max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
program/object-detection-tf-py/tensorRT_hooks.py
G4V/ck-tensorflow
108
12771393
''' hooks for using tensorRT with the object detection program. names and parameters are defined as required by the detect.py infrastructure. ''' import tensorflow as tf import tensorflow.contrib.tensorrt as trt def load_graph_tensorrt(params): graph_def = tf.compat.v1.GraphDef() with tf.compat.v1.gfile.GFile(params["FROZEN_GRAPH"], 'rb') as f: graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') trt_graph = trt.create_inference_graph( input_graph_def=graph_def, outputs=['detection_boxes:0','detection_scores:0','detection_classes:0','num_detections:0'], max_batch_size=params["BATCH_SIZE"], max_workspace_size_bytes=4000000000, is_dynamic_op=True if params["TENSORRT_DYNAMIC"]==1 else False, precision_mode=params["TENSORRT_PRECISION"] ) tf.import_graph_def( trt_graph, return_elements=['detection_boxes:0','detection_scores:0','detection_classes:0','num_detections:0']) ##no more needed def convert_from_tensorrt(tmp_output_dict ): return tmp_output_dict ### names of tensors are different from normal TF names, but can be retrieved and a dict with the same shape of the original one can be formed, thus avoiding the conversion after the postprocessing. # note that for the tf session, the names are enough and there is no real need to get the tensors. def get_handles_to_tensors_RT(): graph = tf.get_default_graph() tensor_dict = {} tensor_dict['num_detections'] = graph.get_tensor_by_name('import/num_detections:0') tensor_dict['detection_classes']=graph.get_tensor_by_name( 'import/detection_classes:0') tensor_dict['detection_boxes'] = graph.get_tensor_by_name('import/detection_boxes:0') tensor_dict['detection_scores'] = graph.get_tensor_by_name('import/detection_scores:0') image_tensor =graph.get_tensor_by_name('import/image_tensor:0') return tensor_dict, image_tensor
experiments/distributed.py
DeNeutoy/flowseq
256
12771399
<reponame>DeNeutoy/flowseq import sys import os current_path = os.path.dirname(os.path.realpath(__file__)) root_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(root_path) import json import signal import threading import torch from flownmt.data import NMTDataSet import experiments.options as options from experiments.nmt import main as single_process_main def create_dataset(args): model_path = args.model_path if not os.path.exists(model_path): os.makedirs(model_path) result_path = os.path.join(model_path, 'translations') if not os.path.exists(result_path): os.makedirs(result_path) vocab_path = os.path.join(model_path, 'vocab') if not os.path.exists(vocab_path): os.makedirs(vocab_path) data_path = args.data_path src_lang = args.src tgt_lang = args.tgt src_vocab_path = os.path.join(vocab_path, '{}.vocab'.format(src_lang)) tgt_vocab_path = os.path.join(vocab_path, '{}.vocab'.format(tgt_lang)) params = json.load(open(args.config, 'r')) src_max_vocab = params['{}_vocab_size'.format(src_lang)] tgt_max_vocab = params['{}_vocab_size'.format(tgt_lang)] NMTDataSet(data_path, src_lang, tgt_lang, src_vocab_path, tgt_vocab_path, src_max_vocab, tgt_max_vocab, subword=args.subword, create_vocab=True) def main(): args = options.parse_distributed_args() args_dict = vars(args) nproc_per_node = args_dict.pop('nproc_per_node') nnodes = args_dict.pop('nnodes') node_rank = args_dict.pop('node_rank') # world size in terms of number of processes dist_world_size = nproc_per_node * nnodes # set PyTorch distributed related environmental variables current_env = os.environ current_env["MASTER_ADDR"] = args_dict.pop('master_addr') current_env["MASTER_PORT"] = str(args_dict.pop('master_port')) current_env["WORLD_SIZE"] = str(dist_world_size) create_vocab = args_dict.pop('create_vocab') if create_vocab: create_dataset(args) args.create_vocab = False batch_size = args.batch_size // dist_world_size args.batch_size = batch_size mp = torch.multiprocessing.get_context('spawn') # Create a thread to listen for errors in the child processes. error_queue = mp.SimpleQueue() error_handler = ErrorHandler(error_queue) processes = [] for local_rank in range(0, nproc_per_node): # each process's rank dist_rank = nproc_per_node * node_rank + local_rank args.rank = dist_rank args.local_rank = local_rank process = mp.Process(target=run, args=(args, error_queue, ), daemon=True) process.start() error_handler.add_child(process.pid) processes.append(process) for process in processes: process.join() def run(args, error_queue): try: single_process_main(args) except KeyboardInterrupt: pass # killed by parent, do nothing except Exception: # propagate exception to parent process, keeping original traceback import traceback error_queue.put((args.rank, traceback.format_exc())) class ErrorHandler(object): """A class that listens for exceptions in children processes and propagates the tracebacks to the parent process.""" def __init__(self, error_queue): self.error_queue = error_queue self.children_pids = [] self.error_thread = threading.Thread(target=self.error_listener, daemon=True) self.error_thread.start() signal.signal(signal.SIGUSR1, self.signal_handler) def add_child(self, pid): self.children_pids.append(pid) def error_listener(self): (rank, original_trace) = self.error_queue.get() self.error_queue.put((rank, original_trace)) os.kill(os.getpid(), signal.SIGUSR1) def signal_handler(self, signalnum, stackframe): for pid in self.children_pids: os.kill(pid, signal.SIGINT) # kill children processes (rank, original_trace) = self.error_queue.get() msg = "\n\n-- Tracebacks above this line can probably be ignored --\n\n" msg += original_trace raise Exception(msg) if __name__ == "__main__": main()
__init__.py
gszy/kicad-boardview
116
12771408
import pcbnew import os from .pcbnew2boardview import convert class Pcbnew2Boardview(pcbnew.ActionPlugin): def defaults(self): self.name = "Pcbnew to Boardview" self.category = "Read PCB" self.description = "Generate Boardview file from KiCad pcb." def Run(self): kicad_pcb = pcbnew.GetBoard() with open(kicad_pcb.GetFileName().replace('.kicad_pcb', '.brd'), 'wt') as brd_file: convert(kicad_pcb, brd_file) plugin = Pcbnew2Boardview() plugin.register()
tests/test_utils.py
localuser2/pre-commit-hooks
164
12771421
<reponame>localuser2/pre-commit-hooks<filename>tests/test_utils.py #!/usr/bin/env python3 import difflib import os import re import shutil import subprocess as sp import sys import pytest test_file_strs = { "ok.c": '// Copyright 2021 <NAME>\n#include <stdio.h>\n\nint main() {\n printf("Hello World!\\n");\n return 0;\n}\n', "ok.cpp": '// Copyright 2021 <NAME>\n#include <iostream>\n\nint main() {\n std::cout << "Hello World!\\n";\n return 0;\n}\n', "err.c": "#include <stdio.h>\nint main(){int i;return;}", "err.cpp": "#include <string>\nint main(){int i;return;}", } def assert_equal(expected: bytes, actual: bytes): """Stand in for Python's assert which is annoying to work with.""" actual = actual.replace(b"\r", b"") # ignore windows file ending differences if expected != actual: print(f"\n\nExpected:`{expected}`") print(f"\n\nActual__:`{actual}`") if isinstance(expected, bytes) and isinstance(actual, bytes): expected_str = expected.decode() actual_str = actual.decode() print("String comparison:", expected_str == actual_str) diff_lines_gen = difflib.context_diff(expected_str, actual_str, "Expected", "Actual") diff_lines = "".join(list(diff_lines_gen)) print(f"\n\nDifference:\n{diff_lines}") else: print(f"Expected is type {type(expected)}\nActual is type {type(actual)}") pytest.fail("Test failed!") def get_versions(): """Returns a dict of commands and their versions.""" commands = ["clang-format", "clang-tidy", "uncrustify", "cppcheck", "cpplint"] if os.name != "nt": # oclint doesn't work on windows, iwyu needs to be compiled on windows commands += ["oclint", "include-what-you-use"] # Regex for all versions. Unit tests: https://regex101.com/r/rzJE0I/1 regex = r"[- ]((?:\d+\.)+\d+[_+\-a-z\d]*)(?![\s\S]*OCLint version)" versions = {} for cmd in commands: if not shutil.which(cmd): sys.exit("Command " + cmd + " not found.") cmds = [cmd, "--version"] child = sp.run(cmds, stdout=sp.PIPE, stderr=sp.PIPE) if len(child.stderr) > 0: print(f"Received error when running {cmds}:\n{child.stderr}") sys.exit(1) output = child.stdout.decode("utf-8") try: versions[cmd] = re.search(regex, output).group(1) except AttributeError: print(f"Received `{output}`. Version regexes have broken.") print("Please file a bug (github.com/pocc/pre-commit-hooks).") sys.exit(1) return versions # Required for testing with clang-tidy and oclint def set_compilation_db(filenames): """Create a compilation database for clang static analyzers.""" cdb = "[" clang_location = shutil.which("clang") file_dir = os.path.dirname(os.path.abspath(filenames[0])) for f in filenames: file_base = os.path.basename(f) clang_suffix = "" if f.endswith("cpp"): clang_suffix = "++" cdb += """\n{{ "directory": "{0}", "command": "{1}{2} {3} -o {3}.o", "file": "{3}" }},""".format( file_dir, clang_location, clang_suffix, os.path.join(file_dir, file_base) ) cdb = cdb[:-1] + "]" # Subtract extra comma and end json # Required for clang-tidy if os.name == "nt": cdb = cdb.replace("\\", "\\\\").replace("Program Files", 'Program\\" \\"Files') with open(os.path.join(file_dir, "compile_commands.json"), "w") as f: f.write(cdb) def set_git_identity(): """Set a git identity if one does not exist.""" sp_child = sp.run(["git", "config", "--list"], stdout=sp.PIPE) if "user.name" not in sp_child.stdout.decode() or "user.email" not in sp_child.stdout.decode(): sp.run(["git", "config", "--global", "user.name", "Test Runner"]) sp.run(["git", "config", "--global", "user.email", "<EMAIL>"]) sp.run(["git", "config", "--global", "init.defaultbranch", "master"]) def run_in(commands, tmpdir): sp_child = sp.run(commands, cwd=tmpdir, stdout=sp.PIPE, stderr=sp.PIPE) if sp_child.returncode != 0: err_msg = ( f"commands {commands} failed with\nstdout: {sp_child.stdout.decode()}stderr: {sp_child.stderr.decode()}\n" ) pytest.fail(err_msg) def integration_test(cmd_name, files, args, test_dir): for test_file in files: test_file_base = os.path.split(test_file)[-1] if test_file_base in test_file_strs: with open(test_file, "w") as fd: fd.write(test_file_strs[test_file_base]) # Add only the files we are testing run_in(["git", "reset"], test_dir) run_in(["git", "add"] + files, test_dir) args = list(args) # redeclare so there's no memory weirdness pre_commit_config_path = os.path.join(test_dir, ".pre-commit-config.yaml") pre_commit_config = f"""\ repos: - repo: https://github.com/pocc/pre-commit-hooks rev: v1.3.4 hooks: - id: {cmd_name} args: {args} """ with open(pre_commit_config_path, "w") as f: f.write(pre_commit_config) # Pre-commit run will only work on staged files, which is what we want to test # Using git commit can cause hangs if pre-commit passes sp_child = sp.run(["pre-commit", "run"], cwd=test_dir, stdout=sp.PIPE, stderr=sp.PIPE) output_actual = sp_child.stderr + sp_child.stdout # Get rid of pre-commit first run info lines output_actual = re.sub(rb"\[(?:INFO|WARNING)\].*\n", b"", output_actual) # Output is unpredictable and platform/version dependent if any([f.endswith("err.cpp") for f in files]) and "-std=c++20" in args: output_actual = re.sub(rb"[\d,]+ warnings and ", b"", output_actual) return output_actual, sp_child.returncode
jsonrpc/tests/test_backend_django/settings.py
DMantis/json-rpc
409
12771439
SECRET_KEY = 'secret' ROOT_URLCONF = 'jsonrpc.tests.test_backend_django.urls' ALLOWED_HOSTS = ['testserver'] DATABASE_ENGINE = 'django.db.backends.sqlite3' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', } } JSONRPC_MAP_VIEW_ENABLED = True
mmdet2trt/core/__init__.py
tehkillerbee/mmdetection-to-tensorrt
496
12771450
<reponame>tehkillerbee/mmdetection-to-tensorrt from .anchor import * # noqa: F401,F403 from .bbox import * # noqa: F401,F403 from .post_processing import * # noqa: F401,F403
data/text/tokenizer.py
anh/TransformerTTS
894
12771488
from typing import Union import re from phonemizer.phonemize import phonemize from data.text.symbols import all_phonemes, _punctuations class Tokenizer: def __init__(self, start_token='>', end_token='<', pad_token='/', add_start_end=True, alphabet=None, model_breathing=True): if not alphabet: self.alphabet = all_phonemes else: self.alphabet = sorted(list(set(alphabet))) # for testing self.idx_to_token = {i: s for i, s in enumerate(self.alphabet, start=1)} self.idx_to_token[0] = pad_token self.token_to_idx = {s: [i] for i, s in self.idx_to_token.items()} self.vocab_size = len(self.alphabet) + 1 self.add_start_end = add_start_end if add_start_end: self.start_token_index = len(self.alphabet) + 1 self.end_token_index = len(self.alphabet) + 2 self.vocab_size += 2 self.idx_to_token[self.start_token_index] = start_token self.idx_to_token[self.end_token_index] = end_token self.model_breathing = model_breathing if model_breathing: self.breathing_token_index = self.vocab_size self.token_to_idx[' '] = self.token_to_idx[' '] + [self.breathing_token_index] self.vocab_size += 1 self.breathing_token = '@' self.idx_to_token[self.breathing_token_index] = self.breathing_token self.token_to_idx[self.breathing_token] = [self.breathing_token_index] def __call__(self, sentence: str) -> list: sequence = [self.token_to_idx[c] for c in sentence] # No filtering: text should only contain known chars. sequence = [item for items in sequence for item in items] if self.model_breathing: sequence = [self.breathing_token_index] + sequence if self.add_start_end: sequence = [self.start_token_index] + sequence + [self.end_token_index] return sequence def decode(self, sequence: list) -> str: return ''.join([self.idx_to_token[int(t)] for t in sequence]) class Phonemizer: def __init__(self, language: str, with_stress: bool, njobs=4): self.language = language self.njobs = njobs self.with_stress = with_stress self.special_hyphen = '—' self.punctuation = ';:,.!?¡¿—…"«»“”' self._whitespace_re = re.compile(r'\s+') self._whitespace_punctuation_re = re.compile(f'\s*([{_punctuations}])\s*') def __call__(self, text: Union[str, list], with_stress=None, njobs=None, language=None) -> Union[str, list]: language = language or self.language njobs = njobs or self.njobs with_stress = with_stress or self.with_stress # phonemizer does not like hyphens. text = self._preprocess(text) phonemes = phonemize(text, language=language, backend='espeak', strip=True, preserve_punctuation=True, with_stress=with_stress, punctuation_marks=self.punctuation, njobs=njobs, language_switch='remove-flags') return self._postprocess(phonemes) def _preprocess_string(self, text: str): text = text.replace('-', self.special_hyphen) return text def _preprocess(self, text: Union[str, list]) -> Union[str, list]: if isinstance(text, list): return [self._preprocess_string(t) for t in text] elif isinstance(text, str): return self._preprocess_string(text) else: raise TypeError(f'{self} input must be list or str, not {type(text)}') def _collapse_whitespace(self, text: str) -> str: text = re.sub(self._whitespace_re, ' ', text) return re.sub(self._whitespace_punctuation_re, r'\1', text) def _postprocess_string(self, text: str) -> str: text = text.replace(self.special_hyphen, '-') text = ''.join([c for c in text if c in all_phonemes]) text = self._collapse_whitespace(text) text = text.strip() return text def _postprocess(self, text: Union[str, list]) -> Union[str, list]: if isinstance(text, list): return [self._postprocess_string(t) for t in text] elif isinstance(text, str): return self._postprocess_string(text) else: raise TypeError(f'{self} input must be list or str, not {type(text)}')
openelex/tests/test_transform_registry.py
Mpopoma/oe-core
156
12771497
from unittest import TestCase from mock import Mock from openelex.base.transform import registry class TestTransformRegistry(TestCase): def test_register_with_validators(self): mock_transform = Mock(return_value=None) mock_transform.__name__ = 'mock_transform' mock_validator1 = Mock(return_value=None) mock_validator1.__name__ = 'mock_validator1' mock_validator2 = Mock(return_value=None) mock_validator2.__name__ = 'mock_validator2' validators = [mock_validator1, mock_validator2] registry.register("XX", mock_transform, validators) transform = registry.get("XX", "mock_transform") self.assertEqual(list(transform.validators.values()), validators) transform() mock_transform.assert_called_once_with() def test_register_raw(self): mock_transform = Mock(return_value=None) mock_transform.__name__ = 'mock_transform' registry.register("XX", mock_transform, raw=True) transform = registry.get("XX", "mock_transform", raw=True) transform() mock_transform.assert_called_once_with()
usaspending_api/references/models/overall_totals.py
g4brielvs/usaspending-api
217
12771509
from django.db import models class OverallTotals(models.Model): id = models.AutoField(primary_key=True) create_date = models.DateTimeField(auto_now_add=True, blank=True, null=True) update_date = models.DateTimeField(auto_now=True, null=True) fiscal_year = models.IntegerField(blank=True, null=True) total_budget_authority = models.DecimalField(max_digits=23, decimal_places=2, blank=True, null=True) class Meta: managed = True db_table = "overall_totals"
Validation/RecoB/test/validation_customJet_cfg.py
ckamtsikis/cmssw
852
12771511
from __future__ import print_function # The following comments couldn't be translated into the new config version: #! /bin/env cmsRun import FWCore.ParameterSet.Config as cms process = cms.Process("validation") import FWCore.ParameterSet.VarParsing as VarParsing options = VarParsing.VarParsing ('analysis') # load the full reconstraction configuration, to make sure we're getting all needed dependencies process.load("Configuration.StandardSequences.MagneticField_cff") process.load("Configuration.StandardSequences.GeometryRecoDB_cff") process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.load("Configuration.StandardSequences.Reconstruction_cff") options.register ('jets', "ak4PFJetsCHS", # default value, examples : "ak4PFJets", "ak4PFJetsCHS" VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "jet collection to use") options.parseArguments() whichJets = options.jets applyJEC = True corrLabel = "ak4PFCHS" from Configuration.AlCa.GlobalTag import GlobalTag tag = GlobalTag(process.GlobalTag, 'auto:run2_mc', '') useTrigger = False triggerPath = "HLT_PFJet80_v*" runOnMC = True #Flavour plots for MC: "all" = plots for all jets ; "dusg" = plots for d, u, s, dus, g independently ; not mandatory and any combinations are possible #b, c, light (dusg), non-identified (NI), PU jets plots are always produced flavPlots = "allbcldusg" ###prints### print("jet collcetion asked : ", whichJets) print("JEC applied?", applyJEC, ", correction:", corrLabel) print("trigger will be used ? : ", useTrigger, ", Trigger paths:", triggerPath) print("is it MC ? : ", runOnMC, ", Flavours:", flavPlots) print("Global Tag : ", tag.globaltag) ############ process.load("DQMServices.Components.DQMEnvironment_cfi") process.load("DQMServices.Core.DQM_cfg") process.load("JetMETCorrections.Configuration.JetCorrectors_cff") process.load("CommonTools.ParticleFlow.goodOfflinePrimaryVertices_cfi") process.load("RecoJets.JetAssociationProducers.ak4JTA_cff") process.load("RecoBTag.Configuration.RecoBTag_cff") process.load("PhysicsTools.JetMCAlgos.HadronAndPartonSelector_cfi") process.load("PhysicsTools.JetMCAlgos.AK4PFJetsMCFlavourInfos_cfi") process.load("PhysicsTools.JetMCAlgos.CaloJetsMCFlavour_cfi") process.load("PhysicsTools.PatAlgos.mcMatchLayer0.jetMatch_cfi") process.JECseq = cms.Sequence(getattr(process,corrLabel+"L1FastL2L3CorrectorChain")) newjetID=cms.InputTag(whichJets) process.ak4JetFlavourInfos.jets = newjetID process.ak4JetFlavourInfos.hadronFlavourHasPriority = cms.bool(True) process.AK4byRef.jets = newjetID if not "ak4PFJetsCHS" in whichJets: process.ak4JetTracksAssociatorAtVertexPF.jets = newjetID process.pfImpactParameterTagInfos.jets = newjetID process.softPFMuonsTagInfos.jets = newjetID process.softPFElectronsTagInfos.jets = newjetID process.patJetGenJetMatch.src = newjetID process.btagSequence = cms.Sequence( process.ak4JetTracksAssociatorAtVertexPF * process.btagging ) process.jetSequences = cms.Sequence(process.goodOfflinePrimaryVertices * process.btagSequence) ### print("inputTag : ", process.ak4JetTracksAssociatorAtVertexPF.jets) ### if runOnMC: process.flavourSeq = cms.Sequence( process.selectedHadronsAndPartons * process.ak4JetFlavourInfos ) process.load("Validation.RecoB.bTagAnalysis_cfi") process.bTagValidation.jetMCSrc = 'ak4JetFlavourInfos' if "Calo" in whichJets: process.bTagValidation.caloJetMCSrc = 'AK4byValAlgo' process.bTagValidation.useOldFlavourTool = True process.flavourSeq = cms.Sequence( process.myPartons * process.AK4Flavour ) process.bTagValidation.applyPtHatWeight = False process.bTagValidation.doJetID = True process.bTagValidation.doJEC = applyJEC process.bTagValidation.JECsourceMC = cms.InputTag(corrLabel+"L1FastL2L3Corrector") process.bTagValidation.flavPlots = flavPlots process.bTagHarvestMC.flavPlots = flavPlots #process.bTagValidation.ptRecJetMin = cms.double(20.) process.bTagValidation.genJetsMatched = cms.InputTag("patJetGenJetMatch") process.bTagValidation.doPUid = cms.bool(True) process.ak4GenJetsForPUid = cms.EDFilter("GenJetSelector", src = cms.InputTag("ak4GenJets"), cut = cms.string('pt > 8.'), filter = cms.bool(False) ) process.patJetGenJetMatch.matched = cms.InputTag("ak4GenJetsForPUid") process.patJetGenJetMatch.maxDeltaR = cms.double(0.25) process.patJetGenJetMatch.resolveAmbiguities = cms.bool(True) else: process.load("DQMOffline.RecoB.bTagAnalysisData_cfi") process.bTagAnalysis.doJEC = applyJEC process.bTagAnalysis.JECsourceData = cms.InputTag(corrLabel+"L1FastL2L3ResidualCorrector") process.JECseq *= (getattr(process,corrLabel+"ResidualCorrector") * getattr(process,corrLabel+"L1FastL2L3ResidualCorrector")) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring() ) from HLTrigger.HLTfilters.hltHighLevel_cfi import * if useTrigger: process.bTagHLT = hltHighLevel.clone(TriggerResultsTag = "TriggerResults::HLT", HLTPaths = ["HLT_PFJet40_v*"]) process.bTagHLT.HLTPaths = [triggerPath] if runOnMC: process.dqmSeq = cms.Sequence(process.ak4GenJetsForPUid * process.patJetGenJetMatch * process.flavourSeq * process.bTagValidation * process.bTagHarvestMC * process.dqmSaver) else: process.dqmSeq = cms.Sequence(process.bTagAnalysis * process.bTagHarvest * process.dqmSaver) if useTrigger: process.plots = cms.Path(process.bTagHLT * process.JECseq * process.jetSequences * process.dqmSeq) else: process.plots = cms.Path(process.JECseq * process.jetSequences * process.dqmSeq) process.dqmEnv.subSystemFolder = 'BTAG' process.dqmSaver.producer = 'DQM' process.dqmSaver.workflow = '/POG/BTAG/BJET' process.dqmSaver.convention = 'Offline' process.dqmSaver.saveByRun = cms.untracked.int32(-1) process.dqmSaver.saveAtJobEnd =cms.untracked.bool(True) process.dqmSaver.forceRunNumber = cms.untracked.int32(1) process.PoolSource.fileNames = [ ] #keep the logging output to a nice level process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = 100 process.GlobalTag = tag
datasets/TGS_salt/TGSDataset.py
liaopeiyuan/ml-arsenal-public
280
12771560
from dependencies import * IMAGE_HEIGHT, IMAGE_WIDTH = 101, 101 HEIGHT, WIDTH = 128, 128 DY0, DY1, DX0, DX1 = \ compute_center_pad(IMAGE_HEIGHT, IMAGE_WIDTH, factor=32) #---------------------------------------- def null_augment(image,label,index): cache = Struct(image = image.copy(), mask = mask.copy()) return image,label,index, cache def null_collate(batch): batch_size = len(batch) cache = [] input = [] truth = [] index = [] for b in range(batch_size): input.append(batch[b][0]) truth.append(batch[b][1]) index.append(batch[b][2]) cache.append(batch[b][3]) input = torch.from_numpy(np.array(input)).float().unsqueeze(1) if truth[0]!=[]: truth = torch.from_numpy(np.array(truth)).float().unsqueeze(1) return input, truth, index, cache #---------------------------------------- class TGSDataset(Dataset): def __init__(self, split, augment=null_augment, mode='train'): super(TGSDataset, self).__init__() self.split = split self.mode = mode self.augment = augment split_file = CODE + '/datasets/TGS_salt/splits/' + split lines = read_list_from_file(split_file) self.ids = [] self.images = [] for l in lines: folder, name = l.split('/') image_file = DATA + '/' + folder + '/images/' + name +'.png' image = cv2.imread(image_file,cv2.IMREAD_GRAYSCALE).astype(np.float32)/255 self.images.append(image) self.ids.append(name) #print(image.shape) self.masks = [] if self.mode in ['train','valid']: for l in lines: folder, file = l.split('/') mask_file = DATA + '/' + folder + '/masks/' + file +'.png' mask = cv2.imread(mask_file,cv2.IMREAD_GRAYSCALE).astype(np.float32)/255 self.masks.append(mask) elif self.mode in ['test']: self.masks = [[] for l in lines] #------- df = pd.read_csv(DATA + '/depths.csv') df = df.set_index('id') self.zs = df.loc[self.ids].z.values #------- print('\tTGSDataset') print('\tsplit = %s'%split) print('\tlen(self.images) = %d'%len(self.images)) print('') def __getitem__(self, index): image = self.images[index] mask = self.masks[index] return self.augment(image, mask, index) def __len__(self): return len(self.images) def run_check_data(): dataset = TGSDataset('list_train0_3600', mode='train') # #-- zz=0 zero = np.zeros((101,101),np.uint8) save_dir = CODE+'/datasets/TGS_salt/demo' num = len(dataset) for m in [3,5,6,7,8,9,10,11,12]: image = dataset.images[m] mask = dataset.masks [m] cv2.imshow('image',image) #image_show_norm('image',image,1, 2) #image_show_norm('mask', mask,1, 2) for i in range(5): #image1, mask1 = do_random_pad_to_factor2(image, mask, limit=(-4,4), factor=32) #image1, mask1 = do_horizontal_flip2(image, mask) mask1 = mask #image1 = do_invert_intensity(image) #image1 = do_brightness_shift(image, np.random.uniform(-0.125,0.125)) #image1 = do_brightness_multiply(image, np.random.uniform(1-0.125,1+0.125)) image1 = do_gamma(image, np.random.uniform(1-0.25,1+0.25)) #----------------------------------------------- image1 = (image1*255).astype(np.uint8) image1 = np.dstack([ image1, image1, image1]) #overlay1 = draw_mask_overlay(mask1, image1, color=[0,0,255]) #image_show('overlay1',overlay1,2) #image_show('image1',image1,2) #image_show_norm('mask1',mask1,1, 2) #cv2.waitKey(0) # main ################################################################# if __name__ == '__main__': print( '%s: calling main function ... ' % os.path.basename(__file__)) run_check_data()
community/dm-scaffolder/configs.py
shan2202/deploymentmanager-samples
930
12771561
<reponame>shan2202/deploymentmanager-samples # Copyright 2018 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ruamel.yaml import YAML class Config: yaml = YAML() def __init__(self, path): self.path = path f = open(path, "r") self.configs = self.yaml.load(f.read()) f.close() def update_folders(self, folders): self.configs['folders_list_cache'] = folders print 'lets write' with open(self.path, 'w') as yf: self.yaml.dump(self.configs, stream=yf)
spirit/user/migrations/0009_auto_20161114_1850.py
Ke-xueting/Spirit
974
12771562
<gh_stars>100-1000 # -*- coding: utf-8 -*- # Generated by Django 1.9.11 on 2016-11-14 18:50 from django.db import migrations def user_model_content_type(apps, schema_editor): from ...core.conf import settings if not hasattr(settings, 'AUTH_USER_MODEL'): return user = apps.get_model(settings.AUTH_USER_MODEL) if user._meta.db_table == 'spirit_user_user': app_label, model = settings.AUTH_USER_MODEL.split('.') content_types = apps.get_model('contenttypes.ContentType') (content_types.objects .filter( app_label='spirit_user', model='User'.lower()) .update( app_label=app_label, model=model.lower())) class Migration(migrations.Migration): dependencies = [ ('spirit_user', '0008_auto_20161114_1707'), ] operations = [ migrations.RunPython(user_model_content_type), ]
pyxb/bundles/opengis/examples/demo.py
eLBati/pyxb
123
12771565
from __future__ import print_function import pyxb.bundles.opengis.gml as gml dv = gml.DegreesType(32, direction='N') print(dv.toDOM(element_name='degrees').toxml("utf-8"))
music21/stream/streamStatus.py
cuthbertLab/music21
1,449
12771595
