Dict[str, Any]: return self._outputs @property def exec_properties(self) -> Dict[str, Any]: return self._exec_properties
06d-tools-cnn-cv/google-ml/Google Cloud API/cio-connect-api-example/visionex/visionex.py
jugalh/data-x-plaksha
117
12642245
import io from PIL import Image from google.cloud import vision from google.cloud.vision import types # instantiante a client vision_client = vision.ImageAnnotatorClient() #name of image file to annotate file_name ='480w_s.jpg' #file_name = 'ikhlaq-sidhu-2015.png?itok=nMiTIQXV' #file_name = 'pupr.png' img = Image.open(file_name) img.show() # load image into memory with io.open(file_name, 'rb') as image_file: content = image_file.read() image = types.Image(content=content) # perform label detection on image file response = vision_client.label_detection (image=image) labels = response.label_annotations # what does google api see? print('\mLABELS:\n') for label in labels: # iterating over object print(label.description) print('\n\n HOW COOL IS THAT!!!!!!\n\n') # other attributes? #print(dir(labels) + '\n\n') #print(dir(label) + '\n\n')
custom_components/ble_monitor/test/test_inode_parser.py
ManuelLR/ble_monitor
820
12642253
"""The tests for the iNode ble_parser.""" from ble_monitor.ble_parser import BleParser class TestInode: def test_inode_energy_meter(self): """Test inode parser for iNode Energy Monitor.""" data_string = "043E2102010000473A6D6F1200150201060EFF90820400CFE40000DC05B0ED10020A08A5" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "iNode" assert sensor_msg["type"] == "iNode Energy Meter" assert sensor_msg["mac"] == "00126F6D3A47" assert sensor_msg["packet"] == "0400cfe40000dc05b0ed10" assert sensor_msg["data"] assert sensor_msg["energy"] == 39.05 assert sensor_msg["energy unit"] == "kWh" assert sensor_msg["power"] == 160.0 assert sensor_msg["power unit"] == "W" assert sensor_msg["constant"] == 1500 assert sensor_msg["battery"] == 100 assert sensor_msg["voltage"] == 2.88 assert sensor_msg["light level"] == 0.0 assert sensor_msg["week day"] == 0 assert sensor_msg["week day total"] == 4333 assert sensor_msg["rssi"] == -91
Pyto/Samples/Turtle/polygon.py
snazari/Pyto
701
12642319
<reponame>snazari/Pyto<filename>Pyto/Samples/Turtle/polygon.py # Taken from https://michael0x2a.com/blog/turtle-examples from turtle import * num_sides = 6 side_length = 70 angle = 360.0 / num_sides for i in range(num_sides): fd(side_length) rt(angle) done()
pyearth/test/test_knot_search.py
ktanishqk/py-earth
360
12642332
<filename>pyearth/test/test_knot_search.py from pyearth._knot_search import (MultipleOutcomeDependentData, KnotSearchWorkingData, PredictorDependentData, KnotSearchReadOnlyData, KnotSearchData, knot_search, SingleWeightDependentData, SingleOutcomeDependentData) from nose.tools import assert_equal import numpy as np from numpy.testing.utils import assert_almost_equal, assert_array_equal from scipy.linalg import qr def test_outcome_dependent_data(): np.random.seed(10) m = 1000 max_terms = 100 y = np.random.normal(size=m) w = np.random.normal(size=m) ** 2 weight = SingleWeightDependentData.alloc(w, m, max_terms, 1e-16) data = SingleOutcomeDependentData.alloc(y, weight, m, max_terms) # Test updating B = np.empty(shape=(m, max_terms)) for k in range(max_terms): b = np.random.normal(size=m) B[:, k] = b code = weight.update_from_array(b) if k >= 99: 1 + 1 data.update() assert_equal(code, 0) assert_almost_equal( np.dot(weight.Q_t[:k + 1, :], np.transpose(weight.Q_t[:k + 1, :])), np.eye(k + 1)) assert_equal(weight.update_from_array(b), -1) # data.update(1e-16) # Test downdating q = np.array(weight.Q_t).copy() theta = np.array(data.theta[:max_terms]).copy() weight.downdate() data.downdate() weight.update_from_array(b) data.update() assert_almost_equal(q, np.array(weight.Q_t)) assert_almost_equal(theta, np.array(data.theta[:max_terms])) assert_almost_equal( np.array(data.theta[:max_terms]), np.dot(weight.Q_t, w * y)) wB = B * w[:, None] Q, _ = qr(wB, pivoting=False, mode='economic') assert_almost_equal(np.abs(np.dot(weight.Q_t, Q)), np.eye(max_terms)) # Test that reweighting works assert_equal(data.k, max_terms) w2 = np.random.normal(size=m) ** 2 weight.reweight(w2, B, max_terms) data.synchronize() assert_equal(data.k, max_terms) w2B = B * w2[:, None] Q2, _ = qr(w2B, pivoting=False, mode='economic') assert_almost_equal(np.abs(np.dot(weight.Q_t, Q2)), np.eye(max_terms)) assert_almost_equal( np.array(data.theta[:max_terms]), np.dot(weight.Q_t, w2 * y)) def test_knot_candidates(): np.random.seed(10) m = 1000 x = np.random.normal(size=m) p = np.random.normal(size=m) p[np.random.binomial(p=.1, n=1, size=m) == 1] = 0. x[np.random.binomial(p=.1, n=1, size=m) == 1] = 0. predictor = PredictorDependentData.alloc(x) candidates, candidates_idx = predictor.knot_candidates( p, 5, 10, 0, 0, set()) assert_array_equal(candidates, x[candidates_idx]) assert_equal(len(candidates), len(set(candidates))) # print candidates, np.sum(x==0) # print candidates_idx def slow_knot_search(p, x, B, candidates, outcomes): # Brute force, utterly un-optimized knot search with no fast update. # Use only for testing the actual knot search function. # This version allows #for multiple outcome columns. best_e = float('inf') best_k = 0 best_knot = float('inf') for k, knot in enumerate(candidates): # Formulate the linear system for this candidate X = np.concatenate( [B, (p * np.maximum(x - knot, 0.0))[:, None]], axis=1) # Solve the system for each y and w e_squared = 0.0 for y, w in outcomes: # Solve the system beta = np.linalg.lstsq(w[:, None] * X, w * y)[0] # Compute the error r = w * (y - np.dot(X, beta)) e_squared += np.dot(r, r) # Compute loss e = e_squared # / np.sum(w ** 2) # Compare to the best error if e < best_e: best_e = e best_k = k best_knot = knot return best_knot, best_k, best_e def generate_problem(m, q, r, n_outcomes, shared_weight): # Generate some problem data x = np.random.normal(size=m) B = np.random.normal(size=(m, q)) p = B[:, 1] knot = x[int(m / 2)] candidates = np.array(sorted( [knot] + list(x[np.random.randint(low=0, high=m, size=r - 1)])))[::-1] # These data need to be generated for each outcome outcomes = [] if shared_weight: w = np.random.normal(size=m) ** 2 # w = w * 0. + 1. for _ in range(n_outcomes): beta = np.random.normal(size=q + 1) y = (np.dot( np.concatenate([B, (p * np.maximum(x - knot, 0.0))[:, None]], axis=1), beta) + 0.01 * np.random.normal(size=m)) if not shared_weight: w = np.random.normal(size=m) ** 2 # w = w * 0. + 1. outcomes.append((y, w)) return x, B, p, knot, candidates, outcomes def form_inputs(x, B, p, knot, candidates, y, w): # Formulate the inputs for the fast version m, q = B.shape max_terms = q + 2 workings = [] n_outcomes = w.shape[1] for _ in range(n_outcomes): working = KnotSearchWorkingData.alloc(max_terms) workings.append(working) outcome = MultipleOutcomeDependentData.alloc( y, w, m, n_outcomes, max_terms, 1e-16) for j in range(B.shape[1]): outcome.update_from_array(B[:, j]) predictor = PredictorDependentData.alloc(x) constant = KnotSearchReadOnlyData(predictor, outcome) return KnotSearchData(constant, workings, q) def test_knot_search(): seed = 10 np.random.seed(seed) m = 100 q = 5 r = 10 n_outcomes = 3 # Generate some problem data x, B, p, knot, candidates, outcomes = generate_problem( m, q, r, n_outcomes, False) y = np.concatenate([y_[:, None] for y_, _ in outcomes], axis=1) w = np.concatenate([w_[:, None] for _, w_ in outcomes], axis=1) # Formulate the inputs for the fast version data = form_inputs(x, B, p, knot, candidates, y, w) # Get the answer using the slow version best_knot, best_k, best_e = slow_knot_search(p, x, B, candidates, outcomes) # Test the test assert_almost_equal(best_knot, knot) assert_equal(r, len(candidates)) assert_equal(m, B.shape[0]) assert_equal(q, B.shape[1]) assert_equal(len(outcomes), n_outcomes) # Run fast knot search and compare results to slow knot search fast_best_knot, fast_best_k, fast_best_e = knot_search(data, candidates, p, q, m, r, len(outcomes), 0) assert_almost_equal(fast_best_knot, best_knot) assert_equal(candidates[fast_best_k], candidates[best_k]) assert_almost_equal(fast_best_e, best_e)
tests/test_multiple_outputs.py
datagutt/brave
572
12642357