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Name: streamStatus.py # Purpose: functionality for reporting on the notational status of streams # # Authors: <NAME> # # Copyright: Copyright © 2013 <NAME> and the music21 # Project # License: BSD, see license.txt # ----------------------------------------------------------------------------- import unittest from music21 import environment from music21 import common from music21.common.objects import SlottedObjectMixin environLocal = environment.Environment(__file__) # ----------------------------------------------------------------------------- class StreamStatus(SlottedObjectMixin): ''' An object that stores the current notation state for the client stream. Separates out tasks such as whether notation has been made, etc. >>> s = stream.Stream() >>> ss = s.streamStatus >>> ss <music21.stream.streamStatus.StreamStatus object at 0x...> >>> s.streamStatus.client is s True Copying of StreamStatus and surrounding Streams >>> import copy >>> ss2 = copy.deepcopy(ss) >>> ss2.client is None True >>> s2 = copy.deepcopy(s) >>> s2.streamStatus <music21.stream.streamStatus.StreamStatus object at 0x...> >>> s2.streamStatus is ss False >>> s2.streamStatus.client is s2 True ''' # CLASS VARIABLES # __slots__ = ( '_accidentals', '_beams', '_client', '_concertPitch', '_dirty', '_enharmonics', '_measures', '_ornaments', '_rests', '_ties', '_tuplets', ) # INITIALIZER # def __init__(self, client=None): self._client = None self._accidentals = None self._beams = None self._concertPitch = None self._dirty = None self._enharmonics = None self._measures = None self._ornaments = None self._rests = None self._ties = None self._tuplets = None self.client = client # SPECIAL METHODS # def __deepcopy__(self, memo=None): ''' Manage deepcopying by creating a new reference to the same object. leaving out the client ''' new = type(self)() for x in self.__slots__: if x == '_client': new._client = None else: setattr(new, x, getattr(self, x)) return new # unwrap weakref for pickling def __getstate__(self): self._client = common.unwrapWeakref(self._client) return SlottedObjectMixin.__getstate__(self) def __setstate__(self, state): SlottedObjectMixin.__setstate__(self, state) self._client = common.wrapWeakref(self._client) # PUBLIC METHODS # def haveAccidentalsBeenMade(self): ''' If Accidentals.displayStatus is None for all contained pitches, it as assumed that accidentals have not been set for display and/or makeAccidentals has not been run. If any Accidental has displayStatus other than None, this method returns True, regardless of if makeAccidentals has actually been run. ''' for p in self.client.pitches: if p.accidental is not None: if p.accidental.displayStatus is not None: return True return False def haveBeamsBeenMade(self): ''' If any Note in this Stream has .beams defined, it as assumed that Beams have not been set and/or makeBeams has not been run. If any Beams exist, this method returns True, regardless of if makeBeams has actually been run. ''' for n in self.client.recurse(classFilter=('NotRest',), restoreActiveSites=False): if n.beams is not None and n.beams.beamsList: return True return False def haveTupletBracketsBeenMade(self): ''' If any GeneralNote in this Stream is a tuplet, then check to see if any of them have a first Tuplet with type besides None return True. Otherwise return False if there is a tuplet. Return None if no Tuplets. >>> s = stream.Stream() >>> s.streamStatus.haveTupletBracketsBeenMade() is None True >>> s.append(note.Note()) >>> s.streamStatus.haveTupletBracketsBeenMade() is None True >>> n = note.Note(quarterLength=1/3) >>> s.append(n) >>> s.streamStatus.haveTupletBracketsBeenMade() False >>> n.duration.tuplets[0].type = 'start' >>> s.streamStatus.haveTupletBracketsBeenMade() True ''' foundTuplet = False for n in self.client.recurse(classFilter='GeneralNote', restoreActiveSites=False): if n.duration.tuplets: foundTuplet = True if n.duration.tuplets[0].type is not None: return True if foundTuplet: return False else: return None # PUBLIC PROPERTIES # @property def client(self): return common.unwrapWeakref(self._client) @client.setter def client(self, client): # client is the Stream that this status lives on self._client = common.wrapWeakref(client) @property def accidentals(self): if self._accidentals is None: self._accidentals = self.haveAccidentalsBeenMade() return self._accidentals @accidentals.setter def accidentals(self, expr): if expr is not None: self._accidentals = bool(expr) else: self._accidentals = None @property def beams(self): if self._beams is None: self._beams = self.haveBeamsBeenMade() return self._beams @beams.setter def beams(self, expr): if expr is not None: self._beams = bool(expr) else: self._beams = None @property def tuplets(self): if self._tuplets is None: self._tuplets = self.haveTupletBracketsBeenMade() # If there were no tuplet durations, # tuplet brackets don't need to be made. if self._tuplets is None: self._tuplets = True return self._tuplets @tuplets.setter def tuplets(self, expr): if expr is not None: self._tuplets = bool(expr) else: self._tuplets = None # ----------------------------------------------------------------------------- class Test(unittest.TestCase): ''' Note: most Stream tests are found in stream.tests ''' def testHaveBeamsBeenMadeAfterDeepcopy(self): import copy from music21 import stream from music21 import note m = stream.Measure() c = note.Note('C4', type='quarter') m.append(c) d1 = note.Note('D4', type='eighth') d2 = note.Note('D4', type='eighth') m.append([d1, d2]) e3 = note.Note('E4', type='eighth') e4 = note.Note('E4', type='eighth') m.append([e3, e4]) d1.beams.append('start') d2.beams.append('stop') self.assertTrue(m.streamStatus.haveBeamsBeenMade()) mm = copy.deepcopy(m) self.assertTrue(mm.streamStatus.haveBeamsBeenMade()) mm.streamStatus.beams = False mmm = copy.deepcopy(mm) self.assertFalse(mmm.streamStatus.beams) # m.show() # ----------------------------------------------------------------------------- if __name__ == '__main__': import music21 music21.mainTest(Test)
dcase_util/containers/mapping.py
ankitshah009/dcase_util
122
12771597
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function, absolute_import from six import iteritems import os import csv from dcase_util.containers import DictContainer from dcase_util.utils import FileFormat class OneToOneMappingContainer(DictContainer): """Mapping container class for 1:1 data mapping, inherited from DictContainer class.""" valid_formats = [FileFormat.CSV, FileFormat.TXT, FileFormat.CPICKLE] #: Valid file formats def __init__(self, *args, **kwargs): # Run DictContainer init DictContainer.__init__(self, *args, **kwargs) super(OneToOneMappingContainer, self).__init__(*args, **kwargs) def load(self, filename=None): """Load file Parameters ---------- filename : str, optional File path Default value filename given to class constructor Raises ------ ImportError: Error if file format specific module cannot be imported IOError: File does not exists or has unknown file format Returns ------- self """ if filename: self.filename = filename self.detect_file_format() self.validate_format() dict.clear(self) if self.exists(): from dcase_util.files import Serializer if self.format == FileFormat.TXT or self.format == FileFormat.CSV: map_data = {} with open(self.filename, 'rtU') as f: for row in csv.reader(f, delimiter=self.delimiter()): if len(row) == 2: map_data[row[0]] = row[1] dict.update(self, map_data) elif self.format == FileFormat.CPICKLE: dict.update(self, Serializer.load_cpickle(filename=self.filename)) else: message = '{name}: Unknown format [{format}]'.format(name=self.__class__.__name__, format=self.filename) self.logger.exception(message) raise IOError(message) else: message = '{name}: File does not exists [{file}]'.format(name=self.__class__.__name__, file=self.filename) self.logger.exception(message) raise IOError(message) # Check if after load function is defined, call if found if hasattr(self, '_after_load'): self._after_load() return self def save(self, filename=None): """Save file Parameters ---------- filename : str, optional File path Default value filename given to class constructor Raises ------ ImportError: Error if file format specific module cannot be imported IOError: File has unknown file format Returns ------- self """ if filename: self.filename = filename self.detect_file_format() self.validate_format() if self.filename is None or self.filename == '': message = '{name}: Filename is empty [{filename}]'.format( name=self.__class__.__name__, filename=self.filename ) self.logger.exception(message) raise IOError(message) try: from dcase_util.files import Serializer if self.format == FileFormat.CSV or self.format == FileFormat.TXT: delimiter = ',' with open(self.filename, 'w') as csv_file: csv_writer = csv.writer(csv_file, delimiter=delimiter) for key, value in iteritems(self): if key not in ['filename']: csv_writer.writerow((key, value)) elif self.format == FileFormat.CPICKLE: Serializer.save_cpickle(filename=self.filename, data=dict(self)) else: message = '{name}: Unknown format [{format}]'.format(name=self.__class__.__name__, format=self.filename) self.logger.exception(message) raise IOError(message) except KeyboardInterrupt: os.remove(self.filename) # Delete the file, since most likely it was not saved fully raise # Check if after save function is defined, call if found if hasattr(self, '_after_save'): self._after_save() return self @property def flipped(self): """Exchange map key and value pairs. Returns ------- OneToOneMappingContainer flipped map """ return OneToOneMappingContainer(dict((v, k) for k, v in iteritems(self))) def map(self, key, default=None): """Map with a key. Parameters ---------- key : str or number Mapping key default : str or number Default value to be returned if key does not exists in the mapping container. Returns ------- OneToOneMappingContainer flipped map """ if key in self: return self[key] else: return default
desktop/core/ext-py/python-ldap-2.3.13/setup.py
kokosing/hue
5,079
12771619
<reponame>kokosing/hue """ setup.py - Setup package with the help Python's DistUtils See http://www.python-ldap.org/ for details. $Id: setup.py,v 1.65 2009/10/21 17:32:11 stroeder Exp $ """ has_setuptools = False try: from setuptools import setup, Extension has_setuptools = True except ImportError: from distutils.core import setup, Extension from ConfigParser import ConfigParser import sys,os,string,time ################################################################## # Weird Hack to grab release version of python-ldap from local dir ################################################################## exec_startdir = os.path.dirname(os.path.abspath(sys.argv[0])) package_init_file_name = reduce(os.path.join,[exec_startdir,'Lib','ldap','__init__.py']) f = open(package_init_file_name,'r') s = f.readline() while s: s = string.strip(s) if s[0:11]=='__version__': version = eval(string.split(s,'=')[1]) break s = f.readline() f.close() #-- A class describing the features and requirements of OpenLDAP 2.0 class OpenLDAP2: library_dirs = [] include_dirs = [] extra_compile_args = [] extra_link_args = [] extra_objects = [] libs = ['ldap', 'lber'] defines = [ ] extra_files = [] LDAP_CLASS = OpenLDAP2 #-- Read the [_ldap] section of setup.cfg cfg = ConfigParser() cfg.read('setup.cfg') if cfg.has_section('_ldap'): for name in dir(LDAP_CLASS): if cfg.has_option('_ldap', name): print name + ': ' + cfg.get('_ldap', name) setattr(LDAP_CLASS, name, string.split(cfg.get('_ldap', name))) for i in range(len(LDAP_CLASS.defines)): LDAP_CLASS.defines[i]=((LDAP_CLASS.defines[i],None)) for i in range(len(LDAP_CLASS.extra_files)): destdir, origfiles = string.split(LDAP_CLASS.extra_files[i], ':') origfileslist = string.split(origfiles, ',') LDAP_CLASS.extra_files[i]=(destdir, origfileslist) #-- Let distutils/setuptools do the rest name = 'python-ldap' # Python 2.3.6+ and setuptools are needed to build eggs, so # let's handle setuptools' additional keyword arguments to # setup() in a fashion that doesn't break compatibility to # distutils. This still allows 'normal' builds where either # Python > 2.3.5 or setuptools (or both ;o) are not available. kwargs = dict() if has_setuptools: kwargs = dict( include_package_data = True, install_requires = ['setuptools'], zip_safe = False) setup( #-- Package description name = name, version = version, description = 'Various LDAP-related Python modules', author = '<NAME>, <NAME>, et al.', author_email = '<EMAIL>', url = 'http://www.python-ldap.org/', #-- C extension modules ext_modules = [ Extension( '_ldap', [ 'Modules/LDAPObject.c', 'Modules/ldapcontrol.c', 'Modules/common.c', 'Modules/constants.c', 'Modules/errors.c', 'Modules/functions.c', 'Modules/schema.c', 'Modules/ldapmodule.c', 'Modules/message.c', 'Modules/version.c', 'Modules/options.c', 'Modules/berval.c', ], libraries = LDAP_CLASS.libs, include_dirs = ['Modules'] + LDAP_CLASS.include_dirs, library_dirs = LDAP_CLASS.library_dirs, extra_compile_args = LDAP_CLASS.extra_compile_args, extra_link_args = LDAP_CLASS.extra_link_args, extra_objects = LDAP_CLASS.extra_objects, runtime_library_dirs = (not sys.platform.startswith("win"))*LDAP_CLASS.library_dirs, define_macros = LDAP_CLASS.defines + \ ('ldap_r' in LDAP_CLASS.libs or 'oldap_r' in LDAP_CLASS.libs)*[('HAVE_LIBLDAP_R',None)] + \ ('sasl' in LDAP_CLASS.libs or 'sasl2' in LDAP_CLASS.libs or 'libsasl' in LDAP_CLASS.libs)*[('HAVE_SASL',None)] + \ ('ssl' in LDAP_CLASS.libs and 'crypto' in LDAP_CLASS.libs)*[('HAVE_TLS',None)] + \ [('LDAPMODULE_VERSION', version)] ), ], #-- Python "stand alone" modules py_modules = [ 'ldapurl', 'ldif', 'dsml', 'ldap', 'ldap.async', 'ldap.controls', 'ldap.cidict', 'ldap.dn', 'ldap.filter', 'ldap.functions', 'ldap.ldapobject', 'ldap.modlist', 'ldap.resiter', 'ldap.sasl', 'ldap.schema', 'ldap.schema.models', 'ldap.schema.subentry', 'ldap.schema.tokenizer', ], package_dir = {'': 'Lib',}, data_files = LDAP_CLASS.extra_files, **kwargs )
python/367_Valid_Perfect_Square.py
dvlpsh/leetcode-1
4,416
12771629
class Solution(object): # def isPerfectSquare(self, num): # """ # :type num: int # :rtype: bool # """ # i = 1 # while num > 0: # num -= i # i += 2 # return num == 0 def isPerfectSquare(self, num): low, high = 1, num while low <= high: mid = (low + high) / 2 mid_square = mid * mid if mid_square == num: return True elif mid_square < num: low = mid + 1 else: high = mid - 1 return False # def isPerfectSquare(self, num): # x = num # while x * x > num: # x = (x + num / x) / 2 # return x * x == num
corehq/apps/sms/management/commands/change_phonenumber_backend.py
dimagilg/commcare-hq
471
12771663
<filename>corehq/apps/sms/management/commands/change_phonenumber_backend.py<gh_stars>100-1000 import os import sys from collections import defaultdict from django.core.management.base import BaseCommand import csv from corehq.util.log import with_progress_bar from ...models import PhoneNumber, SQLMobileBackend from ...util import clean_phone_number class Command(BaseCommand): help = "Reassign phone numbers with old backend id to new backend id" def add_arguments(self, parser): parser.add_argument("old_backend", help="Old backend ID") parser.add_argument("--new-backend", help=( "New backend ID. Dry-run if this option is absent. Use 'None' " "to clear the old backend without specifying a new backend; " "the phone number will use the domain/system default backend." )) parser.add_argument("--domain", help="Limit to phone numbers in domain.") parser.add_argument("--dump-csv", help="Dump phone numbers to CSV file path " "(the path is the value given for this option).") def handle(self, old_backend, new_backend=None, domain=None, **options): query = PhoneNumber.objects.filter(backend_id=old_backend) if domain is not None: query = query.filter(domain=domain) if options["dump_csv"]: dump_csv(query, options["dump_csv"]) print_counts_by_default_backend(query) print("Total assigned to {}: {}".format(old_backend, len(query))) if new_backend: reassign(query, new_backend) def dump_csv(query, path): path = os.path.expanduser(path) print("dumping to CSV: {}".format(path)) with open(path, "w", encoding="utf-8") as output: csvfile = csv.writer(output) csvfile.writerow(["domain", "couch_id", "phonenumber"]) for phone in query: csvfile.writerow([ phone.domain, phone.couch_id, phone.phone_number, ]) def print_counts_by_default_backend(query): counts = defaultdict(int) for phone in with_progress_bar(query, len(query), oneline=True): default_backend = SQLMobileBackend.load_default_by_phone_and_domain( SQLMobileBackend.SMS, clean_phone_number(phone.phone_number), domain=phone.domain ) counts[default_backend.name] += 1 print("Counts by default backend") for default, count in sorted(counts.items()): print("{:<25}{:>4}".format(default, count)) def reassign(query, new_backend): if new_backend == "None": new_backend = None ok = confirm("Reassign to {}".format(new_backend)) if ok: updated = query.update(backend_id=new_backend) print("{} phone numbers updated".format(updated)) else: print("abort") sys.exit(1) def confirm(msg): return input(msg + " (y/N) ").lower() == 'y'
external/plex/dist/tests/test10.py
almartin82/bayeslite
964
12771667
<filename>external/plex/dist/tests/test10.py # Test traditional regular expression syntax. import Test from Plex.Traditional import re from Plex.Errors import PlexError from Plex import Seq, AnyBut def test_err(s): try: print re(s) except PlexError, e: print e print re("") print re("a") print re("[a]") print re("[ab]") print re("[abc]") print re("[a-c]") print re("[a-cd]") print re("[a-cg-i]") print re("[^a]") print re("[^a-cg-i]") print re("[-]") print re("[-abc]") print re("[abc-]") print re("[]]") print re("[]-]") print re("[^-]") print re("[^-abc]") print re("[^abc-]") print re("[^]]") print re("[^]-]") print re("a*") print re("a+") print re("a?") print re("a*+?") print re("ab") print re("a|b") print re("abcde") print re("a|b|c|d|e") print re("abc|def|ghi") print re("abc(def|ghi)") print re("ab\(c\[de") print re("^abc$") print str(re(".")) == str(Seq(AnyBut('\n'))) test_err("abc(de") test_err("abc[de") test_err("abc)de")
lomond/events.py
johnashu/dataplicity-lomond
225
12771668
from __future__ import unicode_literals import json import time class Event(object): """Base class for a websocket 'event'.""" __slots__ = ['received_time'] def __init__(self): self.received_time = time.time() def __repr__(self): return "{}()".format(self.__class__.__name__) @classmethod def _summarize_bytes(cls, data, max_len=24): """Avoid spamming logs by truncating byte strings in repr.""" if len(data) > max_len: return "{!r} + {} bytes".format( data[:max_len], len(data) - max_len ) return repr(data) @classmethod def _summarize_text(cls, text, max_len=24): """Avoid spamming logs by truncating text.""" if len(text) > max_len: return "{!r} + {} chars".format( text[:max_len], len(text) - max_len ) return repr(text) class Poll(Event): """A generated poll event.""" name = 'poll' class Connecting(Event): """ Generated prior to establishing a websocket connection to a server. :param url: The websocket URL the websocket is connecting to. """ __slots__ = ['url'] name = 'connecting' def __init__(self, url): self.url = url super(Connecting, self).__init__() def __repr__(self): return "{}(url='{}')".format(self.__class__.__name__, self.url) class ConnectFail(Event): """ Generate when Lomond was unable to connect to a Websocket server. :param reason: A short description of the reason for the failure. :type reason: str """ __slots__ = ['reason'] name = 'connect_fail' def __init__(self, reason): self.reason = reason super(ConnectFail, self).__init__() def __repr__(self): return "{}(reason='{}')".format( self.__class__.__name__, self.reason, ) class Connected(Event): """Generated when Lomond has connected to a server but not yet negotiated the websocket upgrade. :param str url: The websocket URL connected to. :param str proxy: The proxy URL connected to (or None). """ __slots__ = ['url', 'proxy'] name = 'connected' def __init__(self, url, proxy=None): self.url = url self.proxy = proxy super(Connected, self).__init__() def __repr__(self): _class = self.__class__.__name__ return ( "{}(url='{}')".format(_class, self.url) if self.proxy is None else "{}(url='{}', proxy='{}')".format( _class, self.url, self.proxy ) ) class Rejected(Event): """Server rejected WS connection.""" __slots__ = ['response', 'reason'] name = 'rejected' def __init__(self, response, reason): """ Generated when Lomond is connected to the server, but the websocket upgrade failed. :param response: The response returned by the server. :param str reason: A description of why the connection was rejects. """ self.response = response self.reason = reason super(Rejected, self).__init__() def __repr__(self): return "{}(response={!r}, reason='{}')".format( self.__class__.__name__, self.response, self.reason ) class Ready(Event): """Generated when Lomond has connected to the server, and successfully negotiated the websocket upgrade. :param response: A :class:`~lomond.response.Response` object. :param str protocol: A websocket protocol or ``None`` if no protocol was supplied. :param set extensions: A set of negotiated websocket extensions. Currently only the ``'permessage-deflate'`` extension is supported. """ __slots__ = ['response', 'protocol', 'extensions'] name = 'ready' def __init__(self, response, protocol, extensions): self.response = response self.protocol = protocol self.extensions = extensions super(Ready, self).__init__() def __repr__(self): return '{}(response={!r}, protocol={!r}, extensions={!r})'.format( self.__class__.__name__, self.response, self.protocol, self.extensions ) class ProtocolError(Event): """Generated when the server deviates from the protocol. :param str error: A description of the error. :param bool critical: Indicates if the error is considered 'critical'. If ``True``, Lomond will disconnect immediately. If ``False``, Lomond will send a close message to the server. """ __slots__ = ['error', 'critical'] name = 'protocol_error' def __init__(self, error, critical): self.error = error self.critical = critical super(ProtocolError, self).__init__() def __repr__(self): return "{}(error='{}', critical={!r})".format( self.__class__.__name__, self.error, self.critical ) class Unresponsive(Event): """The server has not responding to pings within `ping_timeout` seconds. Will be followed by a :class:`~lomond.events.Disconnected` event. """ name = 'unresponsive' class Disconnected(Event): """Generated when a websocket connection has been dropped. :param str reason: A description of why the websocket was closed. :param bool graceful: Flag indicating if the connection was dropped gracefully (`True`), or disconnected due to a socket failure (`False`) or other problem. """ __slots__ = ['graceful', 'reason'] name = 'disconnected' def __init__(self, reason='closed', graceful=False): self.reason = reason self.graceful = graceful super(Disconnected, self).__init__() def __repr__(self): return "{}(reason='{}', graceful={!r})".format( self.__class__.__name__, self.reason, self.graceful ) class Closed(Event): """Generated when the websocket was closed. The websocket may no longer send packets after this event has been received. This event will be followed by :class:`~lomond.events.Disconnected`. :param code: The closed code returned from the server. :param str reason: An optional description why the websocket was closed, as returned from the server. """ __slots__ = ['code', 'reason'] name = 'closed' def __init__(self, code, reason): self.code = code self.reason = reason super(Closed, self).__init__() def __repr__(self): return '{}(code={!r}, reason={!r})'.format( self.__class__.__name__, self.code, self.reason, ) class Closing(Event): """Generated when the server is closing the connection. No more messages will be received from the server, but you may still send messages while handling this event. A :class:`~lomond.events.Disconnected` event should be generated shortly after this event. :param code: The closed code returned from the server. :param str reason: An optional description why the websocket was closed, as returned from the server. """ __slots__ = ['code', 'reason'] name = 'closing' def __init__(self, code, reason): self.code = code self.reason = reason super(Closing, self).__init__() def __repr__(self): return '{}(code={!r}, reason={!r})'.format( self.__class__.__name__, self.code, self.reason, ) class UnknownMessage(Event): """ An application message was received, with an unknown opcode. """ __slots__ = ['message'] name = 'unknown' def __init__(self, message): self.message = message super(UnknownMessage, self).__init__() class Ping(Event): """Generated when Lomond received a ping packet from the server. :param bytes data: Ping payload data. """ __slots__ = ['data'] name = 'ping' def __init__(self, data): self.data = data super(Ping, self).__init__() def __repr__(self): return "{}(data={!r})".format(self.__class__.__name__, self.data) class Pong(Event): """Generated when Lomond receives a pong packet from the server. :param bytes data: The pong payload data. """ __slots__ = ['data'] name = 'pong' def __init__(self, data): self.data = data super(Pong, self).__init__() def __repr__(self): return "{}(data={!r})".format(self.__class__.__name__, self.data) class Text(Event): """Generated when Lomond receives a text message from the server. :param str text: The text payload. """ __slots__ = ['text', '_json'] name = 'text' def __init__(self, text): self.text = text self._json = None super(Text, self).__init__() @property def json(self): """Text decoded as JSON. Calls ``json.loads`` to decode the ``text`` attribute, and may throw the same exceptions if the text is not valid json. """ if self._json is None: self._json = json.loads(self.text) return self._json def __repr__(self): return "{}(text={})".format( self.__class__.__name__, self._summarize_text(self.text) ) class Binary(Event): """Generated when Lomond receives a binary message from the server. :param bytes data: The binary payload. """ __slots__ = ['data'] name = 'binary' def __init__(self, data): self.data = data super(Binary, self).__init__() def __repr__(self): return "{}(data={})".format( self.__class__.__name__, self._summarize_bytes(self.data) ) class BackOff(Event): """Generated when a persistent connection has to wait before re- attempting a connection. :param float delay: The delay (in seconds) before Lomond will re- attempt to connect. """ __slots__ = ['delay'] name = 'back_off' def __init__(self, delay): self.delay = delay super(BackOff, self).__init__() def __repr__(self): return "{}(delay={:0.1f})".format( self.__class__.__name__, self.delay )
Calibration/IsolatedParticles/test/python/proto_runIsolatedTracksNxNNzsData_cfg.py
ckamtsikis/cmssw
852
12771683
import FWCore.ParameterSet.Config as cms process = cms.Process("L1SKIM") process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = 100000 process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) ####################### configure pool source ############################# process.source = cms.Source("PoolSource", fileNames =cms.untracked.vstring( '/store/data/Run2010A/MinimumBias/RECO/Apr21ReReco-v1/0000/08275F4A-5270-E011-9DC3-003048635E02.root' ), skipEvents = cms.untracked.uint32(0) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(100) ) ##################### digi-2-raw plus L1 emulation ######################### process.load("Configuration.StandardSequences.Services_cff") process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.StandardSequences.MagneticField_cff') #################### Conditions and L1 menu ################################ process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") from Configuration.AlCa.autoCond import autoCond process.GlobalTag.globaltag=autoCond['run1_data'] ############ Skim the events according to the L1 seeds #################### #select on HLT_HcalNZS_8E29 trigger import HLTrigger.HLTfilters.hltLevel1GTSeed_cfi process.skimL1Seeds = HLTrigger.HLTfilters.hltLevel1GTSeed_cfi.hltLevel1GTSeed.clone() process.skimL1Seeds.L1GtReadoutRecordTag = cms.InputTag("gtDigis") process.skimL1Seeds.L1GtObjectMapTag = cms.InputTag("hltL1GtObjectMap") process.skimL1Seeds.L1CollectionsTag = cms.InputTag("l1extraParticles") process.skimL1Seeds.L1MuonCollectionTag = cms.InputTag("l1extraParticles") process.skimL1Seeds.L1SeedsLogicalExpression = "L1_SingleEG2 OR L1_SingleEG5 OR L1_SingleEG8 OR L1_SingleEG10 OR L1_SingleEG12 OR L1_SingleEG15 OR L1_SingleEG20 OR L1_SingleIsoEG5 OR L1_SingleIsoEG8 OR L1_SingleIsoEG10 OR L1_SingleIsoEG12 OR L1_SingleIsoEG15 OR L1_SingleJet6U OR L1_SingleJet10U OR L1_SingleJet20U OR L1_SingleJet30U OR L1_SingleJet40U OR L1_SingleJet50U OR L1_SingleJet60U OR L1_SingleTauJet10U OR L1_SingleTauJet20U OR L1_SingleTauJet30U OR L1_SingleTauJet50U OR L1_SingleMuOpen OR L1_SingleMu0 OR L1_SingleMu3 OR L1_SingleMu5 OR L1_SingleMu7 OR L1_SingleMu10 OR L1_SingleMu14 OR L1_SingleMu20 OR L1_ZeroBias" # select on HLT_HcalPhiSym trigger process.load("HLTrigger.HLTfilters.hltLevel1Activity_cfi") process.hltLevel1Activity.L1GtReadoutRecordTag = cms.InputTag('gtDigis') ######################## Configure Analyzer ############################### process.load("RecoLocalCalo.EcalRecAlgos.EcalSeverityLevelESProducer_cfi") process.load("Calibration.IsolatedParticles.isolatedTracksNxN_cfi") process.isolatedTracksNxN.Verbosity = cms.untracked.int32( 0 ) process.isolatedTracksNxN.HBHERecHitSource = cms.InputTag("hbhereco") process.isolatedTracksNxN.L1TriggerAlgoInfo = True #process.isolatedTracksNxN.DebugL1Info = True process.isolatedTracksNxN_NZS = process.isolatedTracksNxN.clone( Verbosity = cms.untracked.int32( 0 ), HBHERecHitSource = cms.InputTag("hbherecoMB"), L1TriggerAlgoInfo = True ) process.TFileService = cms.Service("TFileService", fileName = cms.string('IsolatedTracksNxNData.root') ) # configure Technical Bits to ensure collision and remove BeamHalo process.load('L1TriggerConfig.L1GtConfigProducers.L1GtTriggerMaskTechTrigConfig_cff') process.load('HLTrigger/HLTfilters/hltLevel1GTSeed_cfi') process.hltLevel1GTSeed.L1TechTriggerSeeding = cms.bool(True) process.hltLevel1GTSeed.L1SeedsLogicalExpression = cms.string('0 AND NOT (36 OR 37 OR 38 OR 39)') # filter out scrapping events process.noScraping= cms.EDFilter("FilterOutScraping", applyfilter = cms.untracked.bool(True), debugOn = cms.untracked.bool(False), ## Or 'True' to get some per-event info numtrack = cms.untracked.uint32(10), thresh = cms.untracked.double(0.25) ) # select on primary vertex process.primaryVertexFilter = cms.EDFilter("GoodVertexFilter", vertexCollection = cms.InputTag('offlinePrimaryVertices'), minimumNDOF = cms.uint32(4) , maxAbsZ = cms.double(25.0), maxd0 = cms.double(5.0) ) #============================================================================= # define an EndPath to analyze all other path results process.hltTrigReport = cms.EDAnalyzer( 'HLTrigReport', HLTriggerResults = cms.InputTag( 'TriggerResults','','HLT') ) process.load("L1Trigger.GlobalTriggerAnalyzer.l1GtTrigReport_cfi") process.l1GtTrigReport.L1GtRecordInputTag = 'gtDigis' process.l1GtTrigReport.PrintVerbosity = 1 #============================================================================= #### by Benedikt process.p1 = cms.Path(process.primaryVertexFilter * process.hltLevel1GTSeed * process.noScraping * process.skimL1Seeds *process.isolatedTracksNxN * process.isolatedTracksNxN_NZS) process.e = cms.EndPath(process.l1GtTrigReport + process.hltTrigReport)
build/plugins/lib/nots/package_manager/pnpm/tests/workspace.py
jochenater/catboost
6,989
12771684
<filename>build/plugins/lib/nots/package_manager/pnpm/tests/workspace.py from build.plugins.lib.nots.package_manager.base import PackageJson from build.plugins.lib.nots.package_manager.pnpm.workspace import PnpmWorkspace def test_workspace_get_paths(): ws = PnpmWorkspace(path="/packages/foo/pnpm-workspace.yaml") ws.packages = set([".", "../bar", "../../another/baz"]) assert sorted(ws.get_paths()) == [ "/another/baz", "/packages/bar", "/packages/foo", ] def test_workspace_set_from_package_json(): ws = PnpmWorkspace(path="/packages/foo/pnpm-workspace.yaml") pj = PackageJson(path="/packages/foo/package.json") pj.data = { "dependencies": { "@a/bar": "workspace:../bar", }, "devDependencies": { "@a/baz": "workspace:../../another/baz", }, "peerDependencies": { "@a/qux": "workspace:../../another/qux", }, "optionalDependencies": { "@a/quux": "workspace:../../another/quux", } } ws.set_from_package_json(pj) assert sorted(ws.get_paths()) == [ "/another/baz", "/another/quux", "/another/qux", "/packages/bar", "/packages/foo", ] def test_workspace_merge(): ws1 = PnpmWorkspace(path="/packages/foo/pnpm-workspace.yaml") ws1.packages = set([".", "../bar", "../../another/baz"]) ws2 = PnpmWorkspace(path="/another/baz/pnpm-workspace.yaml") ws2.packages = set([".", "../qux"]) ws1.merge(ws2) assert sorted(ws1.get_paths()) == [ "/another/baz", "/another/qux", "/packages/bar", "/packages/foo", ]
tests/test_processor.py
alisaifee/jira-cli
125
12771687
<gh_stars>100-1000 import unittest import mock from jiracli.interface import build_parser, cli class AddCommandTests(unittest.TestCase): def test_issue_type_parsing(self): "Previously, calling this would raise an exception on python3" with mock.patch("jiracli.interface.print_output"): with mock.patch("jiracli.interface.prompt") as prompt: with mock.patch("jiracli.interface.initialize") as init: init().get_issue_types.return_value = {'story': 1} cli("new title --type story --project FOO --description bar".split(" "))
mmf/datasets/processors/video_processors.py
dk25021999/mmf
1,928
12771749
# Copyright (c) Facebook, Inc. and its affiliates. # TODO: Once internal torchvision transforms become stable either in torchvision # or in pytorchvideo, move to use those transforms. import random import mmf.datasets.processors.functional as F import torch from mmf.common.registry import registry from mmf.datasets.processors import BaseProcessor @registry.register_processor("video_random_crop") class VideoRandomCrop(BaseProcessor): def __init__(self, *args, size=None, **kwargs): super().__init__() if size is None: raise TypeError("Parameter 'size' is required") self.size = size @staticmethod def get_params(vid, output_size): """Get parameters for ``crop`` for a random crop. """ h, w = vid.shape[-2:] th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th) j = random.randint(0, w - tw) return i, j, th, tw def __call__(self, vid): i, j, h, w = self.get_params(vid, self.size) return F.video_crop(vid, i, j, h, w) @registry.register_processor("video_center_crop") class VideoCenterCrop(BaseProcessor): def __init__(self, *args, size=None, **kwargs): super().__init__() if size is None: raise TypeError("Parameter 'size' is required") self.size = size def __call__(self, vid): return F.video_center_crop(vid, self.size) @registry.register_processor("video_resize") class VideoResize(BaseProcessor): def __init__(self, *args, size=None, **kwargs): if size is None: raise TypeError("Parameter 'size' is required") self.size = size def __call__(self, vid): return F.video_resize(vid, self.size) @registry.register_processor("video_to_tensor") class VideoToTensor(BaseProcessor): def __init__(self, *args, **kwargs): super().__init__() pass def __call__(self, vid): return F.video_to_normalized_float_tensor(vid) @registry.register_processor("video_normalize") class VideoNormalize(BaseProcessor): def __init__(self, mean=None, std=None, **kwargs): super().__init__() if mean is None and std is None: raise TypeError("'mean' and 'std' params are required") self.mean = mean self.std = std def __call__(self, vid): return F.video_normalize(vid, self.mean, self.std) @registry.register_processor("video_random_horizontal_flip") class VideoRandomHorizontalFlip(BaseProcessor): def __init__(self, p=0.5, **kwargs): super().__init__() self.p = p def __call__(self, vid): if random.random() < self.p: return F.video_hflip(vid) return vid @registry.register_processor("video_pad") class Pad(BaseProcessor): def __init__(self, padding=None, fill=0, **kwargs): super().__init__() if padding is None: raise TypeError("Parameter 'padding' is required") self.padding = padding self.fill = fill def __call__(self, vid): return F.video_pad(vid, self.padding, self.fill) @registry.register_processor("truncate_or_pad") class TruncateOrPad(BaseProcessor): # truncate or add 0 until the desired output size def __init__(self, output_size=None, **kwargs): super().__init__() if output_size is None: raise TypeError("Parameter 'output_size' is required") assert isinstance(output_size, (int, tuple)) self.output_size = output_size def __call__(self, sample): if sample.shape[1] >= self.output_size: return sample[0, : self.output_size] else: return torch.cat( (sample[0, :], torch.zeros(1, self.output_size - sample.shape[1])), axis=1, )
kanmail/server/mail/oauth_settings.py
frznvm0/Kanmail
1,118
12771783
<reponame>frznvm0/Kanmail from kanmail.settings.hidden import get_hidden_value OAUTH_PROVIDERS = { 'gmail': { 'auth_endpoint': 'https://accounts.google.com/o/oauth2/auth', 'token_endpoint': 'https://accounts.google.com/o/oauth2/token', 'profile_endpoint': 'https://www.googleapis.com/userinfo/v2/me', 'scope': 'https://mail.google.com https://www.googleapis.com/auth/userinfo.email', 'client_id': get_hidden_value('GOOGLE_OAUTH_CLIENT_ID'), 'client_secret': get_hidden_value('GOOGLE_OAUTH_CLIENT_SECRET'), }, }
bumblebee_status/modules/contrib/http_status.py
rosalogia/bumblebee-status
1,089
12771805
# pylint: disable=C0111,R0903 """Display HTTP status code Parameters: * http__status.label: Prefix label (optional) * http__status.target: Target to retrieve the HTTP status from * http__status.expect: Expected HTTP status contributed by `valkheim <https://github.com/valkheim>`_ - many thanks! """ from requests import head import psutil import core.module import core.widget import core.decorators class Module(core.module.Module): UNK = "UNK" @core.decorators.every(seconds=30) def __init__(self, config, theme): super().__init__(config, theme, core.widget.Widget(self.output)) self.__label = self.parameter("label") self.__target = self.parameter("target") self.__expect = self.parameter("expect", "200") def labelize(self, s): if self.__label is None: return s return "{}: {}".format(self.__label, s) def getStatus(self): try: res = head(self.__target) except Exception as e: print(e) return self.UNK else: status = str(res.status_code) return status def getOutput(self): if self.__status == self.__expect: return self.labelize(self.__status) else: reason = " != {}".format(self.__expect) return self.labelize("{}{}".format(self.__status, reason)) def output(self, widget): return self.__output def update(self): self.__status = self.getStatus() self.__output = self.getOutput() def state(self, widget): if self.__status == self.UNK: return "warning" if self.__status != self.__expect: return "critical" return self.__output # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
python/GafferImageUI/ResampleUI.py
ddesmond/gaffer
561
12771855
<gh_stars>100-1000 ########################################################################## # # Copyright (c) 2015, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of <NAME> nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import itertools import Gaffer import GafferImage Gaffer.Metadata.registerNode( GafferImage.Resample, "description", """ Utility node used internally within GafferImage, but not intended to be used directly by end users. """, plugs = { "matrix" : [ "description", """ The transform to be applied to the input image. This must contain only translation and scaling. """, ], "filter" : [ "description", """ The filter used to perform the resampling. The name of any OIIO filter may be specified. The default automatically picks an appropriate high-quality filter based on whether or not the image is being enlarged or reduced. """, "plugValueWidget:type", "GafferUI.PresetsPlugValueWidget", "preset:Default", "", ] + list( itertools.chain( *[ ( "preset:" + x.title(), x ) for x in GafferImage.FilterAlgo.filterNames() ] ) ), "filterScale" : [ "description", """ A multiplier for the scale of the filter used. Scaling up gives a softer result, scaling down gives a sharper result ( likely to alias or even create black patches where no pixels can be found ). Less than 1 is not recommended unless you have a special technical reason. """, ], "boundingMode" : [ "description", """ The method used when a filter references pixels outside the input data window. """, "preset:Black", GafferImage.Sampler.BoundingMode.Black, "preset:Clamp", GafferImage.Sampler.BoundingMode.Clamp, "plugValueWidget:type", "GafferUI.PresetsPlugValueWidget", ], "expandDataWindow" : [ "description", """ Expands the data window by the filter radius, to include the external pixels affected by the filter. """, ], "debug" : [ "description", """ Enables debug output. The HorizontalPass setting outputs an intermediate image filtered just in the horizontal direction - this is an internal optimisation used when filtering with a separable filter. The SinglePass setting forces all filtering to be done in a single pass (as if the filter was non-separable) and can be used for validating the results of the the two-pass (default) approach. """, "preset:Off", GafferImage.Resample.Debug.Off, "preset:HorizontalPass", GafferImage.Resample.Debug.HorizontalPass, "preset:SinglePass", GafferImage.Resample.Debug.SinglePass, "plugValueWidget:type", "GafferUI.PresetsPlugValueWidget", ], } )
tests/test_aio_trampoline.py
suned/pfun
126
12771857
import pytest from hypothesis import assume, given from pfun import compose, identity from pfun.aio_trampoline import Done from pfun.hypothesis_strategies import aio_trampolines, anything, unaries from .monad_test import MonadTest class TestTrampoline(MonadTest): @pytest.mark.asyncio @given(aio_trampolines(anything())) async def test_right_identity_law(self, trampoline): assert (await trampoline.and_then(Done).run()) == (await trampoline.run()) @pytest.mark.asyncio @given(anything(), unaries(aio_trampolines(anything()))) async def test_left_identity_law(self, value, f): assert (await Done(value).and_then(f).run()) == (await f(value).run()) @pytest.mark.asyncio @given( aio_trampolines(anything()), unaries(aio_trampolines(anything())), unaries(aio_trampolines(anything())) ) async def test_associativity_law(self, trampoline, f, g): assert (await trampoline.and_then(f).and_then(g).run( )) == (await trampoline.and_then(lambda x: f(x).and_then(g)).run()) @given(anything()) def test_equality(self, value): assert Done(value) == Done(value) @given(anything(), anything()) def test_inequality(self, first, second): assume(first != second) assert Done(first) != Done(second) @pytest.mark.asyncio @given(anything()) async def test_identity_law(self, value): assert (await Done(value).map(identity).run()) == (await Done(value).run()) @pytest.mark.asyncio @given(unaries(anything()), unaries(anything()), anything()) async def test_composition_law(self, f, g, value): h = compose(f, g) assert (await Done(value).map(g).map(f).run() ) == (await Done(value).map(h).run())
tests/test_sklearn_normalizer_converter.py
twosense/sklearn-onnx
323
12771859
# SPDX-License-Identifier: Apache-2.0 """ Tests scikit-normalizer converter. """ import unittest import numpy from sklearn.preprocessing import Normalizer from skl2onnx import convert_sklearn from skl2onnx.common.data_types import ( Int64TensorType, FloatTensorType, DoubleTensorType) from test_utils import dump_data_and_model, TARGET_OPSET class TestSklearnNormalizerConverter(unittest.TestCase): def test_model_normalizer(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", Int64TensorType([None, 1]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertTrue(len(model_onnx.graph.node) == 1) def test_model_normalizer_blackop(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", FloatTensorType([None, 3]))], target_opset=TARGET_OPSET, black_op={"Normalizer"}) self.assertNotIn('op_type: "Normalizer', str(model_onnx)) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32), model, model_onnx, basename="SklearnNormalizerL1BlackOp-SkipDim1") def test_model_normalizer_float_l1(self): model = Normalizer(norm="l1") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", FloatTensorType([None, 3]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertTrue(len(model_onnx.graph.node) == 1) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32), model, model_onnx, basename="SklearnNormalizerL1-SkipDim1") def test_model_normalizer_float_l2(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", FloatTensorType([None, 3]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertTrue(len(model_onnx.graph.node) == 1) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32), model, model_onnx, basename="SklearnNormalizerL2-SkipDim1") def test_model_normalizer_double_l1(self): model = Normalizer(norm="l1") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", DoubleTensorType([None, 3]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float64), model, model_onnx, basename="SklearnNormalizerL1Double-SkipDim1") def test_model_normalizer_double_l2(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", DoubleTensorType([None, 3]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float64), model, model_onnx, basename="SklearnNormalizerL2Double-SkipDim1") def test_model_normalizer_float_noshape(self): model = Normalizer(norm="l2") model_onnx = convert_sklearn( model, "scikit-learn normalizer", [("input", FloatTensorType([]))], target_opset=TARGET_OPSET) self.assertTrue(model_onnx is not None) self.assertTrue(len(model_onnx.graph.node) == 1) dump_data_and_model( numpy.array([[1, -1, 3], [3, 1, 2]], dtype=numpy.float32), model, model_onnx, basename="SklearnNormalizerL2NoShape-SkipDim1") if __name__ == "__main__": unittest.main()
universe/wrappers/experimental/__init__.py
BitJetKit/universe
8,120
12771873
from universe.wrappers.experimental.action_space import SafeActionSpace, SoftmaxClickMouse from universe.wrappers.experimental.observation import CropObservations from universe.wrappers.experimental.random_env import RandomEnv
paper code/solveCrossTime.py
PKandarp/TICC
393
12771912
from snap import * from cvxpy import * import math import multiprocessing import numpy from scipy.sparse import lil_matrix import sys import time import __builtin__ import code # File format: One edge per line, written as "srcID dstID" # Commented lines that start with '#' are ignored # Returns a TGraphVX object with the designated edges and nodes def LoadEdgeList(Filename): gvx = TGraphVX() nids = set() infile = open(Filename, 'r') with open(Filename) as infile: for line in infile: if line.startswith('#'): continue [src, dst] = line.split() if int(src) not in nids: gvx.AddNode(int(src)) nids.add(int(src)) if int(dst) not in nids: gvx.AddNode(int(dst)) nids.add(int(dst)) gvx.AddEdge(int(src), int(dst)) return gvx # TGraphVX inherits from the TUNGraph object defined by Snap.py class TGraphVX(TUNGraph): __default_objective = norm(0) __default_constraints = [] # Data Structures # --------------- # node_objectives = {int NId : CVXPY Expression} # node_constraints = {int NId : [CVXPY Constraint]} # edge_objectives = {(int NId1, int NId2) : CVXPY Expression} # edge_constraints = {(int NId1, int NId2) : [CVXPY Constraint]} # all_variables = set(CVXPY Variable) # # ADMM-Specific Structures # ------------------------ # node_variables = {int NId : # [(CVXPY Variable id, CVXPY Variable name, CVXPY Variable, offset)]} # node_values = {int NId : numpy array} # node_values points to the numpy array containing the value of the entire # variable space corresponding to then node. Use the offset to get the # value for a specific variable. # # Constructor # If Graph is a Snap.py graph, initializes a SnapVX graph with the same # nodes and edges. def __init__(self, Graph=None): # Initialize data structures self.node_objectives = {} self.node_variables = {} self.node_constraints = {} self.edge_objectives = {} self.edge_constraints = {} self.node_values = {} self.all_variables = set() self.status = None self.value = None # Initialize superclass nodes = 0 edges = 0 if Graph != None: nodes = Graph.GetNodes() edges = Graph.GetEdges() TUNGraph.__init__(self, nodes, edges) # Support for constructor with Snap.py graph argument if Graph != None: for ni in Graph.Nodes(): self.AddNode(ni.GetId()) for ei in Graph.Edges(): self.AddEdge(ei.GetSrcNId(), ei.GetDstNId()) # Simple iterator to iterator over all nodes in graph. Similar in # functionality to Nodes() iterator of PUNGraph in Snap.py. def Nodes(self): ni = TUNGraph.BegNI(self) for i in xrange(TUNGraph.GetNodes(self)): yield ni ni.Next() # Simple iterator to iterator over all edge in graph. Similar in # functionality to Edges() iterator of PUNGraph in Snap.py. def Edges(self): ei = TUNGraph.BegEI(self) for i in xrange(TUNGraph.GetEdges(self)): yield ei ei.Next() # Adds objectives together to form one collective CVXPY Problem. # Option of specifying Maximize() or the default Minimize(). # Graph status and value properties will also be set. # Individual variable values can be retrieved using GetNodeValue(). # Option to use serial version or distributed ADMM. # maxIters optional parameter: Maximum iterations for distributed ADMM. def Solve(self, M=Minimize, UseADMM=True, NumProcessors=0, Rho=1.0, MaxIters=250, EpsAbs=0.01, EpsRel=0.01, Verbose=False, UseClustering = False, ClusterSize = 1000 ): global m_func m_func = M # Use ADMM if the appropriate parameter is specified and if there # are edges in the graph. #if __builtin__.len(SuperNodes) > 0: if UseClustering and ClusterSize > 0: SuperNodes = self.__ClusterGraph(ClusterSize) self.__SolveClusterADMM(M,UseADMM,SuperNodes, NumProcessors, Rho, MaxIters,\ EpsAbs, EpsRel, Verbose) return if UseADMM and self.GetEdges() != 0: self.__SolveADMM(NumProcessors, Rho, MaxIters, EpsAbs, EpsRel, Verbose) return if Verbose: print 'Serial ADMM' objective = 0 constraints = [] # Add all node objectives and constraints for ni in self.Nodes(): nid = ni.GetId() objective += self.node_objectives[nid] constraints += self.node_constraints[nid] # Add all edge objectives and constraints for ei in self.Edges(): etup = self.__GetEdgeTup(ei.GetSrcNId(), ei.GetDstNId()) objective += self.edge_objectives[etup] constraints += self.edge_constraints[etup] # Solve CVXPY Problem objective = m_func(objective) problem = Problem(objective, constraints) try: problem.solve() except SolverError: problem.solve(solver=SCS) if problem.status in [INFEASIBLE_INACCURATE, UNBOUNDED_INACCURATE]: problem.solve(solver=SCS) # Set TGraphVX status and value to match CVXPY self.status = problem.status self.value = problem.value # Insert into hash to support ADMM structures and GetNodeValue() for ni in self.Nodes(): nid = ni.GetId() variables = self.node_variables[nid] value = None for (varID, varName, var, offset) in variables: if var.size[0] == 1: val = numpy.array([var.value]) else: val = numpy.array(var.value).reshape(-1,) if value is None: value = val else: value = numpy.concatenate((value, val)) self.node_values[nid] = value """Function to solve cluster wise optimization problem""" def __SolveClusterADMM(self,M,UseADMM,superNodes,numProcessors, rho_param, maxIters, eps_abs, eps_rel,verbose): #initialize an empty supergraph supergraph = TGraphVX() nidToSuperidMap = {} edgeToClusterTupMap = {} for snid in xrange(__builtin__.len(superNodes)): for nid in superNodes[snid]: nidToSuperidMap[nid] = snid """collect the entities for the supergraph. a supernode is a subgraph. a superedge is a representation of a graph cut""" superEdgeObjectives = {} superEdgeConstraints = {} superNodeObjectives = {} superNodeConstraints = {} superNodeVariables = {} superNodeValues = {} varToSuperVarMap = {} """traverse through the list of edges and add each edge's constraint and objective to either the supernode to which it belongs or the superedge which connects the ends of the supernodes to which it belongs""" for ei in self.Edges(): etup = self.__GetEdgeTup(ei.GetSrcNId(), ei.GetDstNId()) supersrcnid,superdstnid = nidToSuperidMap[etup[0]],nidToSuperidMap[etup[1]] if supersrcnid != superdstnid: #the edge is a part of the cut if supersrcnid > superdstnid: supersrcnid,superdstnid = superdstnid,supersrcnid if (supersrcnid,superdstnid) not in superEdgeConstraints: superEdgeConstraints[(supersrcnid,superdstnid)] = self.edge_constraints[etup] superEdgeObjectives[(supersrcnid,superdstnid)] = self.edge_objectives[etup] else: superEdgeConstraints[(supersrcnid,superdstnid)] += self.edge_constraints[etup] superEdgeObjectives[(supersrcnid,superdstnid)] += self.edge_objectives[etup] else: #the edge is a part of some supernode if supersrcnid not in superNodeConstraints: superNodeConstraints[supersrcnid] = self.edge_constraints[etup] superNodeObjectives[supersrcnid] = self.edge_objectives[etup] else: superNodeConstraints[supersrcnid] += self.edge_constraints[etup] superNodeObjectives[supersrcnid] += self.edge_objectives[etup] for ni in self.Nodes(): nid = ni.GetId() supernid = nidToSuperidMap[nid] value = None for (varID, varName, var, offset) in self.node_variables[nid]: if var.size[0] == 1: val = numpy.array([var.value]) else: val = numpy.array(var.value).reshape(-1,) if not value: value = val else: value = numpy.concatenate((value, val)) if supernid not in superNodeConstraints: superNodeObjectives[supernid] = self.node_objectives[nid] superNodeConstraints[supernid] = self.node_constraints[nid] else: superNodeObjectives[supernid] += self.node_objectives[nid] superNodeConstraints[supernid] += self.node_constraints[nid] for ( varId, varName, var, offset) in self.node_variables[nid]: superVarName = varName+str(varId) varToSuperVarMap[(nid,varName)] = (supernid,superVarName) if supernid not in superNodeVariables: superNodeVariables[supernid] = [(varId, superVarName, var, offset)] superNodeValues[supernid] = value else: superNodeOffset = sum([superNodeVariables[supernid][k][2].size[0]* \ superNodeVariables[supernid][k][2].size[1]\ for k in xrange(__builtin__.len(superNodeVariables[supernid])) ]) superNodeVariables[supernid] += [(varId, superVarName, var, superNodeOffset)] superNodeValues[supernid] = numpy.concatenate((superNodeValues[supernid],value)) #add all supernodes to the supergraph for supernid in superNodeConstraints: supergraph.AddNode(supernid, superNodeObjectives[supernid], \ superNodeConstraints[supernid]) supergraph.node_variables[supernid] = superNodeVariables[supernid] supergraph.node_values[supernid] = superNodeValues[supernid] #add all superedges to the supergraph for superei in superEdgeConstraints: superSrcId,superDstId = superei supergraph.AddEdge(superSrcId, superDstId, None,\ superEdgeObjectives[superei],\ superEdgeConstraints[superei]) #call solver for this supergraph if UseADMM and supergraph.GetEdges() != 0: supergraph.__SolveADMM(numProcessors, rho_param, maxIters, eps_abs, eps_rel, verbose) else: supergraph.Solve(M, False, numProcessors, rho_param, maxIters, eps_abs, eps_rel, verbose, UseClustering=False) self.status = supergraph.status self.value = supergraph.value for ni in self.Nodes(): nid = ni.GetId() snid = nidToSuperidMap[nid] self.node_values[nid] = [] for ( varId, varName, var, offset) in self.node_variables[nid]: superVarName = varToSuperVarMap[(nid,varName)] self.node_values[nid] = numpy.concatenate((self.node_values[nid],\ supergraph.GetNodeValue(snid, superVarName[1]))) # Implementation of distributed ADMM # Uses a global value of rho_param for rho # Will run for a maximum of maxIters iterations def __SolveADMM(self, numProcessors, rho_param, maxIters, eps_abs, eps_rel, verbose): global node_vals, edge_z_vals, edge_u_vals, rho global getValue, rho_update_func if numProcessors <= 0: num_processors = multiprocessing.cpu_count() else: num_processors = numProcessors rho = rho_param if verbose: print 'Distributed ADMM (%d processors)' % num_processors # Organize information for each node in helper node_info structure node_info = {} # Keeps track of the current offset necessary into the shared node # values Array length = 0 for ni in self.Nodes(): nid = ni.GetId() deg = ni.GetDeg() obj = self.node_objectives[nid] variables = self.node_variables[nid] con = self.node_constraints[nid] neighbors = [ni.GetNbrNId(j) for j in xrange(deg)] # Node's constraints include those imposed by edges for neighborId in neighbors: etup = self.__GetEdgeTup(nid, neighborId) econ = self.edge_constraints[etup] con += econ # Calculate sum of dimensions of all Variables for this node size = sum([var.size[0] for (varID, varName, var, offset) in variables]) # Nearly complete information package for this node node_info[nid] = (nid, obj, variables, con, length, size, deg,\ neighbors) length += size node_vals = multiprocessing.Array('d', [0.0] * length) x_length = length # Organize information for each node in final edge_list structure and # also helper edge_info structure edge_list = [] edge_info = {} # Keeps track of the current offset necessary into the shared edge # values Arrays length = 0 for ei in self.Edges(): etup = self.__GetEdgeTup(ei.GetSrcNId(), ei.GetDstNId()) obj = self.edge_objectives[etup] con = self.edge_constraints[etup] con += self.node_constraints[etup[0]] +\ self.node_constraints[etup[1]] # Get information for each endpoint node info_i = node_info[etup[0]] info_j = node_info[etup[1]] ind_zij = length ind_uij = length length += info_i[X_LEN] ind_zji = length ind_uji = length length += info_j[X_LEN] # Information package for this edge tup = (etup, obj, con,\ info_i[X_VARS], info_i[X_LEN], info_i[X_IND], ind_zij, ind_uij,\ info_j[X_VARS], info_j[X_LEN], info_j[X_IND], ind_zji, ind_uji) edge_list.append(tup) edge_info[etup] = tup edge_z_vals = multiprocessing.Array('d', [0.0] * length) edge_u_vals = multiprocessing.Array('d', [0.0] * length) z_length = length # Populate sparse matrix A. # A has dimensions (p, n), where p is the length of the stacked vector # of node variables, and n is the length of the stacked z vector of # edge variables. # Each row of A has one 1. There is a 1 at (i,j) if z_i = x_j. A = lil_matrix((z_length, x_length), dtype=numpy.int8) for ei in self.Edges(): etup = self.__GetEdgeTup(ei.GetSrcNId(), ei.GetDstNId()) info_edge = edge_info[etup] info_i = node_info[etup[0]] info_j = node_info[etup[1]] for offset in xrange(info_i[X_LEN]): row = info_edge[Z_ZIJIND] + offset col = info_i[X_IND] + offset A[row, col] = 1 for offset in xrange(info_j[X_LEN]): row = info_edge[Z_ZJIIND] + offset col = info_j[X_IND] + offset A[row, col] = 1 A_tr = A.transpose() # Create final node_list structure by adding on information for # node neighbors node_list = [] for nid, info in node_info.iteritems(): entry = [nid, info[X_OBJ], info[X_VARS], info[X_CON], info[X_IND],\ info[X_LEN], info[X_DEG]] # Append information about z- and u-value indices for each # node neighbor for i in xrange(info[X_DEG]): neighborId = info[X_NEIGHBORS][i] indices = (Z_ZIJIND, Z_UIJIND) if nid < neighborId else\ (Z_ZJIIND, Z_UJIIND) einfo = edge_info[self.__GetEdgeTup(nid, neighborId)] entry.append(einfo[indices[0]]) entry.append(einfo[indices[1]]) node_list.append(entry) pool = multiprocessing.Pool(num_processors) num_iterations = 0 z_old = getValue(edge_z_vals, 0, z_length) # Proceed until convergence criteria are achieved or the maximum # number of iterations has passed while num_iterations <= maxIters: # Check convergence criteria if num_iterations != 0: x = getValue(node_vals, 0, x_length) z = getValue(edge_z_vals, 0, z_length) u = getValue(edge_u_vals, 0, z_length) # Determine if algorithm should stop. Retrieve primal and dual # residuals and thresholds stop, res_pri, e_pri, res_dual, e_dual =\ self.__CheckConvergence(A, A_tr, x, z, z_old, u, rho,\ x_length, z_length, eps_abs, eps_rel, verbose) if stop: break z_old = z # Update rho and scale u-values rho_new = rho_update_func(rho, res_pri, e_pri, res_dual, e_dual) scale = float(rho) / rho_new edge_u_vals[:] = [i * scale for i in edge_u_vals] rho = rho_new num_iterations += 1 if verbose: # Debugging information prints current iteration # print 'Iteration %d' % num_iterations pool.map(ADMM_x, node_list) pool.map(ADMM_z, edge_list) pool.map(ADMM_u, edge_list) pool.close() pool.join() # Insert into hash to support GetNodeValue() for entry in node_list: nid = entry[X_NID] index = entry[X_IND] size = entry[X_LEN] self.node_values[nid] = getValue(node_vals, index, size) # Set TGraphVX status and value to match CVXPY if num_iterations <= maxIters: self.status = 'Optimal' else: self.status = 'Incomplete: max iterations reached' # self.value = self.GetTotalProblemValue() # Iterate through all variables and update values. # Sum all objective values over all nodes and edges. def GetTotalProblemValue(self): global getValue result = 0.0 for ni in self.Nodes(): nid = ni.GetId() for (varID, varName, var, offset) in self.node_variables[nid]: var.value = self.GetNodeValue(nid, varName) for ni in self.Nodes(): result += self.node_objectives[ni.GetId()].value for ei in self.Edges(): etup = self.