import time, pytest, inspect from utils import * def start_with_multiple_outputs(run_brave, create_config_file, output_image_location1, output_image_location2): config = { 'mixers': [ {'pattern': 4}, # 4 is red {'pattern': 5} # 5 is green ], 'outputs': [ {'type': 'image', 'source': 'mixer2', 'location': output_image_location1 }, {'type': 'image', 'location': output_image_location2 } # ,{'type': 'local'} ] } config_file = create_config_file(config) run_brave(config_file.name) time.sleep(2) check_brave_is_running() def test_multiple_outputs_at_startup(run_brave, create_config_file): output_image_location1 = create_output_image_location() output_image_location2 = create_output_image_location() start_with_multiple_outputs(run_brave, create_config_file, output_image_location1, output_image_location2) assert_outputs([ {'type': 'image', 'source': 'mixer2', 'location': output_image_location1 }, {'type': 'image', 'source': 'mixer1', 'location': output_image_location2 } ]) assert_mixers([ {'id': 1, 'pattern': 4}, {'id': 2, 'pattern': 5} ]) # If they've linked right, one will be red and the other will be green time.sleep(2) assert_image_file_color(output_image_location1, (0,255,0)) assert_image_file_color(output_image_location2, (255,0,0)) def test_output_at_startup_to_missing_mixer(run_brave, create_config_file): config = { 'outputs': [ {'type': 'image', 'source': 'mixer2'}, ] } config_file = create_config_file(config) run_brave(config_file.name) time.sleep(1) check_return_value(1) def test_multiple_outputs_at_runtime(run_brave): run_brave() time.sleep(1) # Mixer ID 1 exists: add_output({'type': 'image', 'source': 'mixer1'}) # Mixer ID 2 does not exist: response = add_output({'type': 'image', 'source': 'mixer2'}, 400) assert 'does not exist' in response['error'] time.sleep(0.5) assert_outputs([{'type': 'image', 'id': 1, 'source': 'mixer1'}]) add_mixer({}) # Now we have a second mixer, this will work: add_output({'type': 'image', 'source': 'mixer2'}) # Do it again to prove we can have multiple outputs on the same mixer add_output({'type': 'image', 'source': 'mixer2'}) time.sleep(1) assert_outputs([{'type': 'image', 'source': 'mixer1'}, {'type': 'image', 'source': 'mixer2'}, {'type': 'image', 'source': 'mixer2'}])
content/test/gpu/run_gpu_integration_test.py
google-ar/chromium
777
12642360
<filename>content/test/gpu/run_gpu_integration_test.py #!/usr/bin/env python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import json import sys from gpu_tests import path_util import gpu_project_config path_util.SetupTelemetryPaths() from telemetry.testing import browser_test_runner def PostprocessJSON(file_name): def TrimPrefix(s): return s[1 + s.rfind('.'):] with open(file_name) as f: test_result = json.load(f) test_result['successes'] = map(TrimPrefix, test_result['successes']) test_result['failures'] = map(TrimPrefix, test_result['failures']) with open(file_name, 'w') as f: json.dump(test_result, f) def main(): options = browser_test_runner.TestRunOptions() rest_args = sys.argv[1:] retval = browser_test_runner.Run( gpu_project_config.CONFIG, options, rest_args) # Postprocess the outputted JSON to trim all of the prefixes from # the test names, to keep them as similar to the old form as # possible -- and keep them from getting crazily long. parser = argparse.ArgumentParser(description='Temporary argument parser') parser.add_argument( '--write-abbreviated-json-results-to', metavar='FILENAME', action='store', help=('Full path for json results')) option, _ = parser.parse_known_args(rest_args) if option.write_abbreviated_json_results_to: PostprocessJSON(option.write_abbreviated_json_results_to) return retval if __name__ == '__main__': sys.exit(main())
vendor/node-semver/semver/tests/test_range.py
johnwen84/my-php-buildpack
133
12642397
# -*- coding:utf-8 -*- import pytest # node-semver/test/index.js # import logging # logging.basicConfig(level=logging.DEBUG, format="%(message)s") cands = [ ['1.0.0 - 2.0.0', '1.2.3', False], ['1.0.0', '1.0.0', False], ['>=*', '0.2.4', False], ['', '1.0.0', False], ['*', '1.2.3', False], ['*', 'v1.2.3-foo', True], ['>=1.0.0', '1.0.0', False], ['>=1.0.0', '1.0.1', False], ['>=1.0.0', '1.1.0', False], ['>1.0.0', '1.0.1', False], ['>1.0.0', '1.1.0', False], ['<=2.0.0', '2.0.0', False], ['<=2.0.0', '1.9999.9999', False], ['<=2.0.0', '0.2.9', False], ['<2.0.0', '1.9999.9999', False], ['<2.0.0', '0.2.9', False], ['>= 1.0.0', '1.0.0', False], ['>= 1.0.0', '1.0.1', False], ['>= 1.0.0', '1.1.0', False], ['> 1.0.0', '1.0.1', False], ['> 1.0.0', '1.1.0', False], ['<= 2.0.0', '2.0.0', False], ['<= 2.0.0', '1.9999.9999', False], ['<= 2.0.0', '0.2.9', False], ['< 2.0.0', '1.9999.9999', False], ['<\t2.0.0', '0.2.9', False], ['>=0.1.97', 'v0.1.97', True], ['>=0.1.97', '0.1.97', False], ['0.1.20 || 1.2.4', '1.2.4', False], ['>=0.2.3 || <0.0.1', '0.0.0', False], ['>=0.2.3 || <0.0.1', '0.2.3', False], ['>=0.2.3 || <0.0.1', '0.2.4', False], ['||', '1.3.4', False], ['2.x.x', '2.1.3', False], ['1.2.x', '1.2.3', False], ['1.2.x || 2.x', '2.1.3', False], ['1.2.x || 2.x', '1.2.3', False], ['x', '1.2.3', False], ['2.*.*', '2.1.3', False], ['1.2.*', '1.2.3', False], ['1.2.* || 2.*', '2.1.3', False], ['1.2.* || 2.*', '1.2.3', False], ['*', '1.2.3', False], ['2', '2.1.2', False], ['2.3', '2.3.1', False], ['~2.4', '2.4.0', False], # >=2.4.0 <2.5.0 ['~2.4', '2.4.5', False], ['~>3.2.1', '3.2.2', False], # >=3.2.1 <3.3.0, ['~1', '1.2.3', False], # >=1.0.0 <2.0.0 ['~>1', '1.2.3', False], ['~> 1', '1.2.3', False], ['~1.0', '1.0.2', False], # >=1.0.0 <1.1.0, ['~ 1.0', '1.0.2', False], ['~ 1.0.3', '1.0.12', False], ['>=1', '1.0.0', False], ['>= 1', '1.0.0', False], ['<1.2', '1.1.1', False], ['< 1.2', '1.1.1', False], ['1', '1.0.0beta', True], ['~v0.5.4-pre', '0.5.5', False], ['~v0.5.4-pre', '0.5.4', False], ['=0.7.x', '0.7.2', False], ['>=0.7.x', '0.7.2', False], ['=0.7.x', '0.7.0-asdf', False], ['>=0.7.x', '0.7.0-asdf', False], ['<=0.7.x', '0.6.2', False], ['~1.2.1 >=1.2.3', '1.2.3', False], ['~1.2.1 =1.2.3', '1.2.3', False], ['~1.2.1 1.2.3', '1.2.3', False], ['~1.2.1 >=1.2.3 1.2.3', '1.2.3', False], ['~1.2.1 1.2.3 >=1.2.3', '1.2.3', False], ['~1.2.1 1.2.3', '1.2.3', False], ['>=1.2.1 1.2.3', '1.2.3', False], ['1.2.3 >=1.2.1', '1.2.3', False], ['>=1.2.3 >=1.2.1', '1.2.3', False], ['>=1.2.1 >=1.2.3', '1.2.3', False], ['<=1.2.3', '1.2.3-beta', False], ['>1.2', '1.3.0-beta', False], ['>=1.2', '1.2.8', False], ['^1.2.3', '1.8.1', False], ['^1.2.3', '1.2.3-beta', False], ['^0.1.2', '0.1.2', False], ['^0.1', '0.1.2', False], ['^1.2', '1.4.2', False], ['^1.2 ^1', '1.4.2', False], ['^1.2', '1.2.0-pre', False], ['^1.2.3', '1.2.3-pre', False] ] # cands = [ # ['^1.2', '1.4.2', False], # ] @pytest.mark.parametrize("range_, version, loose", cands) def test_it(range_, version, loose): from semver import satisfies assert satisfies(version, range_, loose) is True
tests/testapp/tests/test_modelcustompk.py
dralley/django-lifecycle
902
12642404
<filename>tests/testapp/tests/test_modelcustompk.py import datetime from django.test import TestCase from tests.testapp.models import ModelCustomPK class ModelCustomPKTestCase(TestCase): def test_update_created_at_before_create(self): instance = ModelCustomPK.objects.create() instance.refresh_from_db() self.assertTrue(isinstance(instance.created_at, datetime.datetime)) def test_update_answer_after_create(self): instance = ModelCustomPK.objects.create() self.assertEqual(instance.answer, 42)
Plugins/Aspose_Words_Java_for_Jython/asposewords/programming_documents/SplitTables.py
freedomloveme/Aspose.Words-for-Java
274
12642470
from asposewords import Settings from com.aspose.words import Document from com.aspose.words import NodeType from com.aspose.words import Paragraph class SplitTables: def __init__(self): dataDir = Settings.dataDir + 'programming_documents/' # Load the document. doc = Document(dataDir + "tableDoc.doc") # Get the first table in the document. firstTable = doc.getChild(NodeType.TABLE, 0, True) # We will split the table at the third row (inclusive). row = firstTable.getRows().get(2) # Create a new container for the split table. table = firstTable.deepClone(False) # Insert the container after the original. firstTable.getParentNode().insertAfter(table, firstTable) # Add a buffer paragraph to ensure the tables stay apart. firstTable.getParentNode().insertAfter(Paragraph(doc), firstTable) currentRow = '' while (currentRow != row) : currentRow = firstTable.getLastRow(); table.prependChild(currentRow); doc.save(dataDir + "SplitTable.doc") print "Done." if __name__ == '__main__': SplitTables()
examples/callback_multiplexer_clientside.py
stlehmann/dash-extensions
250
12642484