__GetEdgeTup(ei.GetSrcNId(), ei.GetDstNId()) result += self.edge_objectives[etup].value return result # Returns True if convergence criteria have been satisfied # eps_abs = eps_rel = 0.01 # r = Ax - z # s = rho * (A^T)(z - z_old) # e_pri = sqrt(p) * e_abs + e_rel * max(||Ax||, ||z||) # e_dual = sqrt(n) * e_abs + e_rel * ||rho * (A^T)u|| # Should stop if (||r|| <= e_pri) and (||s|| <= e_dual) # Returns (boolean shouldStop, primal residual value, primal threshold, # dual residual value, dual threshold) def __CheckConvergence(self, A, A_tr, x, z, z_old, u, rho, p, n, e_abs, e_rel, verbose): norm = numpy.linalg.norm Ax = A.dot(x) r = Ax - z s = rho * A_tr.dot(z - z_old) # Primal and dual thresholds. Add .0001 to prevent the case of 0. e_pri = math.sqrt(p) * e_abs + e_rel * max(norm(Ax), norm(z)) + .0001 e_dual = math.sqrt(n) * e_abs + e_rel * norm(rho * A_tr.dot(u)) + .0001 # Primal and dual residuals res_pri = norm(r) res_dual = norm(s) if verbose: # Debugging information to print convergence criteria values print ' r:', res_pri print ' e_pri:', e_pri print ' s:', res_dual print ' e_dual:', e_dual stop = (res_pri <= e_pri) and (res_dual <= e_dual) return (stop, res_pri, e_pri, res_dual, e_dual) # API to get node Variable value after solving with ADMM. def GetNodeValue(self, NId, Name): self.__VerifyNId(NId) for (varID, varName, var, offset) in self.node_variables[NId]: if varName == Name: offset = offset value = self.node_values[NId] return value[offset:(offset + var.size[0])] return None # Prints value of all node variables to console or file, if given def PrintSolution(self, Filename=None): numpy.set_printoptions(linewidth=numpy.inf) out = sys.stdout if (Filename == None) else open(Filename, 'w+') out.write('Status: %s\n' % self.status) out.write('Total Objective: %f\n' % self.value) for ni in self.Nodes(): nid = ni.GetId() s = 'Node %d:\n' % nid out.write(s) for (varID, varName, var, offset) in self.node_variables[nid]: val = numpy.transpose(self.GetNodeValue(nid, varName)) s = ' %s %s\n' % (varName, str(val)) out.write(s) # Helper method to verify existence of an NId. def __VerifyNId(self, NId): if not TUNGraph.IsNode(self, NId): raise Exception('Node %d does not exist.' % NId) # Helper method to determine if def __UpdateAllVariables(self, NId, Objective): if NId in self.node_objectives: # First, remove the Variables from the old Objective. old_obj = self.node_objectives[NId] self.all_variables = self.all_variables - set(old_obj.variables()) # Check that the Variables of the new Objective are not currently # in other Objectives. new_variables = set(Objective.variables()) if __builtin__.len(self.all_variables.intersection(new_variables)) != 0: raise Exception('Objective at NId %d shares a variable.' % NId) self.all_variables = self.all_variables | new_variables # Helper method to get CVXPY Variables out of a CVXPY Objective def __ExtractVariableList(self, Objective): l = [(var.name(), var) for var in Objective.variables()] # Sort in ascending order by name l.sort(key=lambda t: t[0]) l2 = [] offset = 0 for (varName, var) in l: # Add tuples of the form (id, name, object, offset) l2.append((var.id, varName, var, offset)) offset += var.size[0] return l2 # Adds a Node to the TUNGraph and stores the corresponding CVX information. def AddNode(self, NId, Objective=__default_objective,\ Constraints=__default_constraints): self.__UpdateAllVariables(NId, Objective) self.node_objectives[NId] = Objective self.node_variables[NId] = self.__ExtractVariableList(Objective) self.node_constraints[NId] = Constraints return TUNGraph.AddNode(self, NId) def SetNodeObjective(self, NId, Objective): self.__VerifyNId(NId) self.__UpdateAllVariables(NId, Objective) self.node_objectives[NId] = Objective self.node_variables[NId] = self.__ExtractVariableList(Objective) def GetNodeObjective(self, NId): self.__VerifyNId(NId) return self.node_objectives[NId] def SetNodeConstraints(self, NId, Constraints): self.__VerifyNId(NId) self.node_constraints[NId] = Constraints def GetNodeConstraints(self, NId): self.__VerifyNId(NId) return self.node_constraints[NId] # Helper method to get a tuple representing an edge. The smaller NId # goes first. def __GetEdgeTup(self, NId1, NId2): return (NId1, NId2) if NId1 < NId2 else (NId2, NId1) # Helper method to verify existence of an edge. def __VerifyEdgeTup(self, ETup): if not TUNGraph.IsEdge(self, ETup[0], ETup[1]): raise Exception('Edge {%d,%d} does not exist.' % ETup) # Adds an Edge to the TUNGraph and stores the corresponding CVX information. # obj_func is a function which accepts two arguments, a dictionary of # variables for the source and destination nodes # { string varName : CVXPY Variable } # obj_func should return a tuple of (objective, constraints), although # it will assume a singleton object will be an objective and will use # the default constraints. # If obj_func is None, then will use Objective and Constraints, which are # parameters currently set to defaults. def AddEdge(self, SrcNId, DstNId, ObjectiveFunc=None, Objective=__default_objective, Constraints=__default_constraints): ETup = self.__GetEdgeTup(SrcNId, DstNId) if ObjectiveFunc != None: src_vars = self.GetNodeVariables(SrcNId) dst_vars = self.GetNodeVariables(DstNId) ret = ObjectiveFunc(src_vars, dst_vars) if type(ret) is tuple: # Tuple = assume we have (objective, constraints) self.edge_objectives[ETup] = ret[0] self.edge_constraints[ETup] = ret[1] else: # Singleton object = assume it is the objective self.edge_objectives[ETup] = ret self.edge_constraints[ETup] = self.__default_constraints else: self.edge_objectives[ETup] = Objective self.edge_constraints[ETup] = Constraints return TUNGraph.AddEdge(self, SrcNId, DstNId) def SetEdgeObjective(self, SrcNId, DstNId, Objective): ETup = self.__GetEdgeTup(SrcNId, DstNId) self.__VerifyEdgeTup(ETup) self.edge_objectives[ETup] = Objective def GetEdgeObjective(self, SrcNId, DstNId): ETup = self.__GetEdgeTup(SrcNId, DstNId) self.__VerifyEdgeTup(ETup) return self.edge_objectives[ETup] def SetEdgeConstraints(self, SrcNId, DstNId, Constraints): ETup = self.__GetEdgeTup(SrcNId, DstNId) self.__VerifyEdgeTup(ETup) self.edge_constraints[ETup] = Constraints def GetEdgeConstraints(self, SrcNId, DstNId): ETup = self.__GetEdgeTup(SrcNId, DstNId) self.__VerifyEdgeTup(ETup) return self.edge_constraints[ETup] # Returns a dictionary of all variables corresponding to a node. # { string name : CVXPY Variable } # This can be used in place of bulk loading functions to recover necessary # Variables for an edge. def GetNodeVariables(self, NId): self.__VerifyNId(NId) d = {} for (varID, varName, var, offset) in self.node_variables[NId]: d[varName] = var return d # Bulk loading for nodes # ObjFunc is a function which accepts one argument, an array of strings # parsed from the given CSV filename # ObjFunc should return a tuple of (objective, constraints), although # it will assume a singleton object will be an objective # Optional parameter NodeIDs allows the user to pass in a list specifying, # in order, the node IDs that correspond to successive rows # If NodeIDs is None, then the file must have a column denoting the # node ID for each row. The index of this column (0-indexed) is IdCol. # If NodeIDs and IdCol are both None, then will iterate over all Nodes, in # order, as long as the file lasts def AddNodeObjectives(self, Filename, ObjFunc, NodeIDs=None, IdCol=None): infile = open(Filename, 'r') if NodeIDs == None and IdCol == None: stop = False for ni in self.Nodes(): nid = ni.GetId() while True: line = infile.readline() if line == '': stop = True if not line.startswith('#'): break if stop: break data = [x.strip() for x in line.split(',')] ret = ObjFunc(data) if type(ret) is tuple: # Tuple = assume we have (objective, constraints) self.SetNodeObjective(nid, ret[0]) self.SetNodeConstraints(nid, ret[1]) else: # Singleton object = assume it is the objective self.SetNodeObjective(nid, ret) if NodeIDs == None: for line in infile: if line.startswith('#'): continue data = [x.strip() for x in line.split(',')] ret = ObjFunc(data) if type(ret) is tuple: # Tuple = assume we have (objective, constraints) self.SetNodeObjective(int(data[IdCol]), ret[0]) self.SetNodeConstraints(int(data[IdCol]), ret[1]) else: # Singleton object = assume it is the objective self.SetNodeObjective(int(data[IdCol]), ret) else: for nid in NodeIDs: while True: line = infile.readline() if line == '': raise Exception('File %s is too short.' % filename) if not line.startswith('#'): break data = [x.strip() for x in line.split(',')] ret = ObjFunc(data) if type(ret) is tuple: # Tuple = assume we have (objective, constraints) self.SetNodeObjective(nid, ret[0]) self.SetNodeConstraints(nid, ret[1]) else: # Singleton object = assume it is the objective self.SetNodeObjective(nid, ret) infile.close() # Bulk loading for edges # If Filename is None: # ObjFunc is a function which accepts three arguments, a dictionary of # variables for the source and destination nodes, and an unused param # { string varName : CVXPY Variable } x2, None # ObjFunc should return a tuple of (objective, constraints), although # it will assume a singleton object will be an objective # If Filename exists: # ObjFunc is the same, except the third param will be be an array of # strings parsed from the given CSV filename # Optional parameter EdgeIDs allows the user to pass in a list specifying, # in order, the EdgeIDs that correspond to successive rows. An edgeID is # a tuple of (srcID, dstID). # If EdgeIDs is None, then the file may have columns denoting the srcID and # dstID for each row. The indices of these columns are 0-indexed. # If EdgeIDs and id columns are None, then will iterate through all edges # in order, as long as the file lasts. def AddEdgeObjectives(self, ObjFunc, Filename=None, EdgeIDs=None,\ SrcIdCol=None, DstIdCol=None): if Filename == None: for ei in self.Edges(): src_id = ei.GetSrcNId() src_vars = self.GetNodeVariables(src_id) dst_id = ei.GetDstNId() dst_vars = self.GetNodeVariables(dst_id) ret = ObjFunc(src_vars, dst_vars, None) if type(ret) is tuple: # Tuple = assume we have (objective, constraints) self.SetEdgeObjective(src_id, dst_id, ret[0]) self.SetEdgeConstraints(src_id, dst_id, ret[1]) else: # Singleton object = assume it is the objective self.SetEdgeObjective(src_id, dst_id, ret) return infile = open(Filename, 'r') if EdgeIDs == None and (SrcIdCol == None or DstIdCol == None): stop = False for ei in self.Edges(): src_id = ei.GetSrcNId() src_vars = self.GetNodeVariables(src_id) dst_id = ei.GetDstNId() dst_vars = self.GetNodeVariables(dst_id) while True: line = infile.readline() if line == '': stop = True if not line.startswith('#'): break if stop: break data = [x.strip() for x in line.split(',')] ret = ObjFunc(src_vars, dst_vars, data) if type(ret) is tuple: # Tuple = assume we have (objective, constraints) self.SetEdgeObjective(src_id, dst_id, ret[0]) self.SetEdgeConstraints(src_id, dst_id, ret[1]) else: # Singleton object = assume it is the objective self.SetEdgeObjective(src_id, dst_id, ret) if EdgeIDs == None: for line in infile: if line.startswith('#'): continue data = [x.strip() for x in line.split(',')] src_id = int(data[SrcIdCol]) dst_id = int(data[DstIdCol]) src_vars = self.GetNodeVariables(src_id) dst_vars = self.GetNodeVariables(dst_id) ret = ObjFunc(src_vars, dst_vars, data) if type(ret) is tuple: # Tuple = assume we have (objective, constraints) self.SetEdgeObjective(src_id, dst_id, ret[0]) self.SetEdgeConstraints(src_id, dst_id, ret[1]) else: # Singleton object = assume it is the objective self.SetEdgeObjective(src_id, dst_id, ret) else: for edgeID in EdgeIDs: etup = self.__GetEdgeTup(edgeID[0], edgeID[1]) while True: line = infile.readline() if line == '': raise Exception('File %s is too short.' % Filename) if not line.startswith('#'): break data = [x.strip() for x in line.split(',')] src_vars = self.GetNodeVariables(etup[0]) dst_vars = self.GetNodeVariables(etup[1]) ret = ObjFunc(src_vars, dst_vars, data) if type(ret) is tuple: # Tuple = assume we have (objective, constraints) self.SetEdgeObjective(etup[0], etup[1], ret[0]) self.SetEdgeConstraints(etup[0], etup[1], ret[1]) else: # Singleton object = assume it is the objective self.SetEdgeObjective(etup[0], etup[1], ret) infile.close() """return clusters of nodes of the original graph.Each cluster corresponds to a supernode in the supergraph""" def __ClusterGraph(self,clusterSize): #obtain a random shuffle of the nodes nidArray = [ni.GetId() for ni in self.Nodes()] numpy.random.shuffle(nidArray) visitedNode = {} for nid in nidArray: visitedNode[nid] = False superNodes = [] superNode,superNodeSize = [],0 for nid in nidArray: if not visitedNode[nid]: oddLevel, evenLevel, isOdd = [],[],True oddLevel.append(nid) visitedNode[nid] = True #do a level order traversal and add nodes to the superNode until the #size of the supernode variables gets larger than clusterSize while True: if isOdd: if __builtin__.len(oddLevel) > 0: while __builtin__.len(oddLevel) > 0: topId = oddLevel.pop(0) node = TUNGraph.GetNI(self,topId) varSize = sum([variable[2].size[0]* \ variable[2].size[1]\ for variable in self.node_variables[topId]]) if varSize + superNodeSize <= clusterSize: superNode.append(topId) superNodeSize = varSize + superNodeSize else: if __builtin__.len(superNode) > 0: superNodes.append(superNode) superNodeSize = varSize superNode = [topId] neighbors = [node.GetNbrNId(j) \ for j in xrange(node.GetDeg())] for nbrId in neighbors: if not visitedNode[nbrId]: evenLevel.append(nbrId) visitedNode[nbrId] = True isOdd = False #sort the nodes according to their variable size if __builtin__.len(evenLevel) > 0: evenLevel.sort(key=lambda nid : sum([variable[2].size[0]* \ variable[2].size[1] for variable \ in self.node_variables[nid]])) else: break else: if __builtin__.len(evenLevel) > 0: while __builtin__.len(evenLevel) > 0: topId = evenLevel.pop(0) node = TUNGraph.GetNI(self,topId) varSize = sum([variable[2].size[0]* \ variable[2].size[1]\ for variable in self.node_variables[topId]]) if varSize + superNodeSize <= clusterSize: superNode.append(topId) superNodeSize = varSize + superNodeSize else: if __builtin__.len(superNode) > 0: superNodes.append(superNode) superNodeSize = varSize superNode = [topId] neighbors = [node.GetNbrNId(j) \ for j in xrange(node.GetDeg())] for nbrId in neighbors: if not visitedNode[nbrId]: oddLevel.append(nbrId) visitedNode[nbrId] = True isOdd = True #sort the nodes according to their variable size if __builtin__.len(oddLevel) > 0: oddLevel.sort(key=lambda nid : sum([variable[2].size[0]* \ variable[2].size[1] for variable \ in self.node_variables[nid]])) else: break if superNode not in superNodes: superNodes.append(superNode) return superNodes ## ADMM Global Variables and Functions ## # By default, the objective function is Minimize(). __default_m_func = Minimize m_func = __default_m_func # By default, rho is 1.0. Default rho update is identity function and does not # depend on primal or dual residuals or thresholds. __default_rho = 1.0 __default_rho_update_func = lambda rho, res_p, thr_p, res_d, thr_d: rho rho = __default_rho # Rho update function takes 5 parameters # - Old value of rho # - Primal residual and threshold # - Dual residual and threshold rho_update_func = __default_rho_update_func def SetRho(Rho=None): global rho rho = Rho if Rho else __default_rho # Rho update function should take one parameter: old_rho # Returns new_rho # This function will be called at the end of every iteration def SetRhoUpdateFunc(Func=None): global rho_update_func rho_update_func = Func if Func else __default_rho_update_func # Tuple of indices to identify the information package for each node. Actual # length of specific package (list) may vary depending on node degree. # X_NID: Node ID # X_OBJ: CVXPY Objective # X_VARS: CVXPY Variables (entry from node_variables structure) # X_CON: CVXPY Constraints # X_IND: Starting index into shared node_vals Array # X_LEN: Total length (sum of dimensions) of all variables # X_DEG: Number of neighbors # X_NEIGHBORS: Placeholder for information about each neighbors # Information for each neighbor is two entries, appended in order. # Starting index of the corresponding z-value in edge_z_vals. Then for u. (X_NID, X_OBJ, X_VARS, X_CON, X_IND, X_LEN, X_DEG, X_NEIGHBORS) = range(8) # Tuple of indices to identify the information package for each edge. # Z_EID: Edge ID / tuple # Z_OBJ: CVXPY Objective # Z_CON: CVXPY Constraints # Z_[IJ]VARS: CVXPY Variables for Node [ij] (entry from node_variables) # Z_[IJ]LEN: Total length (sum of dimensions) of all variables for Node [ij] # Z_X[IJ]IND: Starting index into shared node_vals Array for Node [ij] # Z_Z[IJ|JI]IND: Starting index into shared edge_z_vals Array for edge [ij|ji] # Z_U[IJ|JI]IND: Starting index into shared edge_u_vals Array for edge [ij|ji] (Z_EID, Z_OBJ, Z_CON, Z_IVARS, Z_ILEN, Z_XIIND, Z_ZIJIND, Z_UIJIND,\ Z_JVARS, Z_JLEN, Z_XJIND, Z_ZJIIND, Z_UJIIND) = range(13) # Contain all x, z, and u values for each node and/or edge in ADMM. Use the # given starting index and length with getValue() to get individual node values node_vals = None edge_z_vals = None edge_u_vals = None # Extract a numpy array value from a shared Array. # Give shared array, starting index, and total length. def getValue(arr, index, length): return numpy.array(arr[index:(index + length)]) # Write value of numpy array nparr (with given length) to a shared Array at # the given starting index. def writeValue(sharedarr, index, nparr, length): if length == 1: nparr = [nparr] sharedarr[index:(index + length)] = nparr # Write the values for all of the Variables involved in a given Objective to # the given shared Array. # variables should be an entry from the node_values structure. def writeObjective(sharedarr, index, objective, variables): for v in objective.variables(): vID = v.id value = v.value # Find the tuple in variables with the same ID. Take the offset. # If no tuple exists, then silently skip. for (varID, varName, var, offset) in variables: if varID == vID: writeValue(sharedarr, index + offset, value, var.size[0]) break # Proximal operators def Prox_logdet(S, A, eta): global rho d, q = numpy.linalg.eigh(eta*A-S) q = numpy.matrix(q) X_var = ( 1/(2*float(eta)) )*q*( numpy.diag(d + numpy.sqrt(numpy.square(d) + (4*eta)*numpy.ones(d.shape))) )*q.T x_var = X_var[numpy.triu_indices(S.shape[1])] # extract upper triangular part as update variable return numpy.matrix(x_var).T def upper2Full(a): n = int((-1 + numpy.sqrt(1+ 8*a.shape[0]))/2) A = numpy.zeros([n,n]) A[numpy.triu_indices(n)] = a temp = A.diagonal() A = (A + A.T) - numpy.diag(temp) return A def ij2symmetric(i,j,size): return (size * (size + 1))/2 - (size-i)*((size - i + 1))/2 + j - i # x-update for ADMM for one node def ADMM_x(entry): global rho variables = entry[X_VARS] #-----------------------Proximal operator --------------------------- x_update = [] # proximal update for the variable x if(__builtin__.len(entry[1].args) > 1 ): # print 'we are in logdet + trace node' cvxpyMat = entry[1].args[1].args[0].args[0] numpymat = cvxpyMat.value mat_shape = ( int( numpymat.shape[1] * ( numpymat.shape[1]+1 )/2.0 ) ,) a = numpy.zeros(mat_shape) for i in xrange(entry[X_DEG]): z_index = X_NEIGHBORS + (2 * i) u_index = z_index + 1 zi = entry[z_index] ui = entry[u_index] for (varID, varName, var, offset) in variables: z = getValue(edge_z_vals, zi + offset, var.size[0]) u = getValue(edge_u_vals, ui + offset, var.size[0]) a += (z-u) A = upper2Full(a) A = A/entry[X_DEG] eta = 1/float(rho) x_update = Prox_logdet(numpymat, A, eta) solution = numpy.array(x_update).T.reshape(-1) writeValue(node_vals, entry[X_IND] + variables[0][3], solution, variables[0][2].size[0]) else: x_update = [] # no variable to update for dummy node return None # z-update for ADMM for one edge def ADMM_z(entry, index_penalty = 1): global rho rho = float(rho) #-----------------------Proximal operator --------------------------- a_ij = [] # flag = 0 variables_i = entry[Z_IVARS] for (varID, varName, var, offset) in variables_i: x_i = getValue(node_vals, entry[Z_XIIND] + offset, var.size[0]) u_ij = getValue(edge_u_vals, entry[Z_UIJIND] + offset, var.size[0]) if flag == 0: a_ij = (x_i + u_ij) flag = 1 else: a_ij += (x_i + u_ij) lamb = entry[1].args[0].args[0].value numBlocks = entry[1].args[1].args[0].value sizeBlocks = entry[1].args[2].args[0].value probSize = numBlocks*sizeBlocks z_ij = numpy.zeros(probSize*(probSize+1)/2) for i in range(numBlocks): if (i == 0): #In the A^{(0)} block (the blocks on the diagonal) for j in range(sizeBlocks): for k in range(j, sizeBlocks): elems = numBlocks lamSum = 0 points = numpy.zeros((elems)) locList = [] for l in range(elems): (loc1, loc2) = (l*sizeBlocks + j, l*sizeBlocks+k) locList.append((loc1,loc2)) index = ij2symmetric(loc1, loc2, probSize) points[l] = a_ij[index] lamSum = lamSum + lamb[loc1,loc2] #Calculate soft threshold #If answer is positive ansPos = max((rho*numpy.sum(points) - lamSum)/(rho*elems),0) #If answer is negative ansNeg = min((rho*numpy.sum(points) + lamSum)/(rho*elems),0) if (rho*numpy.sum(points) > lamSum): for locs in locList: index = ij2symmetric(locs[0], locs[1], probSize) z_ij[index] = ansPos elif(rho*numpy.sum(points) < -1*lamSum): for locs in locList: index = ij2symmetric(locs[0], locs[1], probSize) z_ij[index] = ansNeg else: for locs in locList: index = ij2symmetric(locs[0], locs[1], probSize) z_ij[index] = 0 else: #Off diagonal blocks for j in range(sizeBlocks): for k in range(sizeBlocks): elems = (2*numBlocks - 2*i)/2 lamSum = 0 points = numpy.zeros((elems)) locList = [] for l in range(elems): (loc1, loc2) = ((l+i)*sizeBlocks + j, l*sizeBlocks+k) locList.append((loc2,loc1)) index = ij2symmetric(loc2, loc1, probSize) points[l] = a_ij[index] lamSum = lamSum + lamb[loc2,loc1] #Calculate soft threshold #If answer is positive ansPos = max((rho*numpy.sum(points) - lamSum)/(rho*elems),0) #If answer is negative ansNeg = min((rho*numpy.sum(points) + lamSum)/(rho*elems),0) if (rho*numpy.sum(points) > lamSum): for locs in locList: index = ij2symmetric(locs[0], locs[1], probSize) z_ij[index] = ansPos elif(rho*numpy.sum(points) < -1*lamSum): for locs in locList: index = ij2symmetric(locs[0], locs[1], probSize) z_ij[index] = ansNeg else: for locs in locList: index = ij2symmetric(locs[0], locs[1], probSize) z_ij[index] = 0 writeValue(edge_z_vals, entry[Z_ZIJIND] + variables_i[0][3], z_ij, variables_i[0][2].size[0]) return None # u-update for ADMM for one edge def ADMM_u(entry): global rho size_i = entry[Z_ILEN] uij = getValue(edge_u_vals, entry[Z_UIJIND], size_i) +\ getValue(node_vals, entry[Z_XIIND], size_i) -\ getValue(edge_z_vals, entry[Z_ZIJIND], size_i) writeValue(edge_u_vals, entry[Z_UIJIND], uij, size_i) size_j = entry[Z_JLEN] uji = getValue(edge_u_vals, entry[Z_UJIIND], size_j) +\ getValue(node_vals, entry[Z_XJIND], size_j) -\ getValue(edge_z_vals, entry[Z_ZJIIND], size_j) writeValue(edge_u_vals, entry[Z_UJIIND], uji, size_j) return entry
research/attention_ocr/python/datasets/testdata/fsns/download_data.py
gujralsanyam22/models
82,518
12771925
<gh_stars>1000+ import urllib.request import tensorflow as tf import itertools URL = 'http://download.tensorflow.org/data/fsns-20160927/testdata/fsns-00000-of-00001' DST_ORIG = 'fsns-00000-of-00001.orig' DST = 'fsns-00000-of-00001' KEEP_NUM_RECORDS = 5 print('Downloading %s ...' % URL) urllib.request.urlretrieve(URL, DST_ORIG) print('Writing %d records from %s to %s ...' % (KEEP_NUM_RECORDS, DST_ORIG, DST)) with tf.io.TFRecordWriter(DST) as writer: for raw_record in itertools.islice(tf.compat.v1.python_io.tf_record_iterator(DST_ORIG), KEEP_NUM_RECORDS): writer.write(raw_record)
libs/pipeline_monitor/test.py
silentmonk/KubeFlow
2,527
12771926
from pipeline_monitor import prometheus_monitor as monitor _labels= {'a_label_key':'a_label_value'} @monitor(labels=_labels, name="test_monitor") def test_log_inputs_and_outputs(arg1: int, arg2: int): return arg1 + arg2 test_log_inputs_and_outputs(4, 5)
securityheaders/checkers/xpoweredby/__init__.py
th3cyb3rc0p/securityheaders
151
12771943
from .present import XPoweredByPresentChecker __all__ = ['XPoweredByPresentChecker']
datasheets/tab.py
etcher-be/datasheets
625
12771962
import types from collections import OrderedDict import apiclient import pandas as pd from datasheets import exceptions, helpers class Tab(object): def __init__(self, tabname, workbook, drive_svc, sheets_svc): """Create a datasheets.Tab instance of an existing Google Sheets tab. This class in not intended to be directly instantiated; it is created by datasheets.Workbook.fetch_tab(). Args: tabname (str): The name of the tab workbook (datasheets.Workbook): The workbook instance that instantiated this tab drive_svc (googleapiclient.discovery.Resource): An instance of Google Drive sheets_svc (googleapiclient.discovery.Resource): An instance of Google Sheets """ self.tabname = tabname self._workbook = workbook self.drive_svc = drive_svc self.sheets_svc = sheets_svc # Get basic properties of the tab. We do this here partly # to force failures early if tab can't be found try: self._update_tab_properties() except apiclient.errors.HttpError as e: if 'Unable to parse range'.encode() in e.content: raise exceptions.TabNotFound('The given tab could not be found. Error generated: {}'.format(e)) else: raise self.url = 'https://docs.google.com/spreadsheets/d/{}#gid={}'.format(self.workbook.file_id, self.tab_id) def __getattribute__(self, attr): """Get an attribute (variable or method) of this instance of this class For client OAuth, before each user-facing method call this method will verify that the access token is not expired and refresh it if it is. We only refresh on user-facing method calls since otherwise we'd be refreshing multiple times per user action (once for the user call, possibly multiple times for the private method calls invoked by it). """ requested_attr = super(Tab, self).__getattribute__(attr) if isinstance(requested_attr, types.MethodType) \ and not attr.startswith('_'): self.workbook.client._refresh_token_if_needed() return requested_attr def __repr__(self): msg = "<{module}.{name}(filename='{filename}', tabname='{tabname}')>" return msg.format(module=self.__class__.__module__, name=self.__class__.__name__, filename=self.workbook.filename, tabname=self.tabname) @staticmethod def _process_rows(raw_data): """Prepare a tab's raw data so that a pandas.DataFrame can be produced from it Args: raw_data (dict): The raw data from a tab Returns: list: A list of lists representing the raw_data, with one list per row in the tab """ raw_rows = raw_data['sheets'][0]['data'][0].get('rowData', {}) rows = [] for row_num, row in enumerate(raw_rows): row_values = [] for col_num, cell in enumerate(row.get('values', {})): # If the cell is empty, use None value = cell.get('effectiveValue', {None: None}) # If a cell has an error in it (e.g. someone divides by zero, adds a number to # text, etc.), then we raise an exception. if 'errorValue' in value.keys(): cell_label = helpers.convert_cell_index_to_label(row_num+1, col_num+1) error_type = value['errorValue'].get('type', 'unknown type') error_message = value['errorValue'].get('message', 'unknown error message') msg = 'Error of type "{}" within cell {} prevents fetching data. Message: "{}"' raise exceptions.FetchDataError(msg.format(error_type, cell_label, error_message)) # value is a dict with only 1 key so this next(iter()) is safe base_fmt, cell_value = next(iter(value.items())) num_fmt = cell.get('effectiveFormat', {}).get('numberFormat') if num_fmt: cell_format = num_fmt['type'] else: cell_format = base_fmt formatting_fn = helpers._TYPE_CONVERSIONS[cell_format] if cell_value: try: cell_value = formatting_fn(cell_value) except ValueError: pass except TypeError: raise TypeError( "Mismatch exists in expected and actual data types for cell with " "value '{value}'. Cell format is '{cell_format}' but cell value type " "is '{value_type}'. To correct this, in Google Sheets set the " "appropriate cell format or set it to Automatic".format( value=cell_value, cell_format=cell_format, value_type=type(cell_value)) ) row_values.append(cell_value) rows.append(row_values) return rows @property def ncols(self): """ Property for the number (int) of columns in the tab """ return self.properties['gridProperties']['columnCount'] @property def nrows(self): """ Property for the number (int) of rows in the tab """ return self.properties['gridProperties']['rowCount'] @property def tab_id(self): """ Property that gives the ID for the tab """ return self.properties['sheetId'] @property def workbook(self): """ Property for the workbook instance that this tab belongs to """ return self._workbook def _add_rows_or_columns(self, kind, n): request_body = {'appendDimension': { 'sheetId': self.tab_id, 'dimension': kind, 'length': n } } body = {'requests': [request_body]} self.workbook.batch_update(body) self._update_tab_properties() def _update_tab_properties(self): raw_properties = self.sheets_svc.get(spreadsheetId=self.workbook.file_id, ranges=self.tabname + '!A1', fields='sheets/properties').execute() self.properties = raw_properties['sheets'][0]['properties'] def add_rows(self, n): """Add n rows to the given tab Args: n (int): The number of rows to add Returns: None """ self._add_rows_or_columns(kind='ROWS', n=n) def add_columns(self, n): """Add n columns to the given tab Args: n (int): The number of columns to add Returns: None """ self._add_rows_or_columns(kind='COLUMNS', n=n) def align_cells(self, horizontal='LEFT', vertical='MIDDLE'): """Align all cells in the tab Args: horizontal (str): The horizontal alignment for cells. May be one of 'LEFT', 'CENTER', or 'RIGHT' vertical (str): The vertical alignment for cells. May be one of 'TOP', 'MIDDLE', 'BOTTOM' Returns: None """ request_body = {'repeatCell': { 'range': { 'sheetId': self.tab_id, 'startRowIndex': 0, 'endRowIndex': self.nrows }, 'cell': { 'userEnteredFormat': { 'horizontalAlignment': horizontal, 'verticalAlignment': vertical, } }, 'fields': 'userEnteredFormat(horizontalAlignment,verticalAlignment)' } } body = {'requests': [request_body]} self.workbook.batch_update(body) def alter_dimensions(self, nrows=None, ncols=None): """Alter the dimensions of the current tab. If either dimension is left to None, that dimension will not be altered. Note that it is possible to set nrows or ncols to smaller than the current tab dimensions, in which case that data will be eliminated. Args: nrows (int): The number of rows for the tab to have ncols (int): The number of columns for the tab to have Returns: None """ request_body = {'updateSheetProperties': { 'properties': { 'sheetId': self.tab_id, 'gridProperties': { 'columnCount': ncols or self.ncols, 'rowCount': nrows or self.nrows } }, 'fields': 'gridProperties(columnCount, rowCount)' } } body = {'requests': [request_body]} self.workbook.batch_update(body) self._update_tab_properties() def append_data(self, data, index=True, autoformat=True): """Append data to the existing data in this tab. If the new data exceeds the tab's current dimensions the tab will be resized to accommodate it. Data headers will not be included among the appended data as they are assumed to already be among the existing tab data. If the dimensions of `data` are larger than the tab's current dimensions, the tab will automatically be resized to fit it. Args: data (pandas.DataFrame or dict or list): The data to be uploaded, formatted as a pandas.DataFrame, a dict of lists, or a list of lists index (bool): If `data` is a pandas.DataFrame, whether to upload the index as well Returns: None """ # Convert everything to lists of lists, which Google Sheets requires headers, values = helpers._make_list_of_lists(data, index) values = helpers._convert_nan_and_datelike_values(values) body = {'values': values} self.sheets_svc.values().append(spreadsheetId=self.workbook.file_id, range=self.tabname, valueInputOption='USER_ENTERED', body=body).execute() if autoformat: self.autoformat(len(headers)) self._update_tab_properties() def autoformat(self, n_header_rows): """Apply default stylings to the tab This will apply the following stylings to the tab: - Header rows will be formatted to a dark gray background and off-white text - Font for all cells will be set to size 10 Proxima Nova - Cells will be horizontally left-aligned and vertically middle-aligned - Columns will be resized to display their largest entry - Empty columns and rows will be trimmed from the tab Args: n_header_rows (int): The number of header rows (i.e. row of labels / metadata) Returns: None """ self.format_headers(nrows=n_header_rows) self.format_font() self.align_cells() self.autosize_columns() populated_cells = self.sheets_svc.values().get(spreadsheetId=self.workbook.file_id, range=self.tabname).execute() nrows = len(populated_cells['values']) ncols = max(map(len, populated_cells['values'])) self.alter_dimensions(nrows=nrows, ncols=ncols) self._update_tab_properties() def autosize_columns(self): """Resize the widths of all columns in the tab to fit their data Returns: None """ request_body = {'autoResizeDimensions': { 'dimensions': { 'sheetId': self.tab_id, 'dimension': 'COLUMNS', 'startIndex': 0, 'endIndex': self.ncols } } } body = {'requests': [request_body]} self.workbook.batch_update(body) def clear_data(self): """Clear all data from the tab while leaving formatting intact Returns: None """ self.sheets_svc.values().clear(spreadsheetId=self.workbook.file_id, range=self.tabname, body={}).execute() def format_font(self, font='Proxima Nova', size=10): """Set the font and size for all cells in the tab Args: font (str): The name of the font to use size (int): The size to set the font to Returns: None """ request_body = {'repeatCell': { 'range': {'sheetId': self.tab_id}, 'cell': { 'userEnteredFormat': { 'textFormat': { 'fontSize': size, 'fontFamily': font } } }, 'fields': 'userEnteredFormat(textFormat(fontSize,fontFamily))' } } body = {'requests': [request_body]} self.workbook.batch_update(body) def format_headers(self, nrows): """Format the first n rows of a tab. The following stylings will be applied to these rows: - Background will be set to dark gray with off-white text - Font will be set to size 10 Proxima Nova - Text will be horizontally left-aligned and vertically middle-aligned - Rows will be made "frozen" so that when the user scrolls these rows stay visible Args: nrows (int): The number of rows of headers in the tab Returns: None """ body = { 'requests': [ { 'repeatCell': { 'range': { 'sheetId': self.tab_id, 'startRowIndex': 0, 'endRowIndex': nrows }, 'cell': { 'userEnteredFormat': { 'backgroundColor': { 'red': 0.26274511, 'green': 0.26274511, 'blue': 0.26274511 }, 'horizontalAlignment': 'LEFT', 'textFormat': { 'foregroundColor': { 'red': 0.95294118, 'green': 0.95294118, 'blue': 0.95294118 }, 'fontSize': 10, 'fontFamily': 'Proxima Nova', 'bold': False } } }, 'fields': 'userEnteredFormat(backgroundColor,textFormat,horizontalAlignment)' } }, { 'updateSheetProperties': { 'properties': { 'sheetId': self.tab_id, 'gridProperties': { 'frozenRowCount': nrows } }, 'fields': 'gridProperties(frozenRowCount)' } } ] } self.workbook.batch_update(body) def fetch_data(self, headers=True, fmt='df'): """Retrieve the data within this tab. Efforts are taken to ensure that returned rows are always the same length. If headers=True, this length will be equal to the length of the headers. If headers=False, this length will be equal to the longest row. In either case, shorter rows will be padded with Nones and longer rows will be truncated (i.e. if there are 3 headers then all rows will have 3 entries regardless of the amount of populated cells they have). Args: headers (bool): If True, the first row will be used as the column names for the pandas.DataFrame. Otherwise, a 0-indexed range will be used instead fmt (str): The format in which to return the data. Accepted values: 'df', 'dict', 'list' Returns: When fmt='df' --> pandas.DataFrame When fmt='dict' --> list of dicts, e.g.:: [{header1: row1cell1, header2: row1cell2}, {header1: row2cell1, header2: row2cell2}, ...] When fmt='list' --> tuple of header names, list of lists with row data, e.g.:: ([header1, header2, ...], [[row1cell1, row1cell2, ...], [row2cell1, row2cell2, ...], ...]) """ if fmt not in ('df', 'dict', 'list'): raise ValueError("Unexpected value '{}' for parameter `fmt`. " "Accepted values are 'df', 'dict', and 'list'".format(fmt)) fields = 'sheets/data/rowData/values(effectiveValue,effectiveFormat/numberFormat/type)' raw_data = self.sheets_svc.get(spreadsheetId=self.workbook.file_id, ranges=self.tabname, includeGridData=True, fields=fields).execute() processed_rows = self._process_rows(raw_data) # filter out empty rows max_idx = helpers._find_max_nonempty_row(processed_rows) if max_idx is None: if fmt == 'df': return pd.DataFrame([]) elif fmt == 'dict': return [] else: return ([], []) processed_rows = processed_rows[:max_idx+1] # remove trailing Nones on rows processed_rows = list(map(helpers._remove_trailing_nones, processed_rows)) if headers: header_names = processed_rows.pop(0) max_width = len(header_names) else: # Iterate through rows to find widest one max_width = max(map(len, processed_rows)) header_names = list(range(max_width)) # resize the rows to match the number of column headers processed_rows = [helpers._resize_row(row, max_width) for row in processed_rows] if fmt == 'df': df = pd.DataFrame(data=processed_rows, columns=header_names) return df elif fmt == 'dict': make_row_dict = lambda row: OrderedDict(zip(header_names, row)) return list(map(make_row_dict, processed_rows)) else: return header_names, processed_rows def insert_data(self, data, index=True, autoformat=True): """Overwrite all data in this tab with the provided data. All existing data in the tab will be removed, even if it might not have been overwritten (for example, if there is 4x2 data already in the tab and only 2x2 data is being inserted). If the dimensions of `data` are larger than the tab's current dimensions, the tab will automatically be resized to fit it. Args: data (pandas.DataFrame or dict or list): The data to be uploaded, formatted as a pandas.DataFrame, a dict of lists, or a list of lists index (bool): If `data` is a pandas.DataFrame, whether to upload the index as well Returns: None """ # Convert everything to lists of lists, which Google Sheets requires headers, values = helpers._make_list_of_lists(data, index) values = headers + values # Include headers for inserts but not for appends self.clear_data() values = helpers._convert_nan_and_datelike_values(values) body = {'values': values} self.sheets_svc.values().update(spreadsheetId=self.workbook.file_id, range=self.tabname, valueInputOption='USER_ENTERED', body=body).execute() if autoformat: self.autoformat(len(headers)) self._update_tab_properties()
examples/streamline1.py
yang69can/pyngl
125
12771967
# # File: # streamline1.py # # Synopsis: # Draws streamlines on a map over water only. # # Category: # Streamlines on a map. # # Author: # <NAME> # # Date of original publication: # December, 2004 # # Description: # This example draws streamlines over water on a map using a # Cylindrical Equidistant map projection. The "add_cyclic" # function is illustrated graphically. # # Effects illustrated: # o Streamlines over maps. # o Adding cyclic points. # o Specifying colors by name. # o Polylines. # o Masking land areas. # # Output: # This example produces two visualizations: # 1.) Streamlines on a Cylindrical Equidistant map over water # only highlighting missing cyclic points. # 2.) Same as 1.) with the cyclic points added. # # Notes: # # # Import Nio for reading netCDF files. # from __future__ import print_function import Nio # # Import Ngl support functions. # import Ngl import os # # Open the netCDF file. # file = Nio.open_file(os.path.join(Ngl.pynglpath("data"),"cdf","pop.nc")) # # Open a workstation. # wks_type = "png" wks = Ngl.open_wks(wks_type,"streamline1") # # Get the u/v and lat/lon variables. # urot = file.variables["urot"] vrot = file.variables["vrot"] lat2d = file.variables["lat2d"] lon2d = file.variables["lon2d"] # # Set up resource list. # resources = Ngl.Resources() # # Don't advance frame, because we want to draw a couple of lines on # plot later. # resources.nglFrame = False # # Coordinate arrays for data # resources.vfXArray = lon2d[::4,::4] resources.vfYArray = lat2d[::4,::4] resources.mpProjection = "CylindricalEquidistant" resources.mpFillOn = True resources.mpLandFillColor = "Tan1" resources.mpOceanFillColor = "SkyBlue" resources.mpInlandWaterFillColor = "SkyBlue" resources.mpGridAndLimbOn = False resources.tiMainString = "Streamline plot without cyclic point added" plot = Ngl.streamline_map(wks,urot[::4,::4],vrot[::4,::4],resources) # # Add a couple of lines showing the area where there's a gap in the # data because of lack of a cyclic point. (It should be obvious even # without the lines.) # line_res = Ngl.Resources() # line resources line_res.gsLineColor = "Red" # line color line_res.gsLineThicknessF = 1.5 # line thickness scale line_res.gsLineDashPattern = 2 # dashed lines Ngl.polyline(wks,plot,lon2d[::4,0],lat2d[::4,0],line_res) Ngl.polyline(wks,plot,lon2d[::4,-1],lat2d[::4,-1],line_res) # # Add a text string explaining the lines. # text_res = Ngl.Resources() # text resources text_res.txFontHeightF = 0.03 # font height text_res.txFontColor = "Red" Ngl.text_ndc(wks,"dashed red line shows area with no data",0.5,0.17,text_res) Ngl.frame(wks) # Now advance frame. # # Add cyclic points. Since lat2d/lon2d are 2D arrays, make them # cyclic the same way you do the 2D data array. # u = Ngl.add_cyclic(urot[::4,::4]) v = Ngl.add_cyclic(vrot[::4,::4]) lon = Ngl.add_cyclic(lon2d[::4,::4]) lat = Ngl.add_cyclic(lat2d[::4,::4]) # # Specify new coordinate arrays for data. # resources.vfXArray = lon resources.vfYArray = lat resources.tiMainString = "Streamline plot with cyclic point added" plot = Ngl.streamline_map(wks,u,v,resources) # # Add a couple of lines showing the area where the missing data were. # Make the lines solid so we can see them. # line_res.gsLineDashPattern = 0 Ngl.polyline(wks,plot,lon2d[::4,0],lat2d[::4,0],line_res) Ngl.polyline(wks,plot,lon2d[::4,-1],lat2d[::4,-1],line_res) # # Add a text string explaining the lines. # Ngl.text_ndc(wks,"red line shows area that previously had no data",0.5,0.17,text_res) Ngl.frame(wks) Ngl.end()
tests/test_model_serializer_deserialize.py
aswinkp/swampdragon
366
12772005
from swampdragon.serializers.model_serializer import ModelSerializer from swampdragon.testing.dragon_testcase import DragonTestCase from .models import TextModel, SDModel from datetime import datetime from django.db import models # to make sure none of the ModelSerializer variables are clobbering the data MODEL_KEYWORDS = ('data', ) # TODO: support the rest of these field names # MODEL_KEYWORDS = ('data', 'opts', 'initial', 'base_fields', 'm2m_fields', 'related_fields', 'errors') class KeywordModel(SDModel): data = models.TextField() # TODO: support the rest of these field names # opts = models.TextField() # initial = models.TextField() # base_fields = models.TextField() # m2m_fields = models.TextField() # related_fields = models.TextField() # errors = models.TextField() class KeywordModelSerializer(ModelSerializer): class Meta: model = KeywordModel publish_fields = MODEL_KEYWORDS update_fields = MODEL_KEYWORDS class DateModel(SDModel): date = models.DateTimeField() class DateModelSerializer(ModelSerializer): class Meta: model = DateModel publish_fields = ('date') update_fields = ('date') class TextModelSerializer(ModelSerializer): class Meta: model = TextModel publish_fields = ('text') update_fields = ('text') class TestModelSerializer(DragonTestCase): def test_deserialize_model(self): data = {'text': 'foo'} serializer = TextModelSerializer(data) model_instance = serializer.save() self.assertEqual(model_instance.text, data['text']) def test_passing_invalid_data(self): foo = 'text' with self.assertRaises(Exception): TextModelSerializer(foo) def test_ignore_non_model_fields(self): data = {'text': 'foo', 'random_field': 'val'} serializer = TextModelSerializer(data) model_instance = serializer.deserialize() self.assertEqual(model_instance.text, data['text']) def test_deserialize_field(self): date = datetime.now() data = {'date': str(date)} serializer = DateModelSerializer(data) object = serializer.save() self.assertEqual(object.date, date) def test_deserialize_keyword_field(self): data = dict(zip(MODEL_KEYWORDS, MODEL_KEYWORDS)) serializer = KeywordModelSerializer(data) object = serializer.save() for attr in MODEL_KEYWORDS: self.assertEqual(getattr(object, attr), attr)
workalendar/usa/pennsylvania.py
taiyeoguns/workalendar
405
12772026
<gh_stars>100-1000 from ..registry_tools import iso_register from .core import UnitedStates @iso_register('US-PA') class Pennsylvania(UnitedStates): """Pennsylvania""" include_good_friday = True include_thanksgiving_friday = True include_election_day_every_year = True
llvm/utils/lit/tests/Inputs/shtest-not/fail.py
medismailben/llvm-project
2,338
12772054
#!/usr/bin/env python import print_environment import sys print_environment.execute() sys.exit(1)
caffe2/python/layers/sampling_train.py
KevinKecc/caffe2
585
12772057
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## ## @package sampling_train # Module caffe2.python.layers.sampling_train from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import schema from caffe2.python.layers.layers import ModelLayer, get_layer_class from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin class SamplingTrain(ModelLayer): def __init__( self, model, input_record, prediction_layer, output_dims, subtract_log_odd=True, name='sampling_train', **kwargs ): super(SamplingTrain, self).__init__( model, name, input_record, **kwargs ) layer_class = get_layer_class(prediction_layer) assert issubclass(layer_class, SamplingTrainableMixin) assert 'indices' in input_record assert isinstance(input_record.indices, schema.Scalar),\ "input_record.indices is expected to be a schema.Scalar" assert 'input' in input_record self.subtract_log_odd = subtract_log_odd if self.subtract_log_odd: assert 'sampling_prob' in input_record self._prediction_layer = layer_class( model, input_record.input, output_dims=output_dims, **kwargs ) self._prediction_layer.train_param_blobs = [ model.net.NextBlob(str(blob) + '_sampled') for blob in self._prediction_layer.param_blobs ] self.params = self._prediction_layer.params self.output_schema = self._prediction_layer.output_schema def add_ops(self, net): self._prediction_layer.add_ops(net) def add_train_ops(self, net): for full_blob, sampled_blob in zip( self._prediction_layer.param_blobs, self._prediction_layer.train_param_blobs ): net.Gather([full_blob, self.input_record.indices()], sampled_blob) self._prediction_layer.add_train_ops(net) if not self.subtract_log_odd: return log_q = net.Log(self.input_record.sampling_prob(), net.NextScopedBlob("log_q")) net.Sub([self.output_schema(), log_q], self.output_schema(), broadcast=1, use_grad_hack=1)
cpmpy/fancy.py
tias/hakank
279
12772065
<reponame>tias/hakank """ Mr Greenguest puzzle (a.k.a fancy dress problem) in cpmpy. Problem (and LPL) code in http://diuflx71.unifr.ch/lpl/GetModel?name=/demo/demo2 ''' Mr. Greenfan wants to give a dress party where the male guests must wear green dresses. The following rules are given: 1 If someone wears a green tie he has to wear a green shirt. 2 A guest may only wear green socks and a green shirt if he wears a green tie or a green hat. 3 A guest wearing a green shirt or a green hat or who does not wear green socks must wear a green tie. 4 A guest who is not dressed according to rules 1-3 must pay a $11 entrance fee. Mr Greenguest wants to participate but owns only a green shirt (otherwise he would have to pay one for $9). He could buy a green tie for $10, a green hat (used) for $2 and green socks for $12. What is the cheapest solution for Mr Greenguest to participate? ''' Model created by <NAME>, <EMAIL> See also my cpmpy page: http://www.hakank.org/cpmpy/ """ import sys import numpy as np from cpmpy import * from cpmpy.solvers import * from cpmpy_hakank import * def fancy(): # variables # t: tie # h: hat # r: shirt # s: socks # n: entrance fee t = boolvar(name="t") h = boolvar(name="h") r = boolvar(name="r") s = boolvar(name="s") n = boolvar(name="n") cost = intvar(0,100,name="cost") model = Model(minimize=cost) # constraints # This is a straight translation from the LPL code # ( (t->r) \/ n) model += [ t.implies(r) | n] # ( ((s \/ r) -> (t \/ h)) \/ n ) model += [ ( (s | r).implies(t|h)) | n] # ( ((r \/ h \/ not s) -> t) \/ n ) model += [(r | h | ~(s)).implies(t | n)] model += [cost == 10*t + 2*h + 12*s + 11*n] ss = CPM_ortools(model) num_solutions = 0 if ss.solve(): num_solutions += 1 print("cost:",cost.value()) print("t:",t.value(),"h:",h.value(),"r:",r.value(),"s:",s.value(),"n:",n.value()) print("num_solutions:", num_solutions) fancy()
judge/supplementary_gt.py
zwangab91/ctw-baseline
333
12772076
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import json import matplotlib.pyplot as plt import os import plot_tools import settings from pythonapi import anno_tools def plt_print_text(*args): print('plot_tools.print_text', *args[:-1]) with plt.style.context({ 'pdf.fonttype': 42, }): plot_tools.print_text(*args) plt_print_text.concurrent = False print_text = plt_print_text def main(): with open(settings.DATA_LIST) as f: data_list = json.load(f) lines = [] with open(settings.TRAIN) as f: lines += f.read().splitlines() with open(settings.VAL) as f: lines += f.read().splitlines() with open(settings.TEST_DETECTION_GT) as f: lines += f.read().splitlines() def gt2array(gt): color = '#0f0' a = list() for char in anno_tools.each_char(gt): if char['is_chinese']: a.append({'polygon': char['polygon'], 'text': char['text'], 'color': color, 'fontsize': 10}) for char in gt['ignore']: a.append({'polygon': char['polygon'], 'text': '', 'color': '#ff0', 'fontsize': 10}) return a selected = [ ('0000507', 0, 0, 2048, 2048), ('1023899', 0, 0, 2048, 2048), ('1031755', 0, 0, 2048, 2048), ('1044721', 0, 0, 2048, 2048), ('1046905', 0, 0, 2048, 2048), ('2000215', 0, 0, 2048, 2048), ('2004154', 0, 0, 2048, 2048), ('2005679', 0, 0, 2048, 2048), ('2024003', 0, 0, 2048, 2048), ('3005669', 0, 0, 2048, 2048), ('3029319', 0, 0, 2048, 2048), ('3040629', 0, 0, 2048, 2048), ('3001838', 0, 650, 700, 550), ('1041797', 530, 740, 700, 550), ] if not os.path.isdir(settings.PRINTTEXT_DRAWING_DIR): os.makedirs(settings.PRINTTEXT_DRAWING_DIR) tasks = [] for image_id, x, y, w, h in selected: i = [o['image_id'] for o in data_list['train'] + data_list['val'] + data_list['test_det']].index(image_id) gt = json.loads(lines[i]) crop = (x, y, w, h) file_name = os.path.join(settings.TRAINVAL_IMAGE_DIR if i < len(data_list['train'] + data_list['val']) else settings.TEST_IMAGE_DIR, gt['file_name']) output = os.path.join(settings.PRINTTEXT_DRAWING_DIR, 'gt_{}_{}_{}_{}_{}.pdf'.format(image_id, x, y, w, h)) print_text(file_name, output, { 'boxes': gt2array(gt), 'crop': crop, }) if __name__ == '__main__': main()
nuplan/planning/training/preprocessing/test/test_collate_dataloader.py
motional/nuplan-devkit
128
12772103
import unittest import torch.utils.data from nuplan.planning.scenario_builder.nuplan_db.test.nuplan_scenario_test_utils import get_test_nuplan_scenario from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling from nuplan.planning.training.data_loader.scenario_dataset import ScenarioDataset from nuplan.planning.training.preprocessing.feature_builders.raster_feature_builder import RasterFeatureBuilder from nuplan.planning.training.preprocessing.feature_builders.vector_map_feature_builder import VectorMapFeatureBuilder from nuplan.planning.training.preprocessing.feature_collate import FeatureCollate from nuplan.planning.training.preprocessing.feature_preprocessor import FeaturePreprocessor from nuplan.planning.training.preprocessing.features.vector_map import VectorMap from nuplan.planning.training.preprocessing.target_builders.ego_trajectory_target_builder import ( EgoTrajectoryTargetBuilder, ) NUM_BATCHES = 20 class TestCollateDataLoader(unittest.TestCase): """ Tests data loading functionality """ def setUp(self) -> None: """Set up the test case.""" self.batch_size = 4 feature_preprocessor = FeaturePreprocessor( cache_path=None, feature_builders=[ RasterFeatureBuilder( map_features={'LANE': 1.0, 'INTERSECTION': 1.0, 'STOP_LINE': 0.5, 'CROSSWALK': 0.5}, num_input_channels=4, target_width=224, target_height=224, target_pixel_size=0.5, ego_width=2.297, ego_front_length=4.049, ego_rear_length=1.127, ego_longitudinal_offset=0.0, baseline_path_thickness=1, ), VectorMapFeatureBuilder(radius=20), ], target_builders=[EgoTrajectoryTargetBuilder(TrajectorySampling(time_horizon=6.0, num_poses=12))], force_feature_computation=False, ) # Keep only a few scenarios instead of testing the whole extraction scenario = get_test_nuplan_scenario() scenarios = [scenario] * 3 dataset = ScenarioDataset(scenarios=scenarios, feature_preprocessor=feature_preprocessor) self.dataloader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, num_workers=2, pin_memory=False, drop_last=True, collate_fn=FeatureCollate(), ) def test_dataloader(self) -> None: """ Tests that the training dataloader can be iterated without errors """ dataloader = self.dataloader dataloader_iter = iter(dataloader) iterations = min(len(dataloader), NUM_BATCHES) for _ in range(iterations): features, targets = next(dataloader_iter) self.assertTrue("vector_map" in features.keys()) vector_map: VectorMap = features["vector_map"] self.assertEqual(vector_map.num_of_batches, self.batch_size) self.assertEqual(len(vector_map.coords), self.batch_size) self.assertEqual(len(vector_map.multi_scale_connections), self.batch_size) if __name__ == '__main__': unittest.main()
pypy/tool/pytest/app_rewrite.py
nanjekyejoannah/pypy
333
12772105
import re ASCII_IS_DEFAULT_ENCODING = False cookie_re = re.compile(r"^[ \t\f]*#.*coding[:=][ \t]*[-\w.]+") BOM_UTF8 = '\xef\xbb\xbf' def _prepare_source(fn): """Read the source code for re-writing.""" try: stat = fn.stat() source = fn.read("rb") except EnvironmentError: return None, None if ASCII_IS_DEFAULT_ENCODING: # ASCII is the default encoding in Python 2. Without a coding # declaration, Python 2 will complain about any bytes in the file # outside the ASCII range. Sadly, this behavior does not extend to # compile() or ast.parse(), which prefer to interpret the bytes as # latin-1. (At least they properly handle explicit coding cookies.) To # preserve this error behavior, we could force ast.parse() to use ASCII # as the encoding by inserting a coding cookie. Unfortunately, that # messes up line numbers. Thus, we have to check ourselves if anything # is outside the ASCII range in the case no encoding is explicitly # declared. For more context, see issue #269. Yay for Python 3 which # gets this right. end1 = source.find("\n") end2 = source.find("\n", end1 + 1) if (not source.startswith(BOM_UTF8) and cookie_re.match(source[0:end1]) is None and cookie_re.match(source[end1 + 1:end2]) is None): try: source.decode("ascii") except UnicodeDecodeError: # Let it fail in real import. return None, None # On Python versions which are not 2.7 and less than or equal to 3.1, the # parser expects *nix newlines. return stat, source
challenges/8.3.Function_Documentation_Strings/lesson_tests.py
pradeepsaiu/python-coding-challenges
141
12772125
import unittest from main import * class FunctionDocumentationStringsTests(unittest.TestCase): def test_main(self): self.assertIsNone(docstring_function()) self.assertIsNotNone(docstring_function.__doc__) self.assertIsInstance(docstring_function.__doc__, str)
tables/table-alter/parse-turk-info.py
yash-srivastava19/sempre
812
12772129
<filename>tables/table-alter/parse-turk-info.py #!/usr/bin/env python # -*- coding: utf-8 -*- import sys, os, shutil, re, argparse, json from codecs import open from itertools import izip from collections import defaultdict def main(): parser = argparse.ArgumentParser() parser.add_argument('infile') parser.add_argument('-p', '--plot', action='store_true', help='Plot number of classes vs number of denotations') group = parser.add_mutually_exclusive_group() group.add_argument('-s', '--summarize', action='store_true', help='Summarize the number of classes') group.add_argument('-d', '--dump', action='store_true', help='Dump the list of examples with at least one agreed classes') group.add_argument('-D', '--dataset-file', help='Take a dataset file and print a filtered list of only examples' ' with at least one agreed classes') args = parser.parse_args() data = [] with open(args.infile) as fin: print >> sys.stderr, 'Reading from', args.infile header = fin.readline().rstrip('\n').split('\t') for line in fin: data.append(dict(zip(header, line.rstrip('\n').split('\t')))) print >> sys.stderr, 'Read', len(data), 'records.' # ['id', 'numDerivs', 'allTurkedTables', 'agreedTurkedTables', # 'origTableTarget', 'origTableTurkedTarget', 'origTableFlag', # 'numClassesMatched', 'numDerivsMatched'] # Classify examples no_derivs = [] orig_table_mismatch = [] no_classes_matched = [] classes_matched = defaultdict(list) plt_num_classes, plt_num_derivs = [], [] for record in data: if record['numDerivs'] == '0': no_derivs.append(record) assert record['numDerivsMatched'] == '0' continue if record['origTableFlag'] == 'mismatched': orig_table_mismatch.append(record) #assert record['numDerivsMatched'] == '0' continue if record['numClassesMatched'] == '0': no_classes_matched.append(record) assert record['numDerivsMatched'] == '0' continue assert record['numDerivsMatched'] != '0' num_classes = int(record['numClassesMatched']) plt_num_classes.append(num_classes) plt_num_derivs.append(int(record['numDerivsMatched'])) if num_classes < 10: classes_matched[num_classes].append(record) else: classes_matched['> 10'].append(record) if args.summarize: print 'No derivs:', len(no_derivs) print 'Original table mismatched:', len(orig_table_mismatch) print 'No classes matched:', len(no_classes_matched) print 'Classes matched:' total = 0 for key in sorted(classes_matched): num_matches = len(classes_matched[key]) total += num_matches print ' {}: {} (cum = {})'.format(key, num_matches, total) if args.plot: import matplotlib.pyplot as plt plt.scatter(plt_num_classes, plt_num_derivs) plt.show() if args.dump: for key in sorted(classes_matched): for x in classes_matched[key]: print x['id'] if args.dataset_file: indices = set(int(x['id'].replace('nt-', '')) for y in classes_matched.values() for x in y) count_all, count_filtered = 0, 0 with open(args.dataset_file, 'r', 'utf8') as fin: for i, line in enumerate(fin): count_all += 1 if i in indices: print line.rstrip('\n') count_filtered += 1 print >> sys.stderr, 'Printed {} / {} lines'.format(count_filtered, count_all) if __name__ == '__main__': main()
simple/game_loop_global.py
loyalgarlic/snakepit-game
124
12772131
import asyncio from aiohttp import web async def handle(request): index = open("index.html", 'rb') content = index.read() return web.Response(body=content, content_type='text/html') async def wshandler(request): app = request.app ws = web.WebSocketResponse() await ws.prepare(request) if app["game_loop"] is None or \ app["game_loop"].cancelled(): app["game_loop"] = asyncio.ensure_future(game_loop(app)) # this is required to propagate exceptions app["game_loop"].add_done_callback(lambda t: t.result() if not t.cancelled() else None) app["sockets"].append(ws) while 1: msg = await ws.receive() if msg.tp == web.MsgType.text: ws.send_str("Pressed key code: {}".format(msg.data)) print("Got message %s" % msg.data) elif msg.tp == web.MsgType.close or\ msg.tp == web.MsgType.error: break app["sockets"].remove(ws) if len(app["sockets"]) == 0: print("Stopping game loop") app["game_loop"].cancel() print("Closed connection") return ws async def game_loop(app): print("Game loop started") while 1: for ws in app["sockets"]: ws.send_str("game loop passed") await asyncio.sleep(2) app = web.Application() app["sockets"] = [] app["game_loop"] = None app.router.add_route('GET', '/connect', wshandler) app.router.add_route('GET', '/', handle) web.run_app(app)
protonfixes/gamefixes/280200.py
Citiroller/protonfixes
213
12772140
<reponame>Citiroller/protonfixes<filename>protonfixes/gamefixes/280200.py """ Game fix for Eterium """ #pylint: disable=C0103 from protonfixes import util def main(): """ Install xna40 """ util.protontricks('xna40')