import time import dash_html_components as html import dash_core_components as dcc from dash_extensions.enrich import Output, DashProxy, Input, MultiplexerTransform # Small example app. proxy_container = dcc.Loading() app = DashProxy(transforms=[MultiplexerTransform(proxy_location=proxy_container)]) app.layout = html.Div([html.Button("left", id="left", n_clicks=0), html.Button("right", id="right", n_clicks=0), html.Div("Initial value", id="log"), proxy_container]) # Client side function. f = "function(n_clicks){return 'left (' + n_clicks + ')';}" app.clientside_callback(f, Output("log", "children"), Input("left", "n_clicks"), prevent_initial_call=True) @app.callback(Output("log", "children"), Input("right", "n_clicks"), prevent_initial_call=True) def right(n_clicks): time.sleep(2) return f"right ({n_clicks})" if __name__ == '__main__': app.run_server(port=7777, debug=True)
torchmeta/utils/metrics.py
yusufraji/siren
1,704
12642499
import torch import torch.nn.functional as F from torchmeta.utils.prototype import get_prototypes __all__ = ['hardness_metric'] def _pad_images(inputs, size=(224, 224), **kwargs): height, width = inputs.shape[-2:] pad_height, pad_width = (size[0] - height) // 2, (size[1] - width) // 2 padding = (pad_width, size[1] - width - pad_width, pad_height, size[0] - height - pad_height) return F.pad(inputs, padding, **kwargs) def hardness_metric(batch, num_classes): """Hardness metric of an episode, as defined in [1]. Parameters ---------- batch : dict The batch of tasks over which the metric is computed. The batch of tasks is a dictionary containing the keys `train` (or `support`) and `test` (or `query`). This is typically the output of `BatchMetaDataLoader`. num_classes : int The number of classes in the classification task. This corresponds to the number of ways in an `N`-way classification problem. Returns ------- metric : `torch.FloatTensor` instance Values of the hardness metric for each task in the batch. References ---------- .. [1] <NAME>., <NAME>., <NAME>. and <NAME>. (2019). A Baseline for Few-Shot Image Classification. (https://arxiv.org/abs/1909.02729) """ if ('train' not in batch) and ('support' not in batch): raise ValueError('The tasks do not contain any training/support set. ' 'Make sure the tasks contain either the "train" or the ' '"support" key.') if ('test' not in batch) and ('query' not in batch): raise ValueError('The tasks do not contain any test/query set. Make ' 'sure the tasks contain either the "test" of the ' '"query" key.') train = 'train' if ('train' in batch) else 'support' test = 'test' if ('test' in batch) else 'query' with torch.no_grad(): # Load a pre-trained backbone Resnet-152 model from PyTorch Hub backbone = torch.hub.load('pytorch/vision:v0.5.0', 'resnet152', pretrained=True, verbose=False) backbone.eval() train_inputs, train_targets = batch[train] test_inputs, test_targets = batch[test] batch_size, num_images, num_channels = train_inputs.shape[:3] num_test_images = test_inputs.size(1) backbone.to(device=train_inputs.device) if num_channels != 3: raise ValueError('The images must be RGB images.') # Pad the images so that they are compatible with the pre-trained model padded_train_inputs = _pad_images(train_inputs, size=(224, 224), mode='constant', value=0.) padded_test_inputs = _pad_images(test_inputs, size=(224, 224), mode='constant', value=0.) # Compute the features from the logits returned by the pre-trained # model on the train/support examples. These features are z(x, theta)_+, # averaged for each class train_logits = backbone(padded_train_inputs.view(-1, 3, 224, 224)) train_logits = F.relu(train_logits.view(batch_size, num_images, -1)) train_features = get_prototypes(train_logits, train_targets, num_classes) # Get the weights by normalizing the features weights = F.normalize(train_features, p=2, dim=2) # Compute and normalize the logits of the test/query examples test_logits = backbone(padded_test_inputs.view(-1, 3, 224, 224)) test_logits = test_logits.view(batch_size, num_test_images, -1) test_logits = F.normalize(test_logits, p=2, dim=2) # Compute the log probabilities of the test/query examples test_logits = torch.bmm(weights, test_logits.transpose(1, 2)) test_log_probas = -F.cross_entropy(test_logits, test_targets, reduction='none') # Compute the log-odds ratios for each image of the test/query set log_odds_ratios = torch.log1p(-test_log_probas.exp()) - test_log_probas return torch.mean(log_odds_ratios, dim=1)
pixiedust/apps/connectionWidget.py
elgalu/pixiedust
598
12642507
<filename>pixiedust/apps/connectionWidget.py # ------------------------------------------------------------------------------- # Copyright IBM Corp. 2017 # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------- from .cfBrowser import CFBrowser from pixiedust.display.app import * from pixiedust.services.serviceManager import * from pixiedust.utils import Logger @Logger() class ConnectionWidget(CFBrowser): def getConnections(self): return getConnections("cloudant") def selectBluemixCredentials(self, service_name, credentials_str): credentials = json.loads(credentials_str) payload = {'name': service_name, 'credentials': credentials} addConnection('cloudant', payload) self.selectedConnection = payload['name'] #return self.dataSourcesList() return """ <script> pixiedust.executeDisplay({{pd_controls}}, { 'targetDivId': "dummy", 'script': "import json\\nprint(json.dumps( self.getConnections()))", 'onError': function(error){ alert(error); }, 'onSuccess': function(results){ var options = [] $.each(JSON.parse(results), function(key, value){ var selected = (value.name=="{{this.selectedConnection}}") ? 'selected="selected"' : ""; options.push('<option ' + selected + ' value="'+ value.name +'">'+ value.name +'</option>'); }); $("#connection{{prefix}}").html(options.join('')); } }); </script> """ @route(selectedConnection="*", editConnection="*") def _editConnection(self): jsOnLoad = """ var CodeMirror = require('codemirror/lib/codemirror'); function createEditor(content){ $('#connTextArea{{prefix}}').html('<textarea id="connection-info" rows=13 cols=80 name="connection-info"/>'); global.editor = CodeMirror.fromTextArea($("#connection-info")[0], { lineNumbers: true, matchBrackets: true, indentUnit: 2, autoIndent: true, mode: 'application/json' }); global.editor.setSize("100%", 300); global.editor.setValue(content); } var connectionName = $("#connection{{prefix}}").val(); if ( connectionName ){ function toJson(v){ if (!v){ return "" } v = JSON.parse(v); return JSON.stringify(v, null, '\t'); } var script = "from pixiedust.services.serviceManager import getConnection\\n"+ "import json\\n"+ "print( json.dumps( getConnection(\\\"cloudant\\\",\\\"" + connectionName + "\\\", raw=False)))"; pixiedust.executeDisplay({{pd_controls}}, { 'targetDivId': "connTextArea{{prefix}}", 'script': script, 'onError': function(error){ $("#connection-error").text(error); }, 'onSuccess': function(results){ createEditor(toJson(results)); } }) }else{ createEditor('{\\n\\ "name": "<<cloudant-connection name>>",\\n\\ "credentials": {\\n\\ "username": "<<userIdentifier>>-bluemix",\\n\\ "password": "<<password>>",\\n\\ "host": "<<hostIdentifier>>-bluemix.cloudant.com",\\n\\ "port": 443,\\n\\ "url": "https://<<userIdentifier>>-bluemix:<<password>>@<<hostIdentifier>>-bluemix.cloudant.com"\\n\\ }\\n\\ }'); } """ jsOK = """ try { var connInfo = JSON.parse(global.editor.getValue()); var script = "from pixiedust.services.serviceManager import addConnection\\n"+ "print(addConnection(\\"cloudant\\"," + global.editor.getValue().replace(/[\\n\\r]+/g,"") + "))"; pixiedust.executeDisplay({{pd_controls}}, { 'targetDivId': "dummy", 'script': script, 'onError': function(error){ $("#connection-error").text(error); }, 'onSuccess': function(results){ if (typeof editConnCallback != "undefined"){ editConnCallback(results); } modal_obj.modal('hide') } }); return false; } catch(e) { console.log(e); $("#connection-error").text('System error: ' + e.message); return false; } """ body = """ <div class="well"> Please enter your connection information as JSON in the text area below. For a new connection, you can for example copy and paste the service credentials from Bluemix. </div> <div id="connection-error" style="color:red"/> <div id="connTextArea{{prefix}}"/> """ return {"body":body, "jsOnLoad": jsOnLoad, "jsOK":jsOK} @route(selectedConnection="*", deleteConnection="true") def _deleteConnection(self): deleteConnection("cloudant", self.selectedConnection) self.deleteConnection = "false" return self.dataSourcesList() @route(selectedConnection="*", browseBMConnection="true") def _browseBMConnection(self): return self.startBrowsingBM() @route(selectedConnection="*", newConnection="true") def _newConnection(self): body = """ <div class="well"> New Connection </div> <div class="container" id="newConnectionContainer{{prefix}}"> <div class="col-sm-2"/> <div class="col-sm-4" style="border: 1px solid lightblue;margin: 10px;border-radius: 25px;cursor:pointer; min-height: 150px;text-align: center;background-color:#e6eeff;display: flex;align-items: center;" pd_options="manualConnection=true"> <h2>Enter the connection manually</h2> </div> <div class="col-sm-4" style="border: 1px solid lightblue;margin: 10px;border-radius: 25px;cursor:pointer; min-height: 150px;text-align: center;background-color:#e6eeff;;display: flex;align-items: center;" pd_options="browseBMConnection=true"> <h2>Browse your services on Bluemix</h2> </div> <div class="col-sm-2"/> </div> """ return {"body":body, "dialogRoot": "newConnectionContainer{{prefix}}"} @route(widget="DataSourcesList") def dataSourcesList(self): num_connections = len(self.getConnections()) self.debug('num connections = {}'.format(num_connections)); select_conn_script = ' pd_script="self.selectedConnection =' if num_connections > 0: select_conn_script += "'$val(connection{{prefix}})'\"" else: select_conn_script += '\'none\'"' output = """ <div> <div class="form-group"> <label for="connection{{prefix}}" class="control-label col-sm-2">Select a cloudant connection:</label> <div class="col-sm-7"> <select class="form-control" id="connection{{prefix}}"> {%for conn in this.getConnections() %} {%set selected=(this.selectedConnection==conn.name)%} <option {%if selected%}selected="selected"{%endif%} value="{{conn.name|escape}}">{{conn.name|escape}}</option> {%endfor%} </select> </div> <div class="col-sm-2 btn-toolbar" role="toolbar"> <div class="btn-group" role="group\"""" + select_conn_script + """> """ if num_connections > 0: output += """ <button type="button" class="btn btn-default" pd_refresh>Go</button>' <button type="button" class="btn btn-default" pd_options="dialog=true;editConnection=true"> <i class="fa fa-pencil-square-o"/> </button>""" output += """ <button type="button" class="btn btn-default" pd_options="dialog=true;newConnection=true"> <i class="fa fa-plus"/> </button>""" if num_connections > 0: output += """ <button type="button" class="btn btn-default" pd_refresh> <pd_script type="preRun"> return confirm("Delete " + $("#connection{{prefix}}").val() + "?"); </pd_script> <pd_script>self.deleteConnection="true"</pd_script> <i class="fa fa-trash"/> </button> </div> </div> </div> </div> """ return output
weasyl/followuser.py
kfkitsune/weasyl
111
12642511
<reponame>kfkitsune/weasyl from libweasyl import ratings from weasyl import define as d from weasyl import ignoreuser from weasyl import macro as m from weasyl import media from weasyl.configuration_builder import create_configuration, BoolOption from weasyl.error import WeasylError WatchSettings = create_configuration([ BoolOption("submit", "s"), BoolOption("collect", "c"), BoolOption("char", "f"), BoolOption("stream", "t"), BoolOption("journal", "j"), ]) def list_followed(userid, settings, rating=ratings.GENERAL.code, friends=False): """ Returns a list of users who are following the specified user. """ statement = [ "SELECT wu.userid FROM watchuser wu JOIN profile pr ON wu.userid = pr.userid WHERE wu.otherid = %(user)s" " AND wu.settings ~ %(setting)s" ] if friends: statement.append(""" AND ( wu.userid IN (SELECT fu.userid FROM frienduser fu WHERE fu.otherid = wu.otherid AND fu.settings !~ 'p') OR wu.userid IN (SELECT fu.otherid FROM frienduser fu WHERE fu.userid = wu.otherid AND fu.settings !~ 'p')) """) if rating == ratings.EXPLICIT.code: # Only notify users who view explicit statement.append(" AND pr.config ~ 'p'") elif rating == ratings.MATURE.code: # Only notify users who view mature or explicit statement.append(" AND pr.config ~ '[ap]'") return d.column(d.engine.execute("".join(statement), user=userid, setting=settings)) def select_settings(userid, otherid): settings = d.engine.scalar( "SELECT settings FROM watchuser WHERE (userid, otherid) = (%(user)s, %(other)s)", user=userid, other=otherid, ) if settings is None: raise WeasylError("watchuserRecordMissing") return settings def select_followed(userid, otherid, limit=None, backid=None, nextid=None, following=False): """ Returns the users who are following the specified user; note that ``following`` need never be passed explicitly. """ if following: statement = ["SELECT wu.otherid, pr.username, pr.config FROM watchuser wu" " INNER JOIN profile pr ON wu.otherid = pr.userid" " WHERE wu.userid = %i" % (otherid,)] else: statement = ["SELECT wu.userid, pr.username, pr.config FROM watchuser wu" " INNER JOIN profile pr ON wu.userid = pr.userid" " WHERE wu.otherid = %i" % (otherid,)] if userid: statement.append(m.MACRO_IGNOREUSER % (userid, "pr")) if backid: statement.append(" AND pr.username < (SELECT username FROM profile WHERE userid = %i)" % (backid,)) elif nextid: statement.append(" AND pr.username > (SELECT username FROM profile WHERE userid = %i)" % (nextid,)) statement.append(" ORDER BY pr.username%s LIMIT %i" % (" DESC" if backid else "", limit)) query = [{ "userid": i[0], "username": i[1], } for i in d.execute("".join(statement))] media.populate_with_user_media(query) return query[::-1] if backid else query def select_following(userid, otherid, limit=None, backid=None, nextid=None): """ Returns the users whom the specified user is following. """ return select_followed(userid, otherid, limit, backid, nextid, following=True) def manage_following(userid, limit, backid=None, nextid=None): state = [ "SELECT pr.userid, pr.username, pr.config FROM watchuser wu" " JOIN profile pr ON wu.otherid = pr.userid" " WHERE wu.userid = %i" % (userid,)] if backid: state.append(" AND pr.username < (SELECT username FROM profile WHERE userid = %i)" % backid) elif nextid: state.append(" AND pr.username > (SELECT username FROM profile WHERE userid = %i)" % nextid) state.append(" ORDER BY pr.username") if backid: state.append(" DESC") state.append(" LIMIT %i" % limit) query = [{ "userid": i[0], "username": i[1], } for i in d.execute("".join(state))] media.populate_with_user_media(query) return query[::-1] if backid else query def insert(userid, otherid): if ignoreuser.check(otherid, userid): raise WeasylError("IgnoredYou") elif ignoreuser.check(userid, otherid): raise WeasylError("YouIgnored") d.engine.execute( 'INSERT INTO watchuser (userid, otherid, settings) VALUES (%(user)s, %(other)s, %(settings)s) ' 'ON CONFLICT DO NOTHING', user=userid, other=otherid, settings=WatchSettings.from_code(d.get_config(userid)).to_code()) from weasyl import welcome welcome.followuser_remove(userid, otherid) welcome.followuser_insert(userid, otherid) def update(userid, otherid, watch_settings): d.engine.execute( "UPDATE watchuser SET settings = %(settings)s WHERE (userid, otherid) = (%(user)s, %(other)s)", settings=watch_settings.to_code(), user=userid, other=otherid, ) def remove(userid, otherid): d.execute("DELETE FROM watchuser WHERE (userid, otherid) = (%i, %i)", [userid, otherid]) from weasyl import welcome welcome.followuser_remove(userid, otherid)
wetectron/utils/__init__.py
akobiisr/wetectron
332
12642514
<reponame>akobiisr/wetectron # -------------------------------------------------------- # Copyright (C) 2020 NVIDIA Corporation. All rights reserved. # Nvidia Source Code License-NC # --------------------------------------------------------
cflearn/api/cv/models/dino.py
carefree0910/carefree-learn
400
12642526
<reponame>carefree0910/carefree-learn import torch from PIL import Image from tqdm import tqdm from torch import Tensor from typing import List from typing import Tuple from ..data import SSLTestTransform from ..data import InferenceImageFolderData from ..pipeline import SimplePipeline from ..interface import predict_folder from ....constants import LATENT_KEY from ....misc.toolkit import to_torch from ....misc.toolkit import to_device from ....misc.toolkit import eval_context class DINOPredictor: def __init__(self, m: SimplePipeline, img_size: int, *, to_gray: bool = False): self.m = m self.dino = m.model self.transform = SSLTestTransform(img_size, to_gray) @property def device(self) -> torch.device: return self.dino.device def get_latent(self, src_path: str) -> Tensor: src = Image.open(src_path).convert("RGB") net = self.transform(src)[None, ...].to(self.device) with eval_context(self.dino): return self.dino.get_latent(net) def get_logits(self, src_path: str) -> Tensor: src = Image.open(src_path).convert("RGB") net = self.transform(src)[None, ...].to(self.device) with eval_context(self.dino): return self.dino.get_logits(net) def get_folder_latent( self, src_folder: str, *, batch_size: int, num_workers: int = 0, use_tqdm: bool = True, ) -> Tuple[Tensor, List[str]]: results = predict_folder( self.m, src_folder, batch_size=batch_size, num_workers=num_workers, transform=self.transform, use_tqdm=use_tqdm, ) latent = to_torch(results.outputs[LATENT_KEY]) return latent, results.img_paths def get_folder_logits( self, src_folder: str, *, batch_size: int, num_workers: int = 0, use_tqdm: bool = True, ) -> Tuple[Tensor, List[str]]: data = InferenceImageFolderData( src_folder, batch_size=batch_size, num_workers=num_workers, transform=self.transform, ) outputs = [] iterator = data.initialize()[0] if use_tqdm: iterator = tqdm(iterator, total=len(iterator)) with eval_context(self.dino): for i, batch in enumerate(iterator): batch = to_device(batch, self.device) outputs.append(self.dino.student(i, batch).cpu()) return torch.cat(outputs, dim=0), data.dataset.img_paths __all__ = [ "DINOPredictor", ]
web-bundle/resources/check-cookie-and-return-bundle.py
meyerweb/wpt
14,668
12642566
import os def main(request, response): origin = request.headers.get(b"origin") if origin is not None: response.headers.set(b"Access-Control-Allow-Origin", origin) response.headers.set(b"Access-Control-Allow-Methods", b"GET") response.headers.set(b"Access-Control-Allow-Credentials", b"true") headers = [ (b"Content-Type", b"application/webbundle"), (b"X-Content-Type-Options", b"nosniff"), ] cookie = request.cookies.first(b"milk", None) if (cookie is not None) and cookie.value == b"1": if request.GET.get(b"bundle", None) == b"cross-origin": bundle = "./wbn/simple-cross-origin.wbn" else: bundle = "./wbn/subresource.wbn" with open( os.path.join(os.path.dirname(__file__), bundle), "rb", ) as f: return (200, headers, f.read()) else: return (400, [], "")
tools/virtuoso.py
datha88/kbqa-ar-smcnn
139
12642600
<reponame>datha88/kbqa-ar-smcnn<filename>tools/virtuoso.py #!/usr/bin/python import sys, json from urllib import parse, request # Setting global variables data_source = 'fb2m:' query_url = 'http://localhost:8890/sparql/' # HTTP URL is constructed accordingly with JSON query results format in mind. def sparql_query(query, URL, format='application/json'): params={ 'default-graph': '', 'should-sponge': 'soft', 'query': query.encode('utf8'), 'debug': 'on', 'timeout': '', 'format': format, 'save': 'display', 'fname': '' } encoded_query = parse.urlencode(params).encode('utf-8') http_response = request.urlopen(URL, encoded_query).read() try: json_response = json.loads(http_response.decode('utf-8')) return json_response except: print >> sys.stderr, 'json load error' print >> sys.stderr, http_response return None # Using freebase mid to query its types def id_query_type(node_id): query = ''' SELECT ?type FROM <%s> WHERE {<%s> <fb:type.object.type> ?type} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: type_list = [item['type']['value'] for item in json_response['results']['bindings']] return list(set(type_list)) except: return [] # Using freebase mid to query its original cased name def id_query_en_name(node_id): query = ''' SELECT ?name FROM <%s> WHERE {<%s> <fb:type.object.en_name> ?name} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: name_list = [item['name']['value'] for item in json_response['results']['bindings']] return list(set(name_list)) except: return [] # Using freebase mid to query its original cased alias def id_query_en_alias(node_id): query = ''' SELECT ?alias FROM <%s> WHERE {<%s> <fb:common.topic.en_alias> ?alias} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: alias_list = [item['alias']['value'] for item in json_response['results']['bindings']] return list(set(alias_list)) except: return [] # Using freebase mid to query its processed & tokenized name def id_query_name(node_id): query = ''' SELECT ?name FROM <%s> WHERE {<%s> <fb:type.object.name> ?name} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: name_list = [item['name']['value'] for item in json_response['results']['bindings']] return list(set(name_list)) except: return [] # Using freebase mid to query its processed & tokenized alias def id_query_alias(node_id): query = ''' SELECT ?alias FROM <%s> WHERE {<%s> <fb:common.topic.alias> ?alias} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: alias_list = [item['alias']['value'] for item in json_response['results']['bindings']] return list(set(alias_list)) except: return [] # Using freebase mid to query its processed & tokenized name & alias def id_query_str(node_id): query = ''' SELECT ?str FROM <%s> WHERE { {<%s> <fb:type.object.name> ?str} UNION {<%s> <fb:common.topic.alias> ?str} } ''' % (data_source, node_id, node_id) json_response = sparql_query(query, query_url) try: name_list = [item['str']['value'] for item in json_response['results']['bindings']] return list(set(name_list)) except: return [] # Using freebase mid to query all relations coming out of the entity def id_query_out_rel(node_id, unique = True): query = ''' SELECT ?relation FROM <%s> WHERE {<%s> ?relation ?object} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: relations = [str(item['relation']['value']) for item in json_response['results']['bindings']] return list(set(relations)) except: return [] # Using freebase mid to query all relations coming into the entity def id_query_in_rel(node_id, unique = True): query = ''' SELECT ?relation FROM <%s> WHERE {?subject ?relation <%s>} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: relations = [str(item['relation']['value']) for item in json_response['results']['bindings']] return list(set(relations)) except: return [] # Using the name of an entity to query its freebase mid def name_query_id(name): query = ''' SELECT ?node_id FROM <%s> WHERE {?node_id <fb:type.object.name> "%s"} ''' % (data_source, name) json_response = sparql_query(query, query_url) try: node_id_list = [str(item['node_id']['value']) for item in json_response['results']['bindings']] return list(set(node_id_list)) except: return [] # Using the alias of an entity to query its freebase mid def alias_query_id(alias): query = ''' SELECT ?node_id FROM <%s> WHERE {?node_id <fb:common.topic.alias> "%s"} ''' % (data_source, alias) json_response = sparql_query(query, query_url) try: node_id_list = [str(item['node_id']['value']) for item in json_response['results']['bindings']] return list(set(node_id_list)) except: return [] # Using the alias/name of an entity to query its freebase mid def str_query_id(string): query = ''' SELECT ?node_id FROM <%s> WHERE { {?node_id <fb:common.topic.alias> "%s"} UNION {?node_id <fb:type.object.name> "%s"} } ''' % (data_source, string, string) json_response = sparql_query(query, query_url) try: node_id_list = [str(item['node_id']['value']) for item in json_response['results']['bindings']] return list(set(node_id_list)) except: return [] # Using freebase mid to query all object coming out of the entity def id_query_in_entity(node_id, unique = True): query = ''' SELECT ?subject FROM <%s> WHERE {?subject ?relation <%s>} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: subjects = [str(item['subject']['value']) for item in json_response['results']['bindings']] return list(set(subjects)) except: return [] # Using freebase mid to query all relation coming into the entity def id_query_out_entity(node_id, unique = True): query = ''' SELECT ?object FROM <%s> WHERE {<%s> ?relation ?object} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) try: objects = [str(item['object']['value']) for item in json_response['results']['bindings']] return list(set(objects)) except: return [] # Using the subject and relation to query the corresponding object def query_object(subject, relation): query = ''' SELECT ?object FROM <%s> WHERE {<%s> <%s> ?object} ''' % (data_source, subject, relation) json_response = sparql_query(query, query_url) try: return [str(item['object']['value']) for item in json_response['results']['bindings']] except: return [] # Using the object and relation to query the corresponding subject def query_subject(obj, relation): query = ''' SELECT ?subject FROM <%s> WHERE {?subject <%s> <%s>} ''' % (data_source, relation, obj) json_response = sparql_query(query, query_url) try: return [str(item['subject']['value']) for item in json_response['results']['bindings']] except: return [] # Using the subject and object to query the corresponding relation def query_relation(sub, obj): query = ''' SELECT ?relation FROM <%s> WHERE {<%s> ?relation <%s>} ''' % (data_source, sub, obj) json_response = sparql_query(query, query_url) try: objects = [str(item['relation']['value']) for item in json_response['results']['bindings']] return list(set(objects)) except: return [] def relation_query_subject(relation): query = ''' SELECT ?subject FROM <%s> WHERE {?subject <%s> ?object} '''% (data_source, relation) json_response = sparql_query(query, query_url) try: return [str(item['subject']['value']) for item in json_response['results']['bindings']] except: return [] # Check whether a node is a CVT node def check_cvt(node_id): query = ''' SELECT ?tag FROM <%s> WHERE {<%s> <fb:cvt_node_identifier> ?tag} ''' % (data_source, node_id) json_response = sparql_query(query, query_url) ret = [str(item['tag']['value']) for item in json_response['results']['bindings']] if len(ret) == 1 and ret[0] == 'true': return True else: return False