env/WritePolicyEnv.py
jeanqasaur/jeeves
253
12772172
<reponame>jeanqasaur/jeeves import JeevesLib # import fast.AST # from collections import defaultdict class WritePolicyEnv: def __init__(self): self.writers = {} def mapPrimaryContext(self, ivar, ctxt): self.writers[ivar] = ctxt # This function associates a new set of write policies with a label. def addWritePolicy(self, label, policy, newWriter): # If the label is associated with a writer, then associate it with the # new write policies. if self.writers.has_key(label): ictxt = self.writers[label] # Make a new label mapped to the same writer. newLabel = JeevesLib.mkLabel(label.name) self.mapPrimaryContext(newLabel, ictxt) # Associate the new policies with this new label. JeevesLib.restrict(newLabel , lambda oc: JeevesLib.jand(lambda: label , lambda: JeevesLib.jand( lambda: policy(ictxt)(oc) , lambda: policy(newWriter)(oc)))) return newLabel # Otherwise return the label as is. else: return label
tests.live/Python/test_live.py
Bradben/iqsharp
115
12772183
#!/bin/env python # -*- coding: utf-8 -*- ## # test_live.py: Tests Azure Quantum functionality Live. ## # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. ## ## IMPORTS ## import pytest import warnings ## TESTS ## def connect(): import qsharp.azure return qsharp.azure.connect( credential="environment" ) def has_completed(job) -> bool: """Check if the job has completed.""" return ( job.status == "Succeeded" or job.status == "Failed" or job.status == "Cancelled" ) def wait_until_completed(job): import time import qsharp.azure max_poll_wait_secs = 5 timeout_secs = 30 poll_wait = 0.2 total_time = 0. while not has_completed(job): if total_time >= timeout_secs: raise TimeoutError(f"The wait time has exceeded {timeout_secs} seconds.") time.sleep(poll_wait) total_time += poll_wait job = qsharp.azure.status(job.id) poll_wait = ( max_poll_wait_secs if poll_wait >= max_poll_wait_secs else poll_wait * 1.5 ) def test_ionq_targets(): """ Tests that we can fetch targets from the service, and that the workspace includes the targets we need for submission """ targets = connect() assert len(targets) > 2 target_ids = [t.id for t in targets] assert 'ionq.simulator' in target_ids assert 'ionq.qpu' in target_ids def test_ionq_submit(): """ Test that the SampleQrng operation can be submitted successfully on the ionq.simulator """ import time import qsharp from Microsoft.Quantum.Tests import SampleQrng # Make sure we can simulate locally: count = 3 result = SampleQrng.simulate(count=count, name='andres') assert len(result) == count import qsharp.azure connect() t = qsharp.azure.target("ionq.simulator") assert isinstance(t, qsharp.azure.AzureTarget) assert t.id == "ionq.simulator" job = qsharp.azure.submit(SampleQrng, count=count, name="andres") assert isinstance(job, qsharp.azure.AzureJob) assert not job.id == '' print("Submitted job: ", job.id) try: wait_until_completed(job) except TimeoutError: warnings.warn("IonQ execution exceeded timeout. Skipping fetching results.") else: job = qsharp.azure.status() assert isinstance(job, qsharp.azure.AzureJob) assert job.status == "Succeeded" histogram = { '[0,0,0]': 0.125, '[0,0,1]': 0.125, '[0,1,0]': 0.125, '[0,1,1]': 0.125, '[1,0,0]': 0.125, '[1,0,1]': 0.125, '[1,1,0]': 0.125, '[1,1,1]': 0.125 } retrieved_histogram = qsharp.azure.output() assert isinstance(retrieved_histogram, dict) assert histogram == retrieved_histogram def test_honeywell_targets(): """ Tests that we can fetch targets from the service, and that the workspace includes the targets we need for submission """ targets = connect() assert len(targets) > 2 target_ids = [t.id for t in targets] assert 'honeywell.hqs-lt-s1' in target_ids assert 'honeywell.hqs-lt-s1-apival' in target_ids def test_honeywell_submit(): """ Test that the RunTeleport operation can be submitted successfully on the honeywell apival target """ import qsharp from Microsoft.Quantum.Tests import RunTeleport # Make sure we can simulate locally: expected = True result = RunTeleport.simulate(doPlus=expected) assert result == 0 if expected else 1 import qsharp.azure connect() t = qsharp.azure.target("honeywell.hqs-lt-s1-apival") assert isinstance(t, qsharp.azure.AzureTarget) assert t.id == "honeywell.hqs-lt-s1-apival" job = qsharp.azure.submit(RunTeleport, doPlus=expected) assert isinstance(job, qsharp.azure.AzureJob) assert not job.id == '' print("Submitted job: ", job.id) try: wait_until_completed(job) except TimeoutError: warnings.warn("Honeywell execution exceeded timeout. Skipping fetching results.") else: job = qsharp.azure.status() assert isinstance(job, qsharp.azure.AzureJob) if job.status == "Succeeded": retrieved_histogram = qsharp.azure.output() assert isinstance(retrieved_histogram, dict) assert '0' in retrieved_histogram
tools/ffmpeg/playmany.py
AnantTiwari-Naman/pyglet
1,160
12772200
<filename>tools/ffmpeg/playmany.py<gh_stars>1000+ """ Usage playmany.py Uses media_player to play a sequence of samples and record debug info A configuration must be active, see command configure.py If the active configuration has disallowed dbg overwrites it will do nothing. If a playlist was provided at session creation, then only the samples in the playlist will be played, otherwise all files in samples_dir. """ import os import subprocess import sys import fs import mpexceptions def main(): try: pathserv = fs.get_path_info_for_active_session() except mpexceptions.ExceptionUndefinedSamplesDir: print("The env var 'pyglet_mp_samples_dir' is not defined.") return 1 except mpexceptions.ExceptionNoSessionIsActive: print("*** Error, no session active.") return 1 try: play_many(pathserv, timeout=120) except mpexceptions.ExceptionAttemptToBreakRawDataProtection: print("*** Error, attempt to overwrite raw data when protect_raw_data is True.") return 1 return 0 def play_many(pathserv, timeout=120): """plays the samples in the session playlist for the current active session timeout: max time allowed to play a sample, default is 120 seconds """ conf = fs.get_session_configuration(pathserv) if conf["dev_debug"]: pass else: if conf["protect_raw_data"]: raise mpexceptions.ExceptionAttemptToBreakRawDataProtection() playlist_gen = pathserv.session_playlist_generator() core_play_many(pathserv, playlist_gen, timeout=timeout) def core_play_many(pathserv, playlist_gen, timeout=120): for sample, filename in playlist_gen: dbg_file = pathserv.dbg_filename(sample) print("playmany playing:", filename) cmdline = [os.path.join(fs.get_media_player_path(), "media_player.py"), "--debug", "--outfile=" + dbg_file, filename] killed, returncode = cmd__py3(cmdline, timeout=timeout) if killed: print("WARNING: killed by timeout, file: %s" % filename) def cmd__py3(cmdline, bufsize=-1, cwd=None, timeout=60): """runs a .py script as a subprocess with the same python as the caller cmdline: list [<scriptname>, arg1, ...] timeout: time in seconds; subprocess wil be killed if it is still running at that time. """ # use the same python as the caller to run the script cmdline.insert(0, "-u") cmdline.insert(0, sys.executable) p = subprocess.Popen( cmdline, bufsize = bufsize, shell = False, stdout = subprocess.PIPE, stderr = subprocess.PIPE, cwd = cwd ) killed = True try: out, err = p.communicate(timeout=timeout) killed = False except subprocess.TimeoutExpired: p.kill() out, err = p.communicate() ## print("out:", out) ## print("err:", err) returncode = p.returncode return killed, returncode def sysargs_to_mainargs(): """builds main args from sys.argv""" if len(sys.argv) > 1 and sys.argv[1].startswith("--help"): print(__doc__) sys.exit(1) if __name__ == "__main__": sysargs_to_mainargs() main()
core/utils/render_utils.py
hyunynim/DIST-Renderer
176
12772220
import trimesh import numpy as np import cv2 import copy import pickle import torch import pdb def depth2normal(depth, f_pix_x, f_pix_y=None): ''' To compute a normal map from the depth map Input: - depth: torch.Tensor (H, W) - f_pix_x: K[0, 0] - f_pix_y: K[1, 1] Return: - normal: torch.Tensor (H, W, 3) ''' if f_pix_y is None: f_pix_y = f_pix_x h, w = depth.shape eps = 1e-12 bg_flag = (depth > 1e5) | (depth == 0) depth[bg_flag] = 0.0 depth_left, depth_right, depth_up, depth_down = torch.zeros(h, w), torch.zeros(h, w), torch.zeros(h, w), torch.zeros(h, w) if depth.get_device() != -1: device_id = depth.get_device() depth_left, depth_right, depth_up, depth_down = depth_left.to(device_id), depth_right.to(device_id), depth_up.to(device_id), depth_down.to(device_id) depth_left[:, 1:w-1] = depth[:, :w-2].clone() depth_right[:, 1:w-1] = depth[:, 2:].clone() depth_up[1:h-1, :] = depth[:h-2, :].clone() depth_down[1:h-1, :] = depth[2:, :].clone() dzdx = (depth_right - depth_left) * f_pix_x / 2.0 dzdy = (depth_down - depth_up) * f_pix_y / 2.0 normal = torch.stack([dzdx, dzdy, -torch.ones_like(dzdx)]).permute(1, 2, 0) normal_length = torch.norm(normal, p=2, dim=2) normal = normal / (normal_length + 1e-12)[:,:,None] normal[bg_flag] = 0.0 return normal def quad2rotation(quad): ''' input: torch.Tensor (4) ''' bs = quad.shape[0] qr, qi, qj, qk = quad[:,0], quad[:,1], quad[:,2], quad[:,3] rot_mat = torch.zeros(bs, 3, 3).to(quad.get_device()) rot_mat[:,0,0] = 1 - 2 * (qj ** 2 + qk ** 2) rot_mat[:,0,1] = 2 * (qi * qj - qk * qr) rot_mat[:,0,2] = 2 * (qi * qk + qj * qr) rot_mat[:,1,0] = 2 * (qi * qj + qk * qr) rot_mat[:,1,1] = 1 - 2 * (qi ** 2 + qk ** 2) rot_mat[:,1,2] = 2 * (qj * qk - qi * qr) rot_mat[:,2,0] = 2 * (qi * qk - qj * qr) rot_mat[:,2,1] = 2 * (qj * qk + qi * qr) rot_mat[:,2,2] = 1 - 2 * (qi ** 2 + qj ** 2) return rot_mat def get_camera_from_tensor(inputs): N = len(inputs.shape) if N == 1: inputs = inputs.unsqueeze(0) quad, T = inputs[:,:4], inputs[:,4:] R = quad2rotation(quad) RT = torch.cat([R, T[:,:,None]], 2) if N == 1: RT = RT[0] return RT def get_tensor_from_camera(RT): gpu_id = -1 if type(RT) == torch.Tensor: if RT.get_device() != -1: RT = RT.detach().cpu() gpu_id = RT.get_device() RT = RT.numpy() from mathutils import Matrix R, T = RT[:,:3], RT[:,3] rot = Matrix(R) quad = rot.to_quaternion() tensor = np.concatenate([quad, T], 0) tensor = torch.from_numpy(tensor).float() if gpu_id != -1: tensor = tensor.to(gpu_id) return tensor def downsize_camera_intrinsic(intrinsic, factor): ''' Input: - intrinsic type: np.array (3,3) - factor int ''' img_h, img_w = int(2 * intrinsic[1,2]), int(2 * intrinsic[0,2]) img_h_new, img_w_new = img_h / factor, img_w / factor if (img_h_new - round(img_h_new)) > 1e-12 or (img_w_new - round(img_w_new)) > 1e-12: raise ValueError('The image size {0} should be divisible by the factor {1}.'.format((img_h, img_w), factor)) intrinsic_new = copy.deepcopy(intrinsic) intrinsic_new[0,:] = intrinsic[0,:] / factor intrinsic_new[1,:] = intrinsic[1,:] / factor return intrinsic_new def sample_points_from_mesh(mesh, N=30000): ''' Return: -- points: np.array (N, 3) ''' points = trimesh.sample.sample_surface(mesh, N)[0] return points def transform_point_cloud(points): ''' solve the mismatch between the point cloud coordinate and the mesh obj. ''' points_new = copy.deepcopy(points) points_new[:,1] = -points[:,2] points_new[:,2] = points[:,1] return points_new def read_pickle(fname): with open(fname, 'rb') as f: data = pickle.load(f, encoding='latin1') return data def save_render_output(render_output, fname): depth_rendered, normal_rendered, valid_mask_rendered, _ = render_output output = {} output['depth'] = depth_rendered.detach().cpu().numpy() output['normal'] = normal_rendered.detach().cpu().numpy() output['valid_mask'] = valid_mask_rendered.detach().cpu().numpy() save_pkl(output, fname) def save_pkl(data, fname): with open(fname, 'wb') as f: pickle.dump(data, f)
packages/core/minos-microservice-aggregate/minos/aggregate/transactions/repositories/abc.py
minos-framework/minos-python
247
12772229
<gh_stars>100-1000 from __future__ import ( annotations, ) from abc import ( ABC, abstractmethod, ) from datetime import ( datetime, ) from typing import ( AsyncIterator, Optional, ) from uuid import ( UUID, ) from minos.common import ( Inject, Injectable, Lock, LockPool, NotProvidedException, PoolFactory, SetupMixin, ) from ...exceptions import ( TransactionNotFoundException, ) from ..entries import ( TransactionEntry, TransactionStatus, ) @Injectable("transaction_repository") class TransactionRepository(ABC, SetupMixin): """Transaction Repository base class.""" @Inject() def __init__( self, lock_pool: Optional[LockPool] = None, pool_factory: Optional[PoolFactory] = None, *args, **kwargs ): super().__init__(*args, **kwargs) if lock_pool is None and pool_factory is not None: lock_pool = pool_factory.get_pool("lock") if lock_pool is None: raise NotProvidedException("A lock pool instance is required.") self._lock_pool = lock_pool async def submit(self, transaction: TransactionEntry) -> TransactionEntry: """Submit a new or updated transaction to store it on the repository. :param transaction: The transaction to be stored. :return: This method does not return anything. """ return await self._submit(transaction) @abstractmethod async def _submit(self, transaction: TransactionEntry) -> TransactionEntry: raise NotImplementedError # noinspection PyUnusedLocal async def get(self, uuid: UUID, **kwargs) -> TransactionEntry: """Get a ``TransactionEntry`` from its identifier. :param uuid: Identifier of the ``RootEntity``. :param kwargs: Additional named arguments. :return: The ``TransactionEntry`` instance. """ try: return await self.select(uuid=uuid).__anext__() except StopAsyncIteration: raise TransactionNotFoundException(f"Transaction identified by {uuid!r} does not exist.") async def select( self, uuid: Optional[UUID] = None, uuid_ne: Optional[UUID] = None, uuid_in: Optional[tuple[UUID, ...]] = None, destination_uuid: Optional[UUID] = None, status: Optional[TransactionStatus] = None, status_in: Optional[tuple[str, ...]] = None, event_offset: Optional[int] = None, event_offset_lt: Optional[int] = None, event_offset_gt: Optional[int] = None, event_offset_le: Optional[int] = None, event_offset_ge: Optional[int] = None, updated_at: Optional[datetime] = None, updated_at_lt: Optional[datetime] = None, updated_at_gt: Optional[datetime] = None, updated_at_le: Optional[datetime] = None, updated_at_ge: Optional[datetime] = None, **kwargs, ) -> AsyncIterator[TransactionEntry]: """Get a transaction from the repository. :param uuid: Transaction identifier equal to the given value. :param uuid_ne: Transaction identifier not equal to the given value :param uuid_in: Transaction identifier within the given values. :param destination_uuid: Destination Transaction identifier equal to the given value. :param status: Transaction status equal to the given value. :param status_in: Transaction status within the given values :param event_offset: Event offset equal to the given value. :param event_offset_lt: Event Offset lower than the given value :param event_offset_gt: Event Offset greater than the given value :param event_offset_le: Event Offset lower or equal to the given value :param event_offset_ge: Event Offset greater or equal to the given value :param updated_at: Updated at equal to the given value. :param updated_at_lt: Updated at lower than the given value. :param updated_at_gt: Updated at greater than the given value. :param updated_at_le: Updated at lower or equal to the given value. :param updated_at_ge: Updated at greater or equal to the given value. :param kwargs: Additional named arguments. :return: An asynchronous iterator. """ generator = self._select( uuid=uuid, uuid_ne=uuid_ne, uuid_in=uuid_in, destination_uuid=destination_uuid, status=status, status_in=status_in, event_offset=event_offset, event_offset_lt=event_offset_lt, event_offset_gt=event_offset_gt, event_offset_le=event_offset_le, event_offset_ge=event_offset_ge, updated_at=updated_at, updated_at_lt=updated_at_lt, updated_at_gt=updated_at_gt, updated_at_le=updated_at_le, updated_at_ge=updated_at_ge, **kwargs, ) # noinspection PyTypeChecker async for entry in generator: yield entry @abstractmethod async def _select(self, **kwargs) -> AsyncIterator[TransactionEntry]: raise NotImplementedError def write_lock(self) -> Lock: """Get write lock. :return: An asynchronous context manager. """ return self._lock_pool.acquire("aggregate_transaction_write_lock")
pkg/package.py
bruce30262/idapkg
125
12772256
<reponame>bruce30262/idapkg """ Package-related classes and methods are in pkg.package module. All constructing arguments are accessible via property. """ import ctypes import glob import json import os import random import runpy import shutil import sys import traceback import zipfile import ida_kernwin import ida_loader import ida_diskio from .config import g from .env import ea as current_ea, os as current_os from .internal_api import invalidate_proccache, get_extlangs, idausr_remove, idausr_add from .logger import getLogger from .vendor.semantic_version import Version, Spec from .virtualenv_utils import FixInterpreter __all__ = ["LocalPackage", "InstallablePackage"] log = getLogger(__name__) def rename(old, new): if sys.platform == 'win32': if not ctypes.windll.kernel32.MoveFileExA(str(old), str(new), 0): raise WindowsError(ctypes.windll.kernel32.GetLastError()) else: return os.rename(old, new) def _get_native_suffix(): if current_os == 'win': suffix = '.dll' elif current_os == 'linux': suffix = '.so' elif current_os == 'mac': suffix = '.dylib' else: raise Exception("unknown os: %r" % current_os) return suffix class LocalPackage(object): def __init__(self, id, path, version): self.id = str(id) self.version = str(version) self.path = os.path.normpath(path) def remove(self): """ Removes a package. """ idausr_remove(self.path) with FixInterpreter(): for script in self.info().get('uninstallers', []): script = os.path.join(self.path, script) try: runpy.run_path(script) except Exception: # XXX: How can I rollback this? traceback.print_exc() log.warn( "Uninstallation script %r exited with exception!", script) if not LocalPackage._remove_package_dir(self.path): log.error( "Package directory is in use and will be removed after restart.") # If not modified, the only case this fails is, custom ld.so or windows. # Latter case is common. new_path = self.path.rstrip('/\\') + '-removed' if os.path.exists(new_path): new_path += '-%x' % random.getrandbits(64) rename(self.path, new_path) # XXX: is it good to mutate this object? self.path = new_path log.info("Done!") def install(self, remove_on_fail=False): """ Run python scripts specified by :code:`installers` field in `info.json`. :returns: None """ orig_cwd = os.getcwd() try: os.chdir(self.path) info = self.info() scripts = info.get('installers', []) if not isinstance(scripts, list): raise Exception( '%r: Corrupted package: installers key is not list' % self.id) with FixInterpreter(): for script in scripts: log.info('Executing installer path %r...', script) script = os.path.join(self.path, script) runpy.run_path(script) except Exception: log.info('Installer failed!') if remove_on_fail: self.remove() raise finally: os.chdir(orig_cwd) def load(self, force=False): """ Actually does :code:`ida_loaders.load_plugin(paths)`, and updates IDAUSR variable. """ if not force and self.path in ida_diskio.get_ida_subdirs(''): # Already loaded, just update sys.path for python imports if self.path not in sys.path: sys.path.append(self.path) return # XXX: find a more efficient way to ensure dependencies errors = [] for dependency in self.info().get('dependencies', {}).keys(): dep = LocalPackage.by_name(dependency) if not dep: errors.append('Dependency not found: %r' % dependency) continue dep.load() if errors: for error in errors: log.error(error) return def handler(): # Load plugins immediately # processors / loaders will be loaded on demand if self.path not in sys.path: sys.path.append(self.path) # Update IDAUSR variable idausr_add(self.path) # Immediately load compatible plugins self._find_loadable_modules('plugins', ida_loader.load_plugin) # Find loadable processor modules, and if exists, invalidate cached process list (proccache). invalidates = [] self._find_loadable_modules('procs', invalidates.append) if invalidates: invalidate_proccache() # Run in main thread ida_kernwin.execute_sync(handler, ida_kernwin.MFF_FAST) def populate_env(self): """ A passive version of load; it only populates IDAUSR variable. It's called at :code:`idapythonrc.py`. """ errors = [] for dependency in self.info().get('dependencies', {}).keys(): dep = LocalPackage.by_name(dependency) if not dep: errors.append('Dependency not found: %r' % dependency) continue dep.populate_env() if errors: for error in errors: log.error(error) return idausr_add(self.path) if self.path not in sys.path: sys.path.append(self.path) def plugins(self): return self._collect_modules('plugins') def loaders(self): return self._collect_modules('loaders') def procs(self): return self._collect_modules('procs') def _collect_modules(self, category): result = [] self._find_loadable_modules(category, result.append) return result def _find_loadable_modules(self, subdir, callback): # Load modules in external languages (.py, .idc, ...) for suffix in ['.' + x.fileext for x in get_extlangs()]: expr = os.path.join(self.path, subdir, '*' + suffix) for path in glob.glob(expr): callback(str(path)) # Load native modules for suffix in (_get_native_suffix(),): expr = os.path.join(self.path, subdir, '*' + suffix) for path in glob.glob(expr): is64 = path[:-len(suffix)][-2:] == '64' if is64 == (current_ea == 64): callback(str(path)) def info(self): """ Loads :code:`info.json` and returns a parsed JSON object. :rtype: dict """ with open(os.path.join(self.path, 'info.json'), 'rb') as _file: return json.load(_file) @staticmethod def by_name(name, prefix=None): """ Returns a package with specified `name`. :rtype: LocalPackage """ if prefix is None: prefix = g['path']['packages'] path = os.path.join(prefix, name) # check if the folder exists if not os.path.isdir(path): return None # filter removed package removed = os.path.join(path, '.removed') if os.path.isfile(removed): LocalPackage._remove_package_dir(path) return None info_json = os.path.join(path, 'info.json') if not os.path.isfile(info_json): log.warn('Warning: info.json is not found at %r', path) return None with open(info_json, 'rb') as _file: try: info = json.load(_file) except Exception: traceback.print_exc() log.warn('Warning: info.json is not valid at %r', path) return None result = LocalPackage( id=info['_id'], path=path, version=info['version']) return result @staticmethod def all(disabled=False): """ List all packages installed at :code:`g['path']['packages']`. :rtype: list(LocalPackage) """ prefix = g['path']['packages'] res = os.listdir(prefix) res = (x for x in res if os.path.isdir(os.path.join(prefix, x))) res = (LocalPackage.by_name(x) for x in res) res = (x for x in res if x) res = [x for x in res if (x.id in g['ignored_packages']) == disabled] return res @staticmethod def _remove_package_dir(path): errors = [] def onerror(_listdir, _path, exc_info): log.error("%s: %s", _path, str(exc_info[1])) errors.append(exc_info[1]) shutil.rmtree(path, onerror=onerror) if errors: # Mark for later removal open(os.path.join(path, '.removed'), 'wb').close() return not errors def __repr__(self): return '<LocalPackage id=%r path=%r version=%r>' % \ (self.id, self.path, self.version) class InstallablePackage(object): def __init__(self, id, name, version, description, author, repo): self.id = str(id) self.name = name self.version = str(version) self.description = description self.repo = repo self.author = author def install(self, upgrade=False): """ Just calls :code:`InstallablePackage.install_from_repo(self.repo, self.id, upgrade)`. """ install_from_repo(self.repo, self.id, allow_upgrade=upgrade) def __repr__(self): return '<InstallablePackage id=%r version=%r repo=%r>' % \ (self.id, self.version, self.repo) def install_from_repo(repo, name, version_spec='*', allow_upgrade=False, _visited=None): """ This method downloads a package satisfying spec. .. note :: The function waits until all of dependencies are installed. Run it as separate thread if possible. """ top_level = _visited is None _visited = _visited or {} if name in _visited: log.warn("Cyclic dependency found when installing %r <-> %r", name, _visited) return prev = LocalPackage.by_name(name) _version_spec = Spec(version_spec) satisfies_local = prev and Version(prev.version) in _version_spec if allow_upgrade or not satisfies_local: log.debug("Fetching releases for %r from %r...", name, repo) releases = repo.releases(name) if not releases: error = "Release not found on remote repository: %r on %r (error: %r)" % ( name, repo, releases['error']) raise Exception(error) releases = [release for release in releases if Version(release['version']) in _version_spec] if not releases: error = "Release satisfying the condition %r %r not found on remote repository %r" % ( name, version_spec, repo) raise Exception(error) downloading = None if ( prev and releases[-1]['version'] == prev.version) else releases[-1]['version'] else: downloading = None if downloading: log.info('Collecting %s...', name) data = repo.download(name, downloading) f = zipfile.ZipFile(data, 'r') # No /: topmost files # One /: topmost folders topmost_files = [path for path in f.namelist() if path.count('/') == 0] # From ZipInfo.is_dir() in Python 3.x topmost_folders = [path for path in f.namelist() if path.endswith('/')] common_prefix = topmost_folders[0] if len(topmost_files) == 0 and len(topmost_folders) == 1 else "" info = json.load(f.open(common_prefix + 'info.json')) packages_path = g['path']['packages'] install_path = os.path.join(packages_path, info["_id"]) # this ensures os.path.exists(install_path) == False # TODO: should we unload a already-loaded plugin? if prev: prev.remove() assert not os.path.exists(install_path) # XXX: edge case? removed = os.path.join(install_path, '.removed') if os.path.isfile(removed): os.unlink(removed) log.info('Extracting into %r...', install_path) if common_prefix: f.extractall(packages_path) os.rename(os.path.join(packages_path, common_prefix), install_path) else: f.extractall(install_path) # Initiate LocalPackage object pkg = LocalPackage(info['_id'], install_path, info['version']) else: pkg = prev log.info("Requirement already satisfied: %s%s", name, '' if version_spec == '*' else version_spec) restart_required = pkg.info().get('restart_required', False) _visited[name] = (pkg.version, restart_required) # First, install dependencies # TODO: add version check for dep_name, dep_version_spec in pkg.info().get('dependencies', {}).items(): install_from_repo(repo, dep_name, dep_version_spec, allow_upgrade, _visited) # Then, install this package. if downloading: pkg.install() if not restart_required: pkg.load() if top_level: log.info("Successfully installed %s", ' '.join('%s-%s' % (key, value[0]) for key, value in _visited.items())) delayed = [(key, value) for key, value in _visited.items() if value[1]] if delayed: log.info( "Plugins in the following packages will be loaded after restarting IDA.") log.info( " %s", " ".join('%s-%s' % (key, value[0]) for key, value in delayed)) return pkg
test/test_polar_decoding.py
NVlabs/sionna
163
12772263
# # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # try: import sionna except ImportError as e: import sys sys.path.append("../") import tensorflow as tf gpus = tf.config.list_physical_devices('GPU') print('Number of GPUs available :', len(gpus)) if gpus: gpu_num = 0 # Number of the GPU to be used try: tf.config.set_visible_devices(gpus[gpu_num], 'GPU') print('Only GPU number', gpu_num, 'used.') tf.config.experimental.set_memory_growth(gpus[gpu_num], True) except RuntimeError as e: print(e) import unittest import pytest # for pytest filterwarnings import numpy as np from sionna.fec.polar.encoding import PolarEncoder, Polar5GEncoder from sionna.fec.polar.decoding import PolarSCDecoder, PolarSCLDecoder, PolarBPDecoder from sionna.fec.polar.decoding import Polar5GDecoder from sionna.fec.crc import CRCEncoder from sionna.fec.utils import GaussianPriorSource from sionna.utils import BinarySource from sionna.fec.polar.utils import generate_5g_ranking class TestPolarDecodingSC(unittest.TestCase): def test_invalid_inputs(self): """Test against invalid values of n and frozen_pos.""" # frozen vec to long n = 32 frozen_pos = np.arange(n+1) with self.assertRaises(AssertionError): PolarSCDecoder(frozen_pos, n) # n not a pow of 2 # frozen vec to long n = 32 k = 12 frozen_pos,_ = generate_5g_ranking(k, n) with self.assertRaises(AssertionError): PolarSCDecoder(frozen_pos, n+1) # test valid shapes # (k, n) param_valid = [[0, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0], p[1]) PolarSCDecoder(frozen_pos, p[1]) # no complex-valued input allowed with self.assertRaises(ValueError): frozen_pos,_ = generate_5g_ranking(32, 64) PolarSCDecoder(frozen_pos, 64, output_dtype=tf.complex64) def test_output_dim(self): """Test that output dims are correct (=n) and output equals all-zero codeword.""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) dec = PolarSCDecoder(frozen_pos, p[1]) c = -10. * np.ones([bs, p[1]]) # all-zero with BPSK (no noise);logits u = dec(c).numpy() self.assertTrue(u.shape[-1]==p[0]) # also check that all-zero input yields all-zero output u_hat = np.zeros([bs, p[0]]) self.assertTrue(np.array_equal(u, u_hat)) def test_numerical_stab(self): """Test for numerical stability (no nan or infty as output).""" bs = 10 # (k,n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256]] source = GaussianPriorSource() for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) dec = PolarSCDecoder(frozen_pos, p[1]) # case 1: extremely large inputs c = source([[bs, p[1]], 0.0001]) # llrs u1 = dec(c).numpy() # no nan self.assertFalse(np.any(np.isnan(u1))) #no inftfy self.assertFalse(np.any(np.isinf(u1))) self.assertFalse(np.any(np.isneginf(u1))) # case 2: zero llr input c = tf.zeros([bs, p[1]]) # llrs u2 = dec(c).numpy() # no nan self.assertFalse(np.any(np.isnan(u2))) #no inftfy self.assertFalse(np.any(np.isinf(u2))) self.assertFalse(np.any(np.isneginf(u2))) def test_identity(self): """test that info bits can be recovered if no noise is added.""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: source = BinarySource() frozen_pos, _ = generate_5g_ranking(p[0],p[1]) enc = PolarEncoder(frozen_pos, p[1]) dec = PolarSCDecoder(frozen_pos, p[1]) u = source([bs, p[0]]) c = enc(u) llr_ch = 20.*(2.*c-1) # demod BPSK witout noise u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u.numpy(), u_hat.numpy())) def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 100 n = 128 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) inputs = tf.keras.Input(shape=(n), dtype=tf.float32) x = PolarSCDecoder(frozen_pos, n)(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) b = source([bs, n]) model(b) # call twice to see that bs can change b2 = source([bs+1, n]) model(b2) model.summary() def test_multi_dimensional(self): """Test against arbitrary shapes. """ k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarSCDecoder(frozen_pos, n) b = source([100, n]) b_res = tf.reshape(b, [4, 5, 5, n]) # encode 2D Tensor c = dec(b).numpy() # encode 4D Tensor c_res = dec(b_res).numpy() # and reshape to 2D shape c_res = tf.reshape(c_res, [100, k]) # both version should yield same result self.assertTrue(np.array_equal(c, c_res)) def test_batch(self): """Test that all samples in batch yield same output (for same input). """ bs = 100 k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarSCDecoder(frozen_pos, n) b = source([1,15,n]) b_rep = tf.tile(b, [bs, 1, 1]) # and run tf version (to be tested) c = dec(b_rep).numpy() for i in range(bs): self.assertTrue(np.array_equal(c[0,:,:], c[i,:,:])) def test_tf_fun(self): """Test that graph mode works and xla is supported.""" @tf.function def run_graph(u): return dec(u) @tf.function(jit_compile=True) def run_graph_xla(u): return dec(u) bs = 10 k = 100 n = 128 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) dec = PolarSCDecoder(frozen_pos, n) u = source([bs, n]) x = run_graph(u).numpy() # execute the graph twice x = run_graph(u).numpy() # and change batch_size u = source([bs+1, n]) x = run_graph(u).numpy() # run same test for XLA (jit_compile=True) u = source([bs, n]) x = run_graph_xla(u).numpy() x = run_graph_xla(u).numpy() u = source([bs+1, n]) x = run_graph_xla(u).numpy() def test_ref_implementation(self): """Test against pre-calculated results from internal implementation. """ ref_path = '../test/codes/polar/' filename = ["P_128_37", "P_128_110", "P_256_128"] for f in filename: A = np.load(ref_path + f + "_Avec.npy") llr_ch = np.load(ref_path + f + "_Lch.npy") u_hat = np.load(ref_path + f + "_uhat.npy") frozen_pos = np.array(np.where(A==0)[0]) info_pos = np.array(np.where(A==1)[0]) n = len(frozen_pos) + len(info_pos) k = len(info_pos) dec = PolarSCDecoder(frozen_pos, n) l_in = -1. * llr_ch # logits u_hat_tf = dec(l_in).numpy() # the output should be equal to the reference self.assertTrue(np.array_equal(u_hat_tf, u_hat)) def test_dtype_flexible(self): """Test that output_dtype can be flexible.""" batch_size = 100 k = 30 n = 64 source = GaussianPriorSource() frozen_pos, _ = generate_5g_ranking(k, n) dtypes_supported = (tf.float16, tf.float32, tf.float64) for dt_in in dtypes_supported: for dt_out in dtypes_supported: llr = source([[batch_size, n], 0.5]) llr = tf.cast(llr, dt_in) dec = PolarSCDecoder(frozen_pos, n, output_dtype=dt_out) x = dec(llr) self.assertTrue(x.dtype==dt_out) # test that complex-valued inputs raise error llr = source([[batch_size, n], 0.5]) llr_c = tf.complex(llr, tf.zeros_like(llr)) dec = PolarSCDecoder(frozen_pos, n, output_dtype=tf.float32) with self.assertRaises(TypeError): x = dec(llr_c) class TestPolarDecodingSCL(unittest.TestCase): # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_invalid_inputs(self): """Test against invalid values of n and frozen_pos.""" # frozen vec to long n = 32 frozen_pos = np.arange(n+1) with self.assertRaises(AssertionError): PolarSCLDecoder(frozen_pos, n) # n not a pow of 2 # frozen vec to long n = 32 k = 12 frozen_pos,_ = generate_5g_ranking(k, n) with self.assertRaises(AssertionError): PolarSCLDecoder(frozen_pos, n+1) # also test valid shapes # (k, n) param_valid = [[0, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) PolarSCLDecoder(frozen_pos, p[1]) # no complex-valued input allowed with self.assertRaises(ValueError): frozen_pos,_ = generate_5g_ranking(32, 64) PolarSCLDecoder(frozen_pos, 64, output_dtype=tf.complex64) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_output_dim(self): """Test that output dims are correct (=n) and output is the all-zero codeword.""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] # use_hybrid, use_fast_scl, cpu_only, use_scatter for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0], p[1]) for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) # all-zero with BPSK (no noise);logits c = -10. * np.ones([bs, p[1]]) u = dec(c).numpy() # check shape self.assertTrue(u.shape[-1]==p[0]) # also check that all-zero input yields all-zero u_hat = np.zeros([bs, p[0]]) self.assertTrue(np.array_equal(u, u_hat)) # also test different list sizes n = 32 k = 16 frozen_pos, _ = generate_5g_ranking(k, n) list_sizes = [1, 2, 8, 32] for list_size in list_sizes: for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, n, list_size=list_size, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) # all-zero with BPSK (no noise);logits c = -10. * np.ones([bs, n]) u = dec(c).numpy() self.assertTrue(u.shape[-1]==k) # also check that all-zero input yields all-zero u_hat = np.zeros([bs, k]) self.assertTrue(np.array_equal(u, u_hat)) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_numerical_stab(self): """Test for numerical stability (no nan or infty as output)""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256]] source = GaussianPriorSource() for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0], p[1]) for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) # case 1: extremely large inputs c = source([[bs, p[1]], 0.0001]) # llrs u1 = dec(c).numpy() # no nan self.assertFalse(np.any(np.isnan(u1))) #no inftfy self.assertFalse(np.any(np.isinf(u1))) self.assertFalse(np.any(np.isneginf(u1))) # case 2: zero input c = tf.zeros([bs, p[1]]) # llrs u2 = dec(c).numpy() # no nan self.assertFalse(np.any(np.isnan(u2))) #no inftfy self.assertFalse(np.any(np.isinf(u2))) self.assertFalse(np.any(np.isneginf(u2))) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_identity(self): """Test that info bits can be recovered if no noise is added.""" bs = 10 # (k,n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256]] source = BinarySource() # use_hybrid, use_fast_scl, cpu_only, use_scatter for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0], p[1]) enc = PolarEncoder(frozen_pos, p[1]) u = source([bs, p[0]]) c = enc(u) llr_ch = 200.*(2.*c-1) # demod BPSK witout noise for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, p[1], use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u.numpy(), u_hat.numpy())) # also test different list sizes n = 32 k = 16 crc_degree = "CRC11" frozen_pos, _ = generate_5g_ranking(k, n) enc = PolarEncoder(frozen_pos, n) enc_crc = CRCEncoder(crc_degree) u = source([bs, k-enc_crc.crc_length]) u_crc = enc_crc(u) c = enc(u_crc) llr_ch = 200.*(2.*c-1) # demod BPSK witout noise list_sizes = [1, 2, 8, 32] for list_size in list_sizes: for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, n, list_size=list_size, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter, crc_degree=crc_degree) u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u_crc.numpy(), u_hat.numpy())) def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 16 n = 32 for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) inputs = tf.keras.Input(shape=(n), dtype=tf.float32) x = PolarSCLDecoder(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter)(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) b = source([bs,n]) model(b) # call twice to see that bs can change b2 = source([bs+1,n]) model(b2) model.summary() # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_multi_dimensional(self): """Test against multi-dimensional input shapes. As reshaping is done before calling the actual decoder, no exhaustive testing against all decoder options is required. """ k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarSCLDecoder(frozen_pos, n) b = source([100, n]) b_res = tf.reshape(b, [4, 5, 5, n]) # encode 2D Tensor c = dec(b).numpy() # encode 4D Tensor c_res = dec(b_res).numpy() # and reshape to 2D shape c_res = tf.reshape(c_res, [100, k]) # both version should yield same result self.assertTrue(np.array_equal(c, c_res)) def test_batch(self): """Test that all samples in batch yield same output (for same input). """ bs = 100 k = 78 n = 128 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) b = source([1,15,n]) b_rep = tf.tile(b, [bs, 1, 1]) # and run tf version (to be tested) c = dec(b_rep).numpy() for i in range(bs): self.assertTrue(np.array_equal(c[0,:,:], c[i,:,:])) def test_tf_fun(self): """Test that graph mode works and XLA is supported.""" bs = 10 k = 16 n = 32 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) crc_degrees = [None, "CRC11"] for crc_degree in crc_degrees: for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: @tf.function def run_graph(u): return dec(u) @tf.function(jit_compile=True) def run_graph_xla(u): return dec(u) dec = PolarSCLDecoder(frozen_pos, n, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter, crc_degree=crc_degree) # test that for arbitrary input only binary values are # returned u = source([bs, n]) x = run_graph(u).numpy() # execute the graph twice x = run_graph(u).numpy() # and change batch_size u = source([bs+1, n]) x = run_graph(u).numpy() if not cpu_only: # cpu only does not support XLA # run same test for XLA (jit_compile=True) u = source([bs, n]) x = run_graph_xla(u).numpy() x = run_graph_xla(u).numpy() u = source([bs+1, n]) x = run_graph_xla(u).numpy() # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_ref_implementation(self): """Test against pre-calculated results from internal implementation. Also verifies that all decoding options yield same results. Remark: results are for SC only, i.e., list_size=1. """ ref_path = '../test/codes/polar/' filename = ["P_128_37", "P_128_110", "P_256_128"] for f in filename: A = np.load(ref_path + f + "_Avec.npy") llr_ch = np.load(ref_path + f + "_Lch.npy") u_hat = np.load(ref_path + f + "_uhat.npy") frozen_pos = np.array(np.where(A==0)[0]) info_pos = np.array(np.where(A==1)[0]) n = len(frozen_pos) + len(info_pos) k = len(info_pos) for use_fast_scl in [False, True]: for cpu_only in [False, True]: for use_scatter in [False, True]: dec = PolarSCLDecoder(frozen_pos, n, list_size=1, use_fast_scl=use_fast_scl, cpu_only=cpu_only, use_scatter=use_scatter) l_in = -1. * llr_ch # logits u_hat_tf = dec(l_in).numpy() # the output should be equal to the reference self.assertTrue(np.array_equal(u_hat_tf, u_hat)) def test_hybrid_scl(self): """Verify hybrid SC decoding option. Remark: XLA is currently not supported. """ bs = 10 n = 32 k = 16 crc_degree = "CRC11" list_sizes = [1, 2, 8, 32] frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() enc = PolarEncoder(frozen_pos, n) enc_crc = CRCEncoder(crc_degree) k_crc = enc_crc.crc_length u = source([bs, k-k_crc]) u_crc = enc_crc(u) c = enc(u_crc) llr_ch = 20.*(2.*c-1) # demod BPSK witout noise for list_size in list_sizes: dec = PolarSCLDecoder(frozen_pos, n, list_size=list_size, use_hybrid_sc=True, crc_degree=crc_degree) u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u_crc.numpy(), u_hat.numpy())) # verify that graph can be executed @tf.function def run_graph(u): return dec(u) u = source([bs, n]) # execute the graph twice x = run_graph(u).numpy() x = run_graph(u).numpy() # and change batch_size u = source([bs+1, n]) x = run_graph(u).numpy() def test_dtype_flexible(self): """Test that output_dtype is variable.""" batch_size = 100 k = 30 n = 64 source = GaussianPriorSource() frozen_pos, _ = generate_5g_ranking(k, n) dtypes_supported = (tf.float16, tf.float32, tf.float64) for dt_in in dtypes_supported: for dt_out in dtypes_supported: llr = source([[batch_size, n], 0.5]) llr = tf.cast(llr, dt_in) dec = PolarSCLDecoder(frozen_pos, n, output_dtype=dt_out) x = dec(llr) self.assertTrue(x.dtype==dt_out) # test that complex-valued inputs raise error llr = source([[batch_size, n], 0.5]) llr_c = tf.complex(llr, tf.zeros_like(llr)) dec = PolarSCLDecoder(frozen_pos, n, output_dtype=tf.float32) with self.assertRaises(TypeError): x = dec(llr_c) class TestPolarDecodingBP(unittest.TestCase): """Test Polar BP decoder.""" def test_invalid_inputs(self): """Test against invalid values of n and frozen_pos.""" # frozen vec to long n = 32 frozen_pos = np.arange(n+1) with self.assertRaises(AssertionError): PolarBPDecoder(frozen_pos, n) # n not a pow of 2 # frozen vec to long n = 32 k = 12 frozen_pos,_ = generate_5g_ranking(k, n) with self.assertRaises(AssertionError): PolarBPDecoder(frozen_pos, n+1) # test also valid shapes # (k, n) param_valid = [[0, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) PolarBPDecoder(frozen_pos, p[1]) # no complex-valued input allowed with self.assertRaises(ValueError): frozen_pos,_ = generate_5g_ranking(32, 64) PolarBPDecoder(frozen_pos, 64, output_dtype=tf.complex64) def test_output_dim(self): """Test that output dims are correct (=n) and output is all-zero codeword.""" # batch size bs = 10 # (k, n) param_valid = [[1, 32],[10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for hard_out in [True, False]: for p in param_valid: frozen_pos, _ = generate_5g_ranking(p[0],p[1]) dec = PolarBPDecoder(frozen_pos, p[1], hard_out=hard_out) # all-zero with BPSK (no noise);logits c = -10. * np.ones([bs, p[1]]) u = dec(c).numpy() self.assertTrue(u.shape[-1]==p[0]) if hard_out: # also check that all-zero input yields all-zero output u_hat = np.zeros([bs, p[0]]) self.assertTrue(np.array_equal(u, u_hat)) def test_identity(self): """Test that info bits can be recovered if no noise is added.""" bs = 10 # (k, n) param_valid = [[1, 32], [10, 32], [32, 32], [100, 256], [123, 1024], [1024, 1024]] for p in param_valid: source = BinarySource() frozen_pos, _ = generate_5g_ranking(p[0], p[1]) enc = PolarEncoder(frozen_pos, p[1]) dec = PolarBPDecoder(frozen_pos, p[1]) u = source([bs, p[0]]) c = enc(u) llr_ch = 20.*(2.*c-1) # demod BPSK witout noise u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u.numpy(), u_hat.numpy())) def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 100 n = 128 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) inputs = tf.keras.Input(shape=(n), dtype=tf.float32) x = PolarBPDecoder(frozen_pos, n)(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) b = source([bs, n]) model(b) # call twice to see that bs can change b2 = source([bs+1, n]) model(b2) model.summary() def test_multi_dimensional(self): """Test against arbitrary shapes.""" k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarBPDecoder(frozen_pos, n) b = source([100, n]) b_res = tf.reshape(b, [4, 5, 5, n]) # encode 2D Tensor c = dec(b).numpy() # encode 4D Tensor c_res = dec(b_res).numpy() # and reshape to 2D shape c_res = tf.reshape(c_res, [100, k]) # both version should yield same result self.assertTrue(np.array_equal(c, c_res)) def test_batch(self): """Test that all samples in batch yield same output (for same input). """ bs = 100 k = 120 n = 256 frozen_pos, _ = generate_5g_ranking(k, n) source = BinarySource() dec = PolarBPDecoder(frozen_pos, n) b = source([1, 15, n]) b_rep = tf.tile(b, [bs, 1, 1]) # and run tf version (to be tested) c = dec(b_rep).numpy() for i in range(bs): self.assertTrue(np.array_equal(c[0,:,:], c[i,:,:])) def test_numerics(self): """Test for numerical stability with large llrs and many iterations. """ bs = 100 k = 120 n = 256 num_iter = 200 for hard_out in [False, True]: frozen_pos, _ = generate_5g_ranking(k, n) source = GaussianPriorSource() dec = PolarBPDecoder(frozen_pos, n, hard_out=hard_out, num_iter=num_iter) b = source([[bs,n], 0.001]) # very large llrs c = dec(b).numpy() # all values are finite (not nan and not inf) self.assertTrue(np.sum(np.abs(1 - np.isfinite(c)))==0) def test_tf_fun(self): """Test that graph mode works and XLA is supported.""" @tf.function def run_graph(u): return dec(u) @tf.function(jit_compile=True) def run_graph_xla(u): return dec(u) bs = 10 k = 32 n = 64 num_iter = 10 source = BinarySource() frozen_pos, _ = generate_5g_ranking(k, n) dec = PolarBPDecoder(frozen_pos, n, num_iter=num_iter) # test that for arbitrary input only 0,1 values are returned u = source([bs, n]) x = run_graph(u).numpy() # execute the graph twice x = run_graph(u).numpy() # and change batch_size u = source([bs+1, n]) x = run_graph(u).numpy() x = run_graph(u).numpy() # Currently not supported # run same test for XLA (jit_compile=True) #u = source([bs, n]) #x = run_graph_xla(u).numpy() #x = run_graph_xla(u).numpy() #u = source([bs+1, n]) #x = run_graph_xla(u).numpy() def test_ref_implementation(self): """Test against Numpy reference implementation. Test hard and soft output. """ def boxplus_np(x, y): """Check node update (boxplus) for LLRs in numpy. See [Stimming_LLR]_ and [Hashemi_SSCL]_ for detailed equations. """ x_in = np.maximum(np.minimum(x, llr_max), -llr_max) y_in = np.maximum(np.minimum(y, llr_max), -llr_max) # avoid division for numerical stability llr_out = np.log(1 + np.exp(x_in + y_in)) llr_out -= np.log(np.exp(x_in) + np.exp(y_in)) return llr_out def decode_bp(llr_ch, n_iter, frozen_pos, info_pos): n = llr_ch.shape[-1] bs = llr_ch.shape[0] n_stages = int(np.log2(n)) msg_r = np.zeros([bs, n_stages+1, n]) msg_l = np.zeros([bs, n_stages+1, n]) # init llr_ch msg_l[:, n_stages, :] = -1*llr_ch.numpy() # init frozen positions with infty msg_r[:, 0, frozen_pos] = llr_max # and decode for iter in range(n_iter): # update r messages for s in range(n_stages): # calc indices ind_range = np.arange(int(n/2)) ind_1 = ind_range * 2 - np.mod(ind_range, 2**(s)) ind_2 = ind_1 + 2**s # load messages l1_in = msg_l[:, s+1, ind_1] l2_in = msg_l[:, s+1, ind_2] r1_in = msg_r[:, s, ind_1] r2_in = msg_r[:, s, ind_2] # r1_out msg_r[:, s+1, ind_1] = boxplus_np(r1_in, l2_in + r2_in) # r2_out msg_r[:, s+1, ind_2] = boxplus_np(r1_in, l1_in) + r2_in # update l messages for s in range(n_stages-1, -1, -1): ind_range = np.arange(int(n/2)) ind_1 = ind_range * 2 - np.mod(ind_range, 2**(s)) ind_2 = ind_1 + 2**s l1_in = msg_l[:, s+1, ind_1] l2_in = msg_l[:, s+1, ind_2] r1_in = msg_r[:, s, ind_1] r2_in = msg_r[:, s, ind_2] # l1_out msg_l[:, s, ind_1] = boxplus_np(l1_in, l2_in + r2_in) # l2_out msg_l[:, s, ind_2] = boxplus_np(r1_in, l1_in) + l2_in # recover u_hat u_hat_soft = msg_l[:, 0, info_pos] u_hat = 0.5 * (1 - np.sign(u_hat_soft)) return u_hat, u_hat_soft # generate llr_ch noise_var = 0.3 num_iters = [5, 10, 20, 40] llr_max = 19.3 bs = 100 n = 128 k = 64 frozen_pos, info_pos = generate_5g_ranking(k, n) for num_iter in num_iters: source = GaussianPriorSource() llr_ch = source([[bs, n], noise_var]) # and decode dec_bp = PolarBPDecoder(frozen_pos, n, hard_out=True, num_iter=num_iter) dec_bp_soft = PolarBPDecoder(frozen_pos, n, hard_out=False, num_iter=num_iter) u_hat_bp = dec_bp(llr_ch).numpy() u_hat_bp_soft = dec_bp_soft(llr_ch,).numpy() # and run BP decoder u_hat_ref, u_hat_ref_soft = decode_bp(llr_ch, num_iter, frozen_pos, info_pos) # the output should be equal to the reference self.assertTrue(np.array_equal(u_hat_bp, u_hat_ref)) self.assertTrue(np.allclose(-u_hat_bp_soft, u_hat_ref_soft, rtol=5e-2, atol=5e-3)) def test_dtype_flexible(self): """Test that output dtype is variable.""" batch_size = 100 k = 30 n = 64 source = GaussianPriorSource() frozen_pos, _ = generate_5g_ranking(k, n) dtypes_supported = (tf.float16, tf.float32, tf.float64) for dt_in in dtypes_supported: for dt_out in dtypes_supported: llr = source([[batch_size, n], 0.5]) llr = tf.cast(llr, dt_in) dec = PolarBPDecoder(frozen_pos, n, output_dtype=dt_out) x = dec(llr) self.assertTrue(x.dtype==dt_out) # test that complex inputs raise error llr = source([[batch_size, n], 0.5]) llr_c = tf.complex(llr, tf.zeros_like(llr)) dec = PolarBPDecoder(frozen_pos, n, output_dtype=tf.float32) with self.assertRaises(TypeError): x = dec(llr_c) class TestPolarDecoding5G(unittest.TestCase): def test_invalid_inputs(self): """Test against invalid input values. Note: consistency of code parameters is already checked by the encoder. """ enc = Polar5GEncoder(40, 60) with self.assertRaises(AssertionError): Polar5GDecoder(enc, dec_type=1) with self.assertRaises(ValueError): Polar5GDecoder(enc, dec_type="ABC") with self.assertRaises(AssertionError): Polar5GDecoder("SC") # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_identity_de_ratematching(self): """Test that info bits can be recovered if no noise is added and dimensions are correct.""" bs = 10 # (k,n) param_valid = [[12, 32], [20, 32], [100, 257], [123, 897], [1013, 1088]] dec_types = ["SC", "SCL", "hybSCL", "BP"] for p in param_valid: for dec_type in dec_types: source = BinarySource() enc = Polar5GEncoder(p[0], p[1]) dec = Polar5GDecoder(enc, dec_type=dec_type) u = source([bs, p[0]]) c = enc(u) self.assertTrue(c.numpy().shape[-1]==p[1]) llr_ch = 20.*(2.*c-1) # demod BPSK witout noise u_hat = dec(llr_ch) self.assertTrue(np.array_equal(u.numpy(), u_hat.numpy())) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_keras(self): """Test that Keras model can be compiled (supports dynamic shapes).""" bs = 10 k = 100 n = 145 source = BinarySource() enc = Polar5GEncoder(k, n) dec_types = ["SC", "SCL", "hybSCL", "BP"] for dec_type in dec_types: inputs = tf.keras.Input(shape=(n), dtype=tf.float32) x = Polar5GDecoder(enc, dec_type=dec_type)(inputs) model = tf.keras.Model(inputs=inputs, outputs=x) b = source([bs,n]) model(b) # call twice to see that bs can change b2 = source([bs+1,n]) model(b2) model.summary() # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_multi_dimensional(self): """Test against arbitrary shapes.""" k = 120 n = 237 enc = Polar5GEncoder(k, n) source = BinarySource() dec_types = ["SC", "SCL", "hybSCL", "BP"] for dec_type in dec_types: dec = Polar5GDecoder(enc, dec_type=dec_type) b = source([100, n]) b_res = tf.reshape(b, [4, 5, 5, n]) # encode 2D Tensor c = dec(b).numpy() # encode 4D Tensor c_res = dec(b_res).numpy() # and reshape to 2D shape c_res = tf.reshape(c_res, [100, k]) # both version should yield same result self.assertTrue(np.array_equal(c, c_res)) # Filter warnings related to large ressource allocation @pytest.mark.filterwarnings("ignore: Required ressource allocation") def test_batch(self): """Test that all samples in batch yield same output (for same input). """ bs = 100 k = 95 n = 145 enc = Polar5GEncoder(k, n) source = GaussianPriorSource() dec_types = ["SC", "SCL", "hybSCL", "BP"] for dec_type in dec_types: dec = Polar5GDecoder(enc, dec_type=dec_type) llr = source([[1,4,n], 0.5]) llr_rep = tf.tile(llr, [bs, 1, 1]) # and run tf version (to be tested) c = dec(llr_rep).numpy() for i in range(bs): self.assertTrue(np.array_equal(c[0,:,:], c[i,:,:])) def test_tf_fun(self): """Test that tf.function decorator works include xla compiler test.""" bs = 10 k = 45 n = 67 enc = Polar5GEncoder(k, n) source = GaussianPriorSource() # hybSCL does not support graph mode! dec_types = ["SC", "SCL", "BP"] for dec_type in dec_types: print(dec_type) dec = Polar5GDecoder(enc, dec_type=dec_type) @tf.function def run_graph(u): return dec(u) @tf.function(jit_compile=True) def run_graph_xla(u): return dec(u) # test that for arbitrary input only binary values are returned u = source([[bs, n], 0.5]) x = run_graph(u).numpy() # execute the graph twice x = run_graph(u).numpy() # and change batch_size u = source([[bs+1, n], 0.5]) x = run_graph(u).numpy() # run same test for XLA (jit_compile=True) # BP does currently not support XLA if dec_type != "BP": u = source([[bs, n], 0.5]) x = run_graph_xla(u).numpy() x = run_graph_xla(u).numpy() u = source([[bs+1, n], 0.5]) x = run_graph_xla(u).numpy() def test_dtype_flexible(self): """Test that output dtype can be variable.""" batch_size = 100 k = 30 n = 64 source = GaussianPriorSource() enc = Polar5GEncoder(k, n) dtypes_supported = (tf.float16, tf.float32, tf.float64) for dt_in in dtypes_supported: for dt_out in dtypes_supported: llr = source([[batch_size, n], 0.5]) llr = tf.cast(llr, dt_in) dec = Polar5GDecoder(enc, output_dtype=dt_out) x = dec(llr) self.assertTrue(x.dtype==dt_out) # test that complex inputs raise error llr = source([[batch_size, n], 0.5]) llr_c = tf.complex(llr, tf.zeros_like(llr)) dec = Polar5GDecoder(enc, output_dtype=tf.float32) with self.assertRaises(TypeError): x = dec(llr_c)
tests/openbb_terminal/stocks/due_diligence/test_csimarket_model.py
tehcoderer/GamestonkTerminal
255
12772274
<gh_stars>100-1000 # IMPORTATION STANDARD # IMPORTATION THIRDPARTY import pytest # IMPORTATION INTERNAL from openbb_terminal.stocks.due_diligence import csimarket_model @pytest.mark.vcr def test_get_suppliers(recorder): result_txt = csimarket_model.get_suppliers(ticker="TSLA") recorder.capture(result_txt) @pytest.mark.vcr def test_get_suppliers_invalid(recorder): result_txt = csimarket_model.get_suppliers(ticker="INVALID_TICKER") recorder.capture(result_txt) @pytest.mark.vcr def test_get_customers(recorder): result_txt = csimarket_model.get_customers(ticker="TSLA") recorder.capture(result_txt) @pytest.mark.vcr def test_get_customers_invalid(recorder): result_txt = csimarket_model.get_customers(ticker="INVALID_TICKER") recorder.capture(result_txt)
WebMirror/management/rss_parser_funcs/feed_parse_extractSharramycatsTranslations.py
fake-name/ReadableWebProxy
193
12772282
def extractSharramycatsTranslations(item): """ 'Sharramycats Translations' """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None tagmap = [ ('11 Ways to Forget Your Ex-Boyfriend', '11 Ways to Forget Your Ex-Boyfriend', 'translated'), ('The Monster Inside Of My Bed', 'The Monster Inside Of My Bed', 'translated'), ('The Peculiars\' Tale', 'The Peculiars\' Tale', 'translated'), ('ARG', '<NAME>.', 'translated'), ('Legend of Gemini', 'Legend of Gemini', 'translated'), ('Kaliskis', 'Kaliskis', 'translated'), ('She Died', 'She Died', 'translated'), ('Ice Goddess', 'Ice Goddess', 'translated'), ('The Friendly Wedding', 'The Friendly Wedding', 'translated'), ('Forlorn Madness', 'Forlorn Madness', 'translated'), ('Hidden Inside The Academy', 'Hidden Inside The Academy', 'translated'), ('The Señorita', 'The Señorita', 'translated'), ('School Of Myths', 'School of Myths', 'translated'), ('The Guys Inside of My Bed', 'The Guys Inside of My Bed', 'translated'), ('The Guy Inside Of My Bed', 'The Guys Inside of My Bed', 'translated'), ('Titan Academy Of Special Abilities', 'Titan Academy Of Special Abilities', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
torch_glow/tests/nodes/copy_test.py
YaronBenAtar/glow
2,838
12772304
<reponame>YaronBenAtar/glow<gh_stars>1000+ # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class CopyModel(torch.nn.Module): def __init__(self, shape): super(CopyModel, self).__init__() self.other = torch.randn(shape) def forward(self, a): b = a.copy_(self.other) return a + b class TestCopy(utils.TorchGlowTestCase): @utils.deterministic_expand( [ lambda: ("1x1 => 1x3", [1, 1], [1, 3]), lambda: ("1x3x5 => 1x3x5", [1, 3, 5], [1, 3, 5]), lambda: ("1x3 => 4x4x3", [1, 3], [4, 4, 3]), ] ) def test_copy_(self, _, other_shape, tensor_shape): """Test of the PyTorch copy_ method on Glow.""" utils.compare_tracing_methods( CopyModel(other_shape), torch.randn(tensor_shape), fusible_ops={"aten::copy_"}, ) @utils.deterministic_expand( [ lambda: ("1x1x1 => 1x3", [1, 1, 1], [1, 3]), lambda: ("1x4 => 4x4x3", [1, 4], [4, 4, 3]), lambda: ("4x4x3 => 1x3", [4, 4, 3], [1, 3]), ] ) def test_copy_broadcast_failure(self, _, other_shape, tensor_shape): """Test of the PyTorch copy_ method on Glow.""" with self.assertRaises(RuntimeError): utils.compare_tracing_methods( CopyModel(other_shape), torch.randn(tensor_shape), fusible_ops={"aten::copy_"}, )
tests/tasks/sodaspark/test_sodaspark_tasks.py
suryatmodulus/prefect
8,633
12772309
from unittest.mock import MagicMock import pytest from pyspark.sql import SparkSession from prefect.tasks.sodaspark import SodaSparkScan class TestSodaSparkScan: def test_construction_provide_scan_and_df(self): expected_scan_def = "/foo/bar.yaml" expected_df = SparkSession.builder.getOrCreate().createDataFrame( [{"id": 123, "value": "foo"}, {"id": 456, "value": "bar"}] ) soda_spark_scan_task = SodaSparkScan(scan_def=expected_scan_def, df=expected_df) assert soda_spark_scan_task.scan_def == expected_scan_def assert soda_spark_scan_task.df == expected_df def test_construction_no_scan_and_df(self): soda_spark_scan_task = SodaSparkScan() assert soda_spark_scan_task.scan_def is None assert soda_spark_scan_task.df is None # @pytest.mark.skip(reason="Requires PySpark and Java to be installed") def test_run_no_scan(self): df = SparkSession.builder.getOrCreate().createDataFrame( [{"id": 123, "value": "foo"}, {"id": 456, "value": "bar"}] ) soda_spark_scan_task = SodaSparkScan(df=df) with pytest.raises(ValueError) as exc: soda_spark_scan_task.run() assert "scan_def cannot be None" in str(exc) def test_run_no_df(self): soda_spark_scan_task = SodaSparkScan(scan_def="/foo/bar.yaml") with pytest.raises(ValueError) as exc: soda_spark_scan_task.run() assert "df cannot be None" in str(exc) # @pytest.mark.skip(reason="Requires PySpark and Java to be installed") def test_run_invalid_scan(self, monkeypatch): scan_def = "invalid scan definition" df = SparkSession.builder.getOrCreate().createDataFrame( [{"id": 123, "value": "foo"}, {"id": 456, "value": "bar"}] ) soda_spark_scan_task = SodaSparkScan(scan_def=scan_def, df=df) with pytest.raises(AttributeError): soda_spark_scan_task.run() def test_run_invalid_df(self, monkeypatch): scan_def = """ table_name: demodata metrics: - row_count - max - min_length tests: - row_count > 0 """ df = "not a valid df" soda_spark_scan_task = SodaSparkScan(scan_def=scan_def, df=df) with pytest.raises(AttributeError): soda_spark_scan_task.run() # @pytest.mark.skip(reason="Requires PySpark and Java to be installed") def test_run_valid_scan_and_df_with_measurements(self): scan_def = """ table_name: demodata metrics: - row_count - max - min_length tests: - row_count > 0 """ df = SparkSession.builder.getOrCreate().createDataFrame( [{"id": 123, "value": "foo"}, {"id": 456, "value": "bar"}] ) soda_spark_scan_task = SodaSparkScan(scan_def=scan_def, df=df) res = soda_spark_scan_task.run() assert hasattr(res, "measurements") # @pytest.mark.skip(reason="Requires PySpark and Java to be installed") def test_run_valid_scan_and_df_with_errors(self): scan_def = """ table_name: demodata metrics: - row_count - max - min_length tests: - row_count == 0 """ df = SparkSession.builder.getOrCreate().createDataFrame( [{"id": 123, "value": "foo"}, {"id": 456, "value": "bar"}] ) soda_spark_scan_task = SodaSparkScan(scan_def=scan_def, df=df) res = soda_spark_scan_task.run() assert hasattr(res, "errors")