python/example_code/rekognition/test/test_rekognition_image_detection.py
iconara/aws-doc-sdk-examples
5,166
12642613
<filename>python/example_code/rekognition/test/test_rekognition_image_detection.py # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Unit tests for rekognition_image_detection.py. """ import boto3 from botocore.exceptions import ClientError import pytest from rekognition_image_detection import RekognitionImage from rekognition_objects import ( RekognitionFace, RekognitionCelebrity, RekognitionLabel, RekognitionModerationLabel, RekognitionText) TEST_IMAGE = {'Bytes': b'just some bytes'} @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_detect_faces(make_stubber, make_faces, error_code): rekognition_client = boto3.client('rekognition') rekognition_stubber = make_stubber(rekognition_client) image = RekognitionImage(TEST_IMAGE, 'test-image', rekognition_client) faces = [RekognitionFace(face) for face in make_faces(3, True)] rekognition_stubber.stub_detect_faces(image.image, faces, error_code=error_code) if error_code is None: got_faces = image.detect_faces() assert ( [face.to_dict() for face in faces] == [face.to_dict() for face in got_faces] ) else: with pytest.raises(ClientError) as exc_info: image.detect_faces() assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_compare_faces(make_stubber, make_faces, error_code): rekognition_client = boto3.client('rekognition') rekognition_stubber = make_stubber(rekognition_client) source_image = RekognitionImage(TEST_IMAGE, 'source-image', rekognition_client) target_image = RekognitionImage(TEST_IMAGE, 'target-image', rekognition_client) matches = [RekognitionFace(face) for face in make_faces(1)] unmatches = [RekognitionFace(face) for face in make_faces(2)] similarity = 80 rekognition_stubber.stub_compare_faces( source_image.image, target_image.image, similarity, matches, unmatches, error_code=error_code) if error_code is None: got_matches, got_unmatches = source_image.compare_faces( target_image, similarity) assert ( [face.to_dict() for face in matches] == [face.to_dict() for face in got_matches] ) assert ( [face.to_dict() for face in unmatches] == [face.to_dict() for face in got_unmatches] ) else: with pytest.raises(ClientError) as exc_info: source_image.compare_faces(target_image, similarity) assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_detect_labels(make_stubber, make_labels, error_code): rekognition_client = boto3.client('rekognition') rekognition_stubber = make_stubber(rekognition_client) image = RekognitionImage(TEST_IMAGE, 'test-image', rekognition_client) labels = [RekognitionLabel(label) for label in make_labels(3)] max_labels = 3 rekognition_stubber.stub_detect_labels( image.image, max_labels, labels, error_code=error_code) if error_code is None: got_labels = image.detect_labels(max_labels) assert ( [label.to_dict() for label in labels] == [label.to_dict() for label in got_labels]) else: with pytest.raises(ClientError) as exc_info: image.detect_labels(max_labels) assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_detect_moderation_labels(make_stubber, make_moderation_labels, error_code): rekognition_client = boto3.client('rekognition') rekognition_stubber = make_stubber(rekognition_client) image = RekognitionImage(TEST_IMAGE, 'test-image', rekognition_client) labels = [ RekognitionModerationLabel(label) for label in make_moderation_labels(3)] rekognition_stubber.stub_detect_moderation_labels( image.image, labels, error_code=error_code) if error_code is None: got_labels = image.detect_moderation_labels() assert ( [label.to_dict() for label in labels] == [label.to_dict() for label in got_labels]) else: with pytest.raises(ClientError) as exc_info: image.detect_moderation_labels() assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_detect_text(make_stubber, make_texts, error_code): rekognition_client = boto3.client('rekognition') rekognition_stubber = make_stubber(rekognition_client) image = RekognitionImage(TEST_IMAGE, 'test-image', rekognition_client) texts = [RekognitionText(text) for text in make_texts(3)] rekognition_stubber.stub_detect_text(image.image, texts, error_code=error_code) if error_code is None: got_texts = image.detect_text() assert ( [text.to_dict() for text in texts] == [text.to_dict() for text in got_texts]) else: with pytest.raises(ClientError) as exc_info: image.detect_text() assert exc_info.value.response['Error']['Code'] == error_code @pytest.mark.parametrize('error_code', [None, 'TestException']) def test_recognize_celebrities(make_stubber, make_faces, error_code): rekognition_client = boto3.client('rekognition') rekognition_stubber = make_stubber(rekognition_client) image = RekognitionImage(TEST_IMAGE, 'test-image', rekognition_client) celebrities = [RekognitionCelebrity(face) for face in make_faces(3, is_celebrity=True)] normals = [RekognitionFace(face) for face in make_faces(2)] rekognition_stubber.stub_recognize_celebrities( image.image, celebrities, normals, error_code=error_code) if error_code is None: got_celebrities, got_normals = image.recognize_celebrities() assert ( [celeb.to_dict() for celeb in celebrities] == [celeb.to_dict() for celeb in got_celebrities]) assert ( [normal.to_dict() for normal in normals] == [normal.to_dict() for normal in got_normals]) else: with pytest.raises(ClientError) as exc_info: image.recognize_celebrities() assert exc_info.value.response['Error']['Code'] == error_code
eeauditor/auditors/aws/Amazon_EFS_Auditor.py
kbhagi/ElectricEye
442
12642637
<filename>eeauditor/auditors/aws/Amazon_EFS_Auditor.py #This file is part of ElectricEye. #SPDX-License-Identifier: Apache-2.0 #Licensed to the Apache Software Foundation (ASF) under one #or more contributor license agreements. See the NOTICE file #distributed with this work for additional information #regarding copyright ownership. The ASF licenses this file #to you under the Apache License, Version 2.0 (the #"License"); you may not use this file except in compliance #with the License. You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, #software distributed under the License is distributed on an #"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY #KIND, either express or implied. See the License for the #specific language governing permissions and limitations #under the License. import boto3 import datetime from check_register import CheckRegister registry = CheckRegister() # import boto3 clients efs = boto3.client("efs") # loop through EFS file systems def describe_file_systems(cache): response = cache.get("describe_file_systems") if response: return response cache["describe_file_systems"] = efs.describe_file_systems() return cache["describe_file_systems"] @registry.register_check("efs") def efs_filesys_encryption_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[EFS.1] EFS File Systems should have encryption enabled""" response = describe_file_systems(cache) myFileSys = response["FileSystems"] for filesys in myFileSys: encryptionCheck = str(filesys["Encrypted"]) fileSysId = str(filesys["FileSystemId"]) fileSysArn = f"arn:{awsPartition}:elasticfilesystem:{awsRegion}:{awsAccountId}:file-system/{fileSysId}" # ISO Time iso8601Time = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() if encryptionCheck == "False": finding = { "SchemaVersion": "2018-10-08", "Id": fileSysArn + "/efs-encryption-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": fileSysArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "Effects/Data Exposure", ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "HIGH"}, "Confidence": 99, "Title": "[EFS.1] EFS File Systems should have encryption enabled", "Description": "EFS file system " + fileSysId + " does not have encryption enabled. EFS file systems cannot be encrypted after creation, consider backing up data and creating a new encrypted file system.", "Remediation": { "Recommendation": { "Text": "For EFS encryption information refer to the Data Encryption in EFS section of the Amazon Elastic File System User Guide", "Url": "https://docs.aws.amazon.com/efs/latest/ug/encryption.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsElasticFileSystem", "Id": fileSysArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"fileSystemId": fileSysId}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF PR.DS-1", "NIST SP 800-53 MP-8", "NIST SP 800-53 SC-12", "NIST SP 800-53 SC-28", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.2.3", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": fileSysArn + "/efs-encryption-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": fileSysArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "Effects/Data Exposure", ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[EFS.1] EFS File Systems should have encryption enabled", "Description": "EFS file system " + fileSysId + " has encryption enabled.", "Remediation": { "Recommendation": { "Text": "For EFS encryption information refer to the Data Encryption in EFS section of the Amazon Elastic File System User Guide", "Url": "https://docs.aws.amazon.com/efs/latest/ug/encryption.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsElasticFileSystem", "Id": fileSysArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"fileSystemId": fileSysId}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.DS-1", "NIST SP 800-53 MP-8", "NIST SP 800-53 SC-12", "NIST SP 800-53 SC-28", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.2.3", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding @registry.register_check("efs") def efs_filesys_policy_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[EFS.2] EFS File Systems should not use the default file system policy""" response = describe_file_systems(cache) myFileSys = response["FileSystems"] for filesys in myFileSys: fileSysId = str(filesys["FileSystemId"]) fileSysArn = f"arn:{awsPartition}:elasticfilesystem:{awsRegion}:{awsAccountId}:file-system/{fileSysId}" # ISO Time iso8601Time = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() try: response = efs.describe_file_system_policy( FileSystemId=fileSysId ) finding = { "SchemaVersion": "2018-10-08", "Id": fileSysArn + "/efs-policy-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": fileSysArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "Effects/Data Exposure", ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[EFS.2] EFS File Systems should not use the default file system policy", "Description": "EFS file system " + fileSysId + " is not using the default file system policy.", "Remediation": { "Recommendation": { "Text": "For EFS policies information refer to the Identity and Access Management in EFS section of the Amazon Elastic File System User Guide", "Url": "https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsElasticFileSystem", "Id": fileSysArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"fileSystemId": fileSysId}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.DS-1", "NIST CSF PR.AC-1", "NIST CSF PR.AC-4", "NIST SP 800-53 IA-1", "NIST SP 800-53 IA-2", "NIST SP 800-53 IA-5", "AICPA TSC CC6.1", "AICPA TSC CC6.3", "ISO 27001:2013 A.9.1.1", "ISO 27001:2013 A.9.4.1", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except efs.exceptions.FileSystemNotFound: finding = { "SchemaVersion": "2018-10-08", "Id": fileSysArn + "/efs-policy-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": fileSysArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "Effects/Data Exposure", ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[EFS.2] EFS File Systems should not use the default file system policy", "Description": "EFS file system " + fileSysId + " is using a default file system policy.", "Remediation": { "Recommendation": { "Text": "For EFS policies information refer to the Identity and Access Management in EFS section of the Amazon Elastic File System User Guide", "Url": "https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsElasticFileSystem", "Id": fileSysArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"fileSystemId": fileSysId}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.DS-1", "NIST CSF PR.AC-1", "NIST CSF PR.AC-4", "NIST SP 800-53 IA-1", "NIST SP 800-53 IA-2", "NIST SP 800-53 IA-5", "AICPA TSC CC6.1", "AICPA TSC CC6.3", "ISO 27001:2013 A.9.1.1", "ISO 27001:2013 A.9.4.1", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding except: pass
bfxapi/examples/ws/subscribe_tickers.py
uggel/bitfinex-api-py
162
12642641
<filename>bfxapi/examples/ws/subscribe_tickers.py import os import sys sys.path.append('../../../') from bfxapi import Client bfx = Client( logLevel='DEBUG' ) @bfx.ws.on('error') def log_error(err): print ("Error: {}".format(err)) @bfx.ws.on('new_funding_ticker') def log_ticker(ticker): print ("New ticker: {}".format(ticker)) async def start(): await bfx.ws.subscribe('ticker', 'fUSD') bfx.ws.on('connected', start) bfx.ws.run()
prohmr/models/heads/fc_head.py
akashsengupta1997/ProHMR
120
12642643
import torch import torch.nn as nn import numpy as np from typing import Dict, Tuple from yacs.config import CfgNode class FCHead(nn.Module): def __init__(self, cfg: CfgNode): """ Fully connected head for camera and betas regression. Args: cfg (CfgNode): Model config as yacs CfgNode. """ super(FCHead, self).__init__() self.cfg = cfg self.npose = 6 * (cfg.SMPL.NUM_BODY_JOINTS + 1) self.layers = nn.Sequential(nn.Linear(cfg.MODEL.FLOW.CONTEXT_FEATURES, cfg.MODEL.FC_HEAD.NUM_FEATURES), nn.ReLU(inplace=False), nn.Linear(cfg.MODEL.FC_HEAD.NUM_FEATURES, 13)) nn.init.xavier_uniform_(self.layers[2].weight, gain=0.02) mean_params = np.load(cfg.SMPL.MEAN_PARAMS) init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32))[None, None] init_betas = torch.from_numpy(mean_params['shape'].astype(np.float32))[None, None] self.register_buffer('init_cam', init_cam) self.register_buffer('init_betas', init_betas) def forward(self, smpl_params: Dict, feats: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Run forward pass. Args: smpl_params (Dict): Dictionary containing predicted SMPL parameters. feats (torch.Tensor): Tensor of shape (N, C) containing the features computed by the backbone. Returns: pred_betas (torch.Tensor): Predicted SMPL betas. pred_cam (torch.Tensor): Predicted camera parameters. """ batch_size = feats.shape[0] num_samples = smpl_params['body_pose'].shape[1] offset = self.layers(feats).reshape(batch_size, 1, 13).repeat(1, num_samples, 1) betas_offset = offset[:, :, :10] cam_offset = offset[:, :, 10:] pred_cam = cam_offset + self.init_cam pred_betas = betas_offset + self.init_betas return pred_betas, pred_cam
src/simian/mac/admin/groups.py
tristansgray/simian
326
12642650
#!/usr/bin/env python # # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Groups admin handler.""" import httplib import urllib from simian.mac import admin from simian.mac import models class Groups(admin.AdminHandler): """Handler for /admin/groups.""" def get(self): """GET handler.""" groups = models.Group.all() groups = sorted(groups, key=lambda t: unicode.lower(t.key().name())) d = {'groups': groups, 'can_mod_groups': self.IsAdminUser(), 'report_type': 'groups'} self.Render('groups.html', d) @admin.AdminHandler.XsrfProtected('groups') def post(self): """POST handler.""" if not self.IsAdminUser(): self.error(httplib.FORBIDDEN) return group_name = urllib.unquote(self.request.get('group').strip()) action = self.request.get('action') if action == 'create': group = models.Group(key_name=group_name) users = self.request.get_all('user') if users: group.users = users group.put() msg = 'Group successfully saved.' elif action == 'delete': group_manifest_mods = models.GroupManifestModification.all().filter( 'group_key_name =', group_name).get() if group_manifest_mods: msg = "Group not deleted as it's being used for Manifest Modifications." else: group = models.Group.get_by_key_name(group_name) if group: group.delete() else: self.error(httplib.NOT_FOUND) return msg = 'Group successfully deleted.' elif action == 'change': users = self.request.get_all('user') add_group = self.request.get('add') == '1' group = models.Group.get_by_key_name(group_name) if not group: self.error(httplib.NOT_FOUND) return if add_group: group.users += users else: group.users = [u for u in group.users if u not in users] group.put() msg = 'Group successfully modified.' self.redirect('/admin/groups?msg=%s' % msg)
test/issues/test_008.py
ajnelson-nist/pySHACL
167
12642664