src/CheckersBot.py
kartikkukreja/blog-codes
182
12772371
<gh_stars>100-1000 from copy import deepcopy from time import time # Global Constants MaxUtility = 1e9 IsPlayerBlack = True MaxAllowedTimeInSeconds = 9.5 MaxDepth = 100 class CheckersState: def __init__(self, grid, blackToMove, moves): self.grid = grid self.blackToMove = blackToMove self.moves = moves # Hops taken by a disc to reach the current state # This just checks for whether or not all pieces of a player have been eliminated. # It does not check for whether a player has a move or not. In that case, there will # be no successors for that player and alpha beta search will return Min/Max Utility. def isTerminalState(self): blackSeen, whiteSeen = False, False for row in grid: for cell in row: if cell == 'b' or cell == 'B': blackSeen = True elif cell == 'w' or cell == 'W': whiteSeen = True if blackSeen and whiteSeen: return False self.isLoserBlack = whiteSeen return True def getTerminalUtility(self): return MaxUtility if IsPlayerBlack != self.isLoserBlack else -MaxUtility def getSuccessors(self): def getSteps(cell): whiteSteps = [(-1, -1), (-1, 1)] blackSteps = [(1, -1), (1, 1)] steps = [] if cell != 'b': steps.extend(whiteSteps) if cell != 'w': steps.extend(blackSteps) return steps def generateMoves(board, i, j, successors): for step in getSteps(board[i][j]): x, y = i + step[0], j + step[1] if x >= 0 and x < 8 and y >= 0 and y < 8 and board[x][y] == '_': boardCopy = deepcopy(board) boardCopy[x][y], boardCopy[i][j] = boardCopy[i][j], '_' # A pawn is promoted when it reaches the last row if (x == 7 and self.blackToMove) or (x == 0 and not self.blackToMove): boardCopy[x][y] = boardCopy[x][y].upper() successors.append(CheckersState(boardCopy, not self.blackToMove, [(i, j), (x, y)])) def generateJumps(board, i, j, moves, successors): jumpEnd = True for step in getSteps(board[i][j]): x, y = i + step[0], j + step[1] if x >= 0 and x < 8 and y >= 0 and y < 8 and board[x][y] != '_' and board[i][j].lower() != board[x][y].lower(): xp, yp = x + step[0], y + step[1] if xp >= 0 and xp < 8 and yp >= 0 and yp < 8 and board[xp][yp] == '_': board[xp][yp], save = board[i][j], board[x][y] board[i][j] = board[x][y] = '_' previous = board[xp][yp] # A pawn is promoted when it reaches the last row if (xp == 7 and self.blackToMove) or (xp == 0 and not self.blackToMove): board[xp][yp] = board[xp][yp].upper() moves.append((xp, yp)) generateJumps(board, xp, yp, moves, successors) moves.pop() board[i][j], board[x][y], board[xp][yp] = previous, save, '_' jumpEnd = False if jumpEnd and len(moves) > 1: successors.append(CheckersState(deepcopy(board), not self.blackToMove, deepcopy(moves))) player = 'b' if self.blackToMove else 'w' successors = [] # generate jumps for i in xrange(8): for j in xrange(8): if self.grid[i][j].lower() == player: generateJumps(self.grid, i, j, [(i, j)], successors) if len(successors) > 0: return successors # generate moves for i in xrange(8): for j in xrange(8): if self.grid[i][j].lower() == player: generateMoves(self.grid, i, j, successors) return successors def piecesCount(state): # 1 for a normal piece, 1.5 for a king black, white = 0, 0 for row in state.grid: for cell in row: if cell == 'b': black += 1.0 elif cell == 'B': black += 1.5 elif cell == 'w': white += 1.0 elif cell == 'W': white += 1.5 return black - white if IsPlayerBlack else white - black def iterativeDeepeningAlphaBeta(state, evaluationFunc): startTime = time() def alphaBetaSearch(state, alpha, beta, depth): def maxValue(state, alpha, beta, depth): val = -MaxUtility for successor in state.getSuccessors(): val = max(val, alphaBetaSearch(successor, alpha, beta, depth)) if val >= beta: return val alpha = max(alpha, val) return val def minValue(state, alpha, beta, depth): val = MaxUtility for successor in state.getSuccessors(): val = min(val, alphaBetaSearch(successor, alpha, beta, depth - 1)) if val <= alpha: return val beta = min(beta, val) return val if state.isTerminalState(): return state.getTerminalUtility() if depth <= 0 or time() - startTime > MaxAllowedTimeInSeconds: return evaluationFunc(state) return maxValue(state, alpha, beta, depth) if state.blackToMove == IsPlayerBlack else minValue(state, alpha, beta, depth) bestMove = None for depth in xrange(1, MaxDepth): if time() - startTime > MaxAllowedTimeInSeconds: break val = -MaxUtility for successor in state.getSuccessors(): score = alphaBetaSearch(successor, -MaxUtility, MaxUtility, depth) if score > val: val, bestMove = score, successor.moves return bestMove if __name__ == '__main__': player = raw_input() boardSize = int(raw_input()) grid = [] for i in xrange(boardSize): grid.append(raw_input()) IsPlayerBlack = player[0] == 'b' state = CheckersState([list(row.rstrip()) for row in grid], IsPlayerBlack, []) move = iterativeDeepeningAlphaBeta(state, piecesCount) print len(move) - 1 for step in move: print step[0], step[1]
localgraphclustering/algorithms/__init__.py
vishalbelsare/LocalGraphClustering
106
12772372
<gh_stars>100-1000 from .acl_list import acl_list from .eig2_nL import eig2_nL, eig2nL_subgraph from .fista_dinput_dense import fista_dinput_dense from .sweepcut import sweepcut
examples/decompose_fmri_stability.py
johnbanq/modl
135
12772373
# Author: <NAME> # License: BSD import warnings from nilearn.input_data import NiftiMasker warnings.filterwarnings("ignore", category=DeprecationWarning) import os from os.path import expanduser, join import matplotlib.pyplot as plt import numpy as np import seaborn as sns from joblib import Memory, dump from joblib import Parallel, delayed from sklearn.model_selection import train_test_split from sklearn.utils import check_random_state from modl.datasets import fetch_adhd from modl.decomposition.fmri import fMRIDictFact from modl.decomposition.stability import mean_amari_discrepency from modl.plotting.fmri import display_maps from nilearn.datasets import fetch_atlas_smith_2009 from modl.utils.system import get_cache_dirs batch_size = 200 learning_rate = .92 method = 'masked' step_size = 0.01 reduction_ = 8 alpha = 1e-3 n_epochs = 4 verbose = 15 n_jobs = 70 smoothing_fwhm = 6 components_list = [20, 40, 80, 120, 200, 300, 500] n_runs = 20 dict_init = fetch_atlas_smith_2009().rsn20 dataset = fetch_adhd(n_subjects=40) data = dataset.rest.values train_data, test_data = train_test_split(data, test_size=2, random_state=0) train_imgs, train_confounds = zip(*train_data) test_imgs, test_confounds = zip(*test_data) mask = dataset.mask mem = Memory(location=get_cache_dirs()[0]) masker = NiftiMasker(mask_img=mask).fit() def fit_single(train_imgs, test_imgs, n_components, random_state): dict_fact = fMRIDictFact(smoothing_fwhm=smoothing_fwhm, method=method, step_size=step_size, mask=mask, memory=mem, memory_level=2, verbose=verbose, n_epochs=n_epochs, n_jobs=1, random_state=random_state, n_components=n_components, positive=True, learning_rate=learning_rate, batch_size=batch_size, reduction=reduction_, alpha=alpha, callback=None, ) dict_fact.fit(train_imgs, confounds=train_confounds) score = dict_fact.score(test_imgs) return dict_fact.components_, score def fit_many_runs(train_imgs, test_imgs, components_list, n_runs=10, n_jobs=1): random_states = check_random_state(0).randint(0, int(1e7), size=n_runs) cached_fit = mem.cache(fit_single) res = Parallel(n_jobs=n_jobs)(delayed(cached_fit)( train_imgs, test_imgs, n_components, random_state) for n_components in components_list for random_state in random_states ) components, scores = zip(*res) shape = (len(components_list), len(random_states)) components = np.array(components).reshape(shape).tolist() scores = np.array(scores).reshape(shape).tolist() discrepencies = [] var_discrepencies = [] best_components = [] for n_components, these_components, these_scores in zip(components_list, components, scores): discrepency, var_discrepency = mean_amari_discrepency( these_components) best_estimator = these_components[np.argmin(these_scores)] discrepencies.append(var_discrepency) var_discrepencies.append(var_discrepency) best_components.append(best_estimator) discrepencies = np.array(discrepencies) var_discrepencies = np.array(var_discrepencies) best_components = np.array(best_components) components = best_components[np.argmin(discrepencies)] return discrepencies, var_discrepencies, components output_dir = expanduser('~/output_drago4/modl/fmri_stability2') if not os.path.exists(output_dir): os.makedirs(output_dir) discrepencies, var_discrepencies, components = fit_many_runs( train_imgs, test_imgs, components_list, n_jobs=n_jobs, n_runs=n_runs) components_img = masker.inverse_transform(components) components_img.to_filename( join(output_dir, 'components.nii.gz')) dump((components_list, discrepencies, var_discrepencies), join(output_dir, 'discrepencies.pkl')) fig = plt.figure() display_maps(fig, components_img) plt.savefig(join(output_dir, 'components.pdf')) fig, ax = plt.subplots(1, 1) ax.fill_between(components_list, discrepencies - var_discrepencies, discrepencies + var_discrepencies, alpha=0.5) ax.plot(components_list, discrepencies, marker='o') ax.set_xlabel('Number of components') ax.set_ylabel('Mean Amari discrepency') sns.despine(fig) fig.suptitle('Stability selection using DL') plt.savefig(join(output_dir, 'discrepencies.pdf'))
PYTHON/PasswordGen.py
ayushyado/HACKTOBERFEST2021-2
125
12772391
<reponame>ayushyado/HACKTOBERFEST2021-2<filename>PYTHON/PasswordGen.py import string import random #Characters List to Generate Password characters = list(string.ascii_letters + string.digits + "!@#$%^&*()") def password_gen(): #Length of Password from the User length = int(input("Password length: ")) #Shuffling the Characters random.shuffle(characters) #Picking random Characters from the given List password = [] for i in range(length): password.append(random.choice(characters)) #Shuffling the Resultant Password random.shuffle(password) #Converting the List to String #Printing the List print("".join(password)) #Invoking the function password_gen()
icevision/models/mmdet/models/retinanet/backbones/resnet_fpn.py
bluseking/-first-agnostic-computer-vision-framework-to-offer-a-curated-collection-with-hundreds-of-high-qualit
580
12772407
__all__ = [ "resnet50_caffe_fpn_1x", "resnet50_fpn_1x", "resnet50_fpn_2x", "resnet101_caffe_fpn_1x", "resnet101_fpn_1x", "resnet101_fpn_2x", "resnext101_32x4d_fpn_1x", "resnext101_32x4d_fpn_2x", "resnext101_64x4d_fpn_1x", "resnext101_64x4d_fpn_2x", ] from icevision.imports import * from icevision.models.mmdet.utils import * class MMDetRetinanetBackboneConfig(MMDetBackboneConfig): def __init__(self, **kwargs): super().__init__(model_name="retinanet", **kwargs) base_config_path = mmdet_configs_path / "retinanet" base_weights_url = "http://download.openmmlab.com/mmdetection/v2.0/retinanet" resnet50_caffe_fpn_1x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_r50_caffe_fpn_1x_coco.py", weights_url=f"{base_weights_url}/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth", ) resnet50_fpn_1x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_r50_fpn_1x_coco.py", weights_url=f"{base_weights_url}/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth", ) resnet50_fpn_2x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_r50_fpn_2x_coco.py", weights_url=f"{base_weights_url}/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131-fdb43119.pth", ) resnet101_caffe_fpn_1x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_r101_caffe_fpn_1x_coco.py", weights_url=f"{base_weights_url}/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531-b428fa0f.pth", ) resnet101_fpn_1x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_r101_fpn_1x_coco.py", weights_url=f"{base_weights_url}/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth", ) resnet101_fpn_2x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_r101_fpn_2x_coco.py", weights_url=f"{base_weights_url}/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131-5560aee8.pth", ) resnext101_32x4d_fpn_1x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_x101_32x4d_fpn_1x_coco.py", weights_url=f"{base_weights_url}/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130-5c8b7ec4.pth", ) resnext101_32x4d_fpn_2x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_x101_32x4d_fpn_2x_coco.py", weights_url=f"{base_weights_url}/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131-237fc5e1.pth", ) resnext101_64x4d_fpn_1x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_x101_64x4d_fpn_1x_coco.py", weights_url=f"{base_weights_url}/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth", ) resnext101_64x4d_fpn_2x = MMDetRetinanetBackboneConfig( config_path=base_config_path / "retinanet_x101_64x4d_fpn_2x_coco.py", weights_url=f"{base_weights_url}/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth", )
docs/source/conftest.py
chaaklau/pycantonese
124
12772409
"""Test code snippets embedded in the docs. Reference: https://sybil.readthedocs.io/en/latest/use.html#pytest """ from doctest import NORMALIZE_WHITESPACE from os import chdir, getcwd from shutil import rmtree from tempfile import mkdtemp import pytest from sybil import Sybil from sybil.parsers.doctest import DocTestParser from sybil.parsers.skip import skip @pytest.fixture(scope="module") def tempdir(): path = mkdtemp() cwd = getcwd() try: chdir(path) yield path finally: chdir(cwd) rmtree(path) pytest_collect_file = Sybil( parsers=[DocTestParser(optionflags=NORMALIZE_WHITESPACE), skip], pattern="*.rst", fixtures=["tempdir"], ).pytest()
multitask_benchmark/datasets_generation/graph_algorithms.py
Michaelvll/pna
249
12772440
<reponame>Michaelvll/pna<filename>multitask_benchmark/datasets_generation/graph_algorithms.py import math from queue import Queue import numpy as np def is_connected(A): """ :param A:np.array the adjacency matrix :return:bool whether the graph is connected or not """ for _ in range(int(1 + math.ceil(math.log2(A.shape[0])))): A = np.dot(A, A) return np.min(A) > 0 def identity(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return:F """ return F def first_neighbours(A): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, the number of nodes reachable in 1 hop """ return np.sum(A > 0, axis=0) def second_neighbours(A): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, the number of nodes reachable in no more than 2 hops """ A = A > 0.0 A = A + np.dot(A, A) np.fill_diagonal(A, 0) return np.sum(A > 0, axis=0) def kth_neighbours(A, k): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, the number of nodes reachable in k hops """ A = A > 0.0 R = np.zeros(A.shape) for _ in range(k): R = np.dot(R, A) + A np.fill_diagonal(R, 0) return np.sum(R > 0, axis=0) def map_reduce_neighbourhood(A, F, f_reduce, f_map=None, hops=1, consider_itself=False): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, map its neighbourhood with f_map, and reduce it with f_reduce """ if f_map is not None: F = f_map(F) A = np.array(A) A = A > 0 R = np.zeros(A.shape) for _ in range(hops): R = np.dot(R, A) + A np.fill_diagonal(R, 1 if consider_itself else 0) R = R > 0 return np.array([f_reduce(F[R[i]]) for i in range(A.shape[0])]) def max_neighbourhood(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, the maximum in its neighbourhood """ return map_reduce_neighbourhood(A, F, np.max, consider_itself=True) def min_neighbourhood(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, the minimum in its neighbourhood """ return map_reduce_neighbourhood(A, F, np.min, consider_itself=True) def std_neighbourhood(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, the standard deviation of its neighbourhood """ return map_reduce_neighbourhood(A, F, np.std, consider_itself=True) def mean_neighbourhood(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, the mean of its neighbourhood """ return map_reduce_neighbourhood(A, F, np.mean, consider_itself=True) def local_maxima(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, whether it is the maximum in its neighbourhood """ return F == map_reduce_neighbourhood(A, F, np.max, consider_itself=True) def graph_laplacian(A): """ :param A:np.array the adjacency matrix :return: the laplacian of the adjacency matrix """ L = (A > 0) * -1 np.fill_diagonal(L, np.sum(A > 0, axis=0)) return L def graph_laplacian_features(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: the laplacian of the adjacency matrix multiplied by the features """ return np.matmul(graph_laplacian(A), F) def isomorphism(A1, A2, F1=None, F2=None): """ Takes two adjacency matrices (A1,A2) and (optionally) two lists of features. It uses Weisfeiler-Lehman algorithms, so false positives might arise :param A1: adj_matrix, N*N numpy matrix :param A2: adj_matrix, N*N numpy matrix :param F1: node_values, numpy array of size N :param F1: node_values, numpy array of size N :return: isomorphic: boolean which is false when the two graphs are not isomorphic, true when they probably are. """ N = A1.shape[0] if (F1 is None) ^ (F2 is None): raise ValueError("either both or none between F1,F2 must be defined.") if F1 is None: # Assign same initial value to each node F1 = np.ones(N, int) F2 = np.ones(N, int) else: if not np.array_equal(np.sort(F1), np.sort(F2)): return False if F1.dtype() != int: raise NotImplementedError('Still have to implement this') p = 1000000007 def mapping(F): return (F * 234 + 133) % 1000000007 def adjacency_hash(F): F = np.sort(F) b = 257 h = 0 for f in F: h = (b * h + f) % 1000000007 return h for i in range(N): F1 = map_reduce_neighbourhood(A1, F1, adjacency_hash, f_map=mapping, consider_itself=True, hops=1) F2 = map_reduce_neighbourhood(A2, F2, adjacency_hash, f_map=mapping, consider_itself=True, hops=1) if not np.array_equal(np.sort(F1), np.sort(F2)): return False return True def count_edges(A): """ :param A:np.array the adjacency matrix :return: the number of edges in the graph """ return np.sum(A) / 2 def is_eulerian_cyclable(A): """ :param A:np.array the adjacency matrix :return: whether the graph has an eulerian cycle """ return is_connected(A) and np.count_nonzero(first_neighbours(A) % 2 == 1) == 0 def is_eulerian_percorrible(A): """ :param A:np.array the adjacency matrix :return: whether the graph has an eulerian path """ return is_connected(A) and np.count_nonzero(first_neighbours(A) % 2 == 1) in [0, 2] def map_reduce_graph(A, F, f_reduce): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: the features of the nodes reduced by f_reduce """ return f_reduce(F) def mean_graph(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: the mean of the features """ return map_reduce_graph(A, F, np.mean) def max_graph(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: the maximum of the features """ return map_reduce_graph(A, F, np.max) def min_graph(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: the minimum of the features """ return map_reduce_graph(A, F, np.min) def std_graph(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: the standard deviation of the features """ return map_reduce_graph(A, F, np.std) def has_hamiltonian_cycle(A): """ :param A:np.array the adjacency matrix :return:bool whether the graph has an hamiltonian cycle """ A += np.transpose(A) A = A > 0 V = A.shape[0] def ham_cycle_loop(pos): if pos == V: if A[path[pos - 1]][path[0]]: return True else: return False for v in range(1, V): if A[path[pos - 1]][v] and not used[v]: path[pos] = v used[v] = True if ham_cycle_loop(pos + 1): return True path[pos] = -1 used[v] = False return False used = [False] * V path = [-1] * V path[0] = 0 return ham_cycle_loop(1) def all_pairs_shortest_paths(A, inf_sub=math.inf): """ :param A:np.array the adjacency matrix :param inf_sub: the placeholder value to use for pairs which are not connected :return:np.array all pairs shortest paths """ A = np.array(A) N = A.shape[0] for i in range(N): for j in range(N): if A[i][j] == 0: A[i][j] = math.inf if i == j: A[i][j] = 0 for k in range(N): for i in range(N): for j in range(N): A[i][j] = min(A[i][j], A[i][k] + A[k][j]) A = np.where(A == math.inf, inf_sub, A) return A def diameter(A): """ :param A:np.array the adjacency matrix :return: the diameter of the gra[h """ sum = np.sum(A) apsp = all_pairs_shortest_paths(A) apsp = np.where(apsp < sum + 1, apsp, -1) return np.max(apsp) def eccentricity(A): """ :param A:np.array the adjacency matrix :return: the eccentricity of the gra[h """ sum = np.sum(A) apsp = all_pairs_shortest_paths(A) apsp = np.where(apsp < sum + 1, apsp, -1) return np.max(apsp, axis=0) def sssp_predecessor(A, F): """ :param A:np.array the adjacency matrix :param F:np.array the nodes features :return: for each node, the best next step to reach the designated source """ assert (np.sum(F) == 1) assert (np.max(F) == 1) s = np.argmax(F) N = A.shape[0] P = np.zeros(A.shape) V = np.zeros(N) bfs = Queue() bfs.put(s) V[s] = 1 while not bfs.empty(): u = bfs.get() for v in range(N): if A[u][v] > 0 and V[v] == 0: V[v] = 1 P[v][u] = 1 bfs.put(v) return P def max_eigenvalue(A): """ :param A:np.array the adjacency matrix :return: the maximum eigenvalue of A since A is positive symmetric, all the eigenvalues are guaranteed to be real """ [W, _] = np.linalg.eig(A) return W[np.argmax(np.absolute(W))].real def max_eigenvalues(A, k): """ :param A:np.array the adjacency matrix :param k:int the number of eigenvalues to be selected :return: the k greatest (by absolute value) eigenvalues of A """ [W, _] = np.linalg.eig(A) values = W[sorted(range(len(W)), key=lambda x: -np.absolute(W[x]))[:k]] return values.real def max_absolute_eigenvalues(A, k): """ :param A:np.array the adjacency matrix :param k:int the number of eigenvalues to be selected :return: the absolute value of the k greatest (by absolute value) eigenvalues of A """ return np.absolute(max_eigenvalues(A, k)) def max_absolute_eigenvalues_laplacian(A, n): """ :param A:np.array the adjacency matrix :param k:int the number of eigenvalues to be selected :return: the absolute value of the k greatest (by absolute value) eigenvalues of the laplacian of A """ A = graph_laplacian(A) return np.absolute(max_eigenvalues(A, n)) def max_eigenvector(A): """ :param A:np.array the adjacency matrix :return: the maximum (by absolute value) eigenvector of A since A is positive symmetric, all the eigenvectors are guaranteed to be real """ [W, V] = np.linalg.eig(A) return V[:, np.argmax(np.absolute(W))].real def spectral_radius(A): """ :param A:np.array the adjacency matrix :return: the maximum (by absolute value) eigenvector of A since A is positive symmetric, all the eigenvectors are guaranteed to be real """ return np.abs(max_eigenvalue(A)) def page_rank(A, F=None, iter=64): """ :param A:np.array the adjacency matrix :param F:np.array with initial weights. If None, uniform initialization will happen. :param iter: log2 of length of power iteration :return: for each node, its pagerank """ # normalize A rows A = np.array(A) A /= A.sum(axis=1)[:, np.newaxis] # power iteration for _ in range(iter): A = np.matmul(A, A) # generate prior distribution if F is None: F = np.ones(A.shape[-1]) else: F = np.array(F) # normalize prior F /= np.sum(F) # compute limit distribution return np.matmul(F, A) def tsp_length(A, F=None): """ :param A:np.array the adjacency matrix :param F:np.array determining which nodes are to be visited. If None, all of them are. :return: the length of the Traveling Salesman Problem shortest solution """ A = all_pairs_shortest_paths(A) N = A.shape[0] if F is None: F = np.ones(N) targets = np.nonzero(F)[0] T = targets.shape[0] S = (1 << T) dp = np.zeros((S, T)) def popcount(x): b = 0 while x > 0: x &= x - 1 b += 1 return b msks = np.argsort(np.vectorize(popcount)(np.arange(S))) for i in range(T + 1): for j in range(T): if (1 << j) & msks[i] == 0: dp[msks[i]][j] = math.inf for i in range(T + 1, S): msk = msks[i] for u in range(T): if (1 << u) & msk == 0: dp[msk][u] = math.inf continue cost = math.inf for v in range(T): if v == u or (1 << v) & msk == 0: continue cost = min(cost, dp[msk ^ (1 << u)][v] + A[targets[v]][targets[u]]) dp[msk][u] = cost return np.min(dp[S - 1]) def get_nodes_labels(A, F): """ Takes the adjacency matrix and the list of nodes features (and a list of algorithms) and returns a set of labels for each node :param A: adj_matrix, N*N numpy matrix :param F: node_values, numpy array of size N :return: labels: KxN numpy matrix where K is the number of labels for each node """ labels = [identity(A, F), map_reduce_neighbourhood(A, F, np.mean, consider_itself=True), map_reduce_neighbourhood(A, F, np.max, consider_itself=True), map_reduce_neighbourhood(A, F, np.std, consider_itself=True), first_neighbours(A), second_neighbours(A), eccentricity(A)] return np.swapaxes(np.stack(labels), 0, 1) def get_graph_labels(A, F): """ Takes the adjacency matrix and the list of nodes features (and a list of algorithms) and returns a set of labels for the whole graph :param A: adj_matrix, N*N numpy matrix :param F: node_values, numpy array of size N :return: labels: numpy array of size K where K is the number of labels for the graph """ labels = [diameter(A)] return np.asarray(labels)
test/unit/config/test_reload_config.py
rikeshi/galaxy
1,085
12772450
<filename>test/unit/config/test_reload_config.py import pytest from galaxy import config from galaxy.config import BaseAppConfiguration from galaxy.config import reload_config_options from galaxy.config.schema import AppSchema R1, R2, N1, N2 = 'reloadable1', 'reloadable2', 'nonrelodable1', 'nonreloadable2' # config options MOCK_SCHEMA = { R1: {'reloadable': True, 'default': 1}, R2: {'reloadable': True, 'default': 2}, N1: {'default': 3}, N2: {'default': 4}, } def get_schema(app_mapping): return {'mapping': {'_': {'mapping': app_mapping}}} @pytest.fixture def mock_init(monkeypatch): monkeypatch.setattr(BaseAppConfiguration, '_load_schema', lambda a: AppSchema(None, '_')) monkeypatch.setattr(AppSchema, '_read_schema', lambda a, b: get_schema(MOCK_SCHEMA)) def test_update_property(mock_init, monkeypatch): # This also covers adding a property. When a config file does not set a property, # that property is set to its default value. Thus, if we add a reloadable property # to the config file, it's the same as modifying that property's value. # edits to config file: R2, N1 modified monkeypatch.setattr(config, 'read_properties_from_file', lambda _: {R1: 1, R2: 42, N1: 99}) appconfig = BaseAppConfiguration() assert getattr(appconfig, R1) == 1 assert getattr(appconfig, R2) == 2 assert getattr(appconfig, N1) == 3 reload_config_options(appconfig) assert getattr(appconfig, R1) == 1 # no change assert getattr(appconfig, R2) == 42 # change: reloadable option modified assert getattr(appconfig, N1) == 3 # no change: option modified but is non-relodable def test_overwrite_reloadable_attribute(mock_init, monkeypatch): # This is similar to test_update_property, but here we overwrite the attribute before reloading. # This can happen if a config property is modified AFTER it has been loaded from schema or kwargs. # For example: load `foo` (from schema or kwargs), but then, in a # subsequent step while initializing # GalaxyAppConfiguration, do something like this: `foo = resove_path(foo, bar)`. Now the value of `foo` # is not what was initially loaded, and if `foo` is reloadable, it will be reset to its default as soon # as the config file is modified. To prevent this, we compare the values read from the modified file # to the `_raw_config` dict. This test ensures this works correctly. # edits to config file: R2 modified monkeypatch.setattr(config, 'read_properties_from_file', lambda _: {R1: 1, R2: 42}) appconfig = BaseAppConfiguration() assert getattr(appconfig, R1) == 1 assert getattr(appconfig, R2) == 2 # overwrite R1 setattr(appconfig, R1, 99) assert getattr(appconfig, R1) == 99 # then reload reload_config_options(appconfig) assert getattr(appconfig, R1) == 99 # no change; should remain overwritten assert getattr(appconfig, R2) == 42 # change: reloadable option modified def test_cant_delete_property(mock_init, monkeypatch): # A property should not be deleted: we don't know whether it was initially # set to a default, loaded from a config file, env var, etc. Therefore, if a property # is removed from the config file, it will not be modified or deleted. # edits to config file: R2, N2 deleted monkeypatch.setattr(config, 'read_properties_from_file', lambda _: {R1: 1, N1: 3}) appconfig = BaseAppConfiguration() assert getattr(appconfig, R1) == 1 assert getattr(appconfig, R2) == 2 assert getattr(appconfig, N1) == 3 assert getattr(appconfig, N2) == 4 reload_config_options(appconfig) assert getattr(appconfig, R1) == 1 # no change assert getattr(appconfig, R2) == 2 # no change: option cannot be deleted assert getattr(appconfig, N1) == 3 # no change assert getattr(appconfig, N2) == 4 # no change: option cannot be deleted
tastyworks/__init__.py
olyoberdorf/tastyworks_api
198
12772487
<gh_