<reponame>ajnelson-nist/pySHACL<filename>test/issues/test_008.py # -*- coding: utf-8 -*- # """ https://github.com/RDFLib/pySHACL/issues/8 """ from pyshacl import validate mixed_file_text = ''' # baseURI: http://semanticprocess.x10host.com/Ontology/Testsparql # imports: http://datashapes.org/dash # prefix: Testsparql @prefix Testsparql: <http://semanticprocess.x10host.com/Ontology/Testsparql#> . @prefix owl: <http://www.w3.org/2002/07/owl#> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . <http://semanticprocess.x10host.com/Ontology/Testsparql> rdf:type owl:Ontology ; owl:imports <http://datashapes.org/dash> ; owl:versionInfo "Created with TopBraid Composer" ; sh:declare Testsparql:PrefixDeclaration ; . Testsparql:Crane rdf:type rdfs:Class ; rdfs:subClassOf owl:Class ; . Testsparql:Crane_1 rdf:type Testsparql:Crane ; Testsparql:Cranecapacity "500"^^xsd:decimal ; . Testsparql:Crane_2 rdf:type Testsparql:Crane ; Testsparql:Cranecapacity "5000"^^xsd:decimal ; . Testsparql:Cranecapacity rdf:type owl:DatatypeProperty ; rdfs:domain Testsparql:Crane ; rdfs:range xsd:decimal ; rdfs:subPropertyOf owl:topDataProperty ; . Testsparql:Module rdf:type rdfs:Class ; rdfs:subClassOf owl:Class ; . Testsparql:Module_1 rdf:type Testsparql:Module ; Testsparql:Moduleweight "800"^^xsd:decimal ; . Testsparql:Moduleweight rdf:type owl:DatatypeProperty ; rdfs:domain Testsparql:Module ; rdfs:range xsd:decimal ; rdfs:subPropertyOf owl:topDataProperty ; . Testsparql:PrefixDeclaration rdf:type sh:PrefixDeclaration ; sh:namespace "http://semanticprocess.x10host.com/Ontology/Testsparql#"^^xsd:anyURI ; sh:prefix "Testsparql" ; . Testsparql:Process rdf:type rdfs:Class ; rdf:type sh:NodeShape ; rdfs:subClassOf owl:Class ; sh:sparql [ sh:message "Invalid process" ; sh:prefixes <http://semanticprocess.x10host.com/Ontology/Testsparql> ; sh:select """SELECT $this WHERE { $this rdf:type Testsparql:Process. $this Testsparql:hasResource ?crane. $this Testsparql:hasAssociation ?module. ?crane Testsparql:Cranecapacity ?cc. ?module Testsparql:Moduleweight ?mw. FILTER (?cc <= ?mw). }""" ; ] ; . Testsparql:ProcessID rdf:type owl:DatatypeProperty ; rdfs:domain Testsparql:Process ; rdfs:range xsd:string ; rdfs:subPropertyOf owl:topDataProperty ; . Testsparql:Process_1 rdf:type Testsparql:Process ; Testsparql:ProcessID "P1" ; Testsparql:hasAssociation Testsparql:Module_1 ; Testsparql:hasResource Testsparql:Crane_1 ; . Testsparql:Process_2 rdf:type Testsparql:Process ; Testsparql:ProcessID "P2" ; Testsparql:hasAssociation Testsparql:Module_1 ; Testsparql:hasResource Testsparql:Crane_2 ; . Testsparql:hasAssociation rdf:type owl:ObjectProperty ; rdfs:domain Testsparql:Process ; rdfs:range Testsparql:Module ; rdfs:subPropertyOf owl:topObjectProperty ; . Testsparql:hasResource rdf:type owl:ObjectProperty ; rdfs:domain Testsparql:Process ; rdfs:range Testsparql:Crane ; rdfs:subPropertyOf owl:topObjectProperty ; . ''' shacl_file_text = ''' @prefix Testsparql: <http://semanticprocess.x10host.com/Ontology/Testsparql#> . @prefix owl: <http://www.w3.org/2002/07/owl#> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . <http://semanticprocess.x10host.com/Ontology/Testsparql> rdf:type owl:Ontology ; owl:imports <http://datashapes.org/dash> ; owl:versionInfo "Created with TopBraid Composer" ; sh:declare Testsparql:PrefixDeclaration ; . Testsparql:PrefixDeclaration rdf:type sh:PrefixDeclaration ; sh:namespace "http://semanticprocess.x10host.com/Ontology/Testsparql#"^^xsd:anyURI ; sh:prefix "Testsparql" ; . Testsparql:Process rdf:type rdfs:Class ; rdf:type sh:NodeShape ; rdfs:subClassOf owl:Class ; sh:sparql [ sh:message "Invalid process" ; sh:prefixes <http://semanticprocess.x10host.com/Ontology/Testsparql> ; sh:select """SELECT $this WHERE { $this rdf:type Testsparql:Process. $this Testsparql:hasResource ?crane. $this Testsparql:hasAssociation ?module. ?crane Testsparql:Cranecapacity ?cc. ?module Testsparql:Moduleweight ?mw. FILTER (?cc <= ?mw). }""" ; ] ; . ''' data_file_text = ''' @prefix Testsparql: <http://semanticprocess.x10host.com/Ontology/Testsparql#> . @prefix owl: <http://www.w3.org/2002/07/owl#> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix sh: <http://www.w3.org/ns/shacl#> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . Testsparql:Crane rdf:type rdfs:Class ; rdfs:subClassOf owl:Class ; . Testsparql:Crane_1 rdf:type Testsparql:Crane ; Testsparql:Cranecapacity "500"^^xsd:decimal ; . Testsparql:Crane_2 rdf:type Testsparql:Crane ; Testsparql:Cranecapacity "5000"^^xsd:decimal ; . Testsparql:Cranecapacity rdf:type owl:DatatypeProperty ; rdfs:domain Testsparql:Crane ; rdfs:range xsd:decimal ; rdfs:subPropertyOf owl:topDataProperty ; . Testsparql:Module rdf:type rdfs:Class ; rdfs:subClassOf owl:Class ; . Testsparql:Module_1 rdf:type Testsparql:Module ; Testsparql:Moduleweight "800"^^xsd:decimal ; . Testsparql:Moduleweight rdf:type owl:DatatypeProperty ; rdfs:domain Testsparql:Module ; rdfs:range xsd:decimal ; rdfs:subPropertyOf owl:topDataProperty ; . Testsparql:Process rdf:type rdfs:Class ; rdfs:subClassOf owl:Class ; . Testsparql:ProcessID rdf:type owl:DatatypeProperty ; rdfs:domain Testsparql:Process ; rdfs:range xsd:string ; rdfs:subPropertyOf owl:topDataProperty ; . Testsparql:Process_1 rdf:type Testsparql:Process ; Testsparql:ProcessID "P1" ; Testsparql:hasAssociation Testsparql:Module_1 ; Testsparql:hasResource Testsparql:Crane_1 ; . Testsparql:Process_2 rdf:type Testsparql:Process ; Testsparql:ProcessID "P2" ; Testsparql:hasAssociation Testsparql:Module_1 ; Testsparql:hasResource Testsparql:Crane_2 ; . Testsparql:hasAssociation rdf:type owl:ObjectProperty ; rdfs:domain Testsparql:Process ; rdfs:range Testsparql:Module ; rdfs:subPropertyOf owl:topObjectProperty ; . Testsparql:hasResource rdf:type owl:ObjectProperty ; rdfs:domain Testsparql:Process ; rdfs:range Testsparql:Crane ; rdfs:subPropertyOf owl:topObjectProperty ; . ''' def test_008(): res1 = validate(mixed_file_text, data_graph_format='turtle', shacl_graph_format='turtle', inference='both', debug=True) conforms, graph, string = res1 assert not conforms res2 = validate(data_file_text, shacl_graph=shacl_file_text, data_graph_format='turtle', shacl_graph_format='turtle', inference='both', debug=True) conforms, graph, string = res2 assert not conforms
tests/test_data_utils/test_fastai_transforms.py
rajshah4/pytorch-widedeep
692
12642681
<reponame>rajshah4/pytorch-widedeep """ Given the fact that the module fastai_transforms is mostly a copy and paste from the fastai v1 text's transforms library, the tests here are also copied from that library to ensure adequate coverage Credit for the code here to <NAME> and the fastai team """ from pytorch_widedeep.utils.fastai_transforms import * # noqa: F403 ############################################################################### # Test simple rules ############################################################################### def test_rules(): assert fix_html("Some HTML&nbsp;text<br />") == "Some HTML& text\n" assert replace_rep("I'm so excited!!!!!!!!") == "I'm so excited xxrep 8 ! " assert ( replace_wrep("I've never ever ever ever ever ever ever ever done this.") == "I've never xxwrep 7 ever done this." ) assert ( rm_useless_spaces("Inconsistent use of spaces.") == "Inconsistent use of spaces." ) assert ( spec_add_spaces("I #like to #put #hashtags #everywhere!") == "I # like to # put # hashtags # everywhere!" ) assert replace_all_caps(["Mark", "CAPITALIZED", "Only"]) == [ "Mark", "xxup", "capitalized", "Only", ] assert deal_caps(["Mark", "Capitalized", "lower", "All"]) == [ "xxmaj", "mark", "xxmaj", "capitalized", "lower", "xxmaj", "all", ] ############################################################################### # Test Tokenizer ############################################################################### def test_tokenize(): texts = [ "one two three four", "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.", "I'm suddenly SHOUTING FOR NO REASON", ] tokenizer = Tokenizer(BaseTokenizer) toks = tokenizer.process_all(texts) assert toks[0] == ["one", "two", "three", "four"] assert toks[1][:6] == ["xxmaj", "lorem", "ipsum", "dolor", "sit", "amet,"] assert ( " ".join(toks[2]) == "xxmaj i'm suddenly xxup shouting xxup for xxup no xxup reason" ) def test_tokenize_handles_empty_lines(): texts = ["= Markdown Title =\n\nMakrdown Title does not have spaces around"] tokenizer = Tokenizer(BaseTokenizer) toks = tokenizer.process_all(texts) assert toks[0] == [ "=", "xxmaj", "markdown", "xxmaj", "title", "=", "\n", "\n", "xxmaj", "makrdown", "xxmaj", "title", "does", "not", "have", "spaces", "around", ] def test_tokenize_ignores_extraneous_space(): texts = ["test "] tokenizer = Tokenizer(BaseTokenizer) toks = tokenizer.process_all(texts) assert toks[0] == ["test"] def test_numericalize_and_textify(): toks = [ ["ok", "!", "xxmaj", "nice", "!", "anti", "-", "virus"], ["!", "xxmaj", "meg", "xxmaj", "nice", "meg"], ] vocab = Vocab.create(toks, max_vocab=20, min_freq=2) assert vocab.numericalize(toks[0]) == [0, 9, 5, 10, 9, 0, 0, 0] assert vocab.textify([0, 3, 10, 11, 9]) == "xxunk xxeos nice meg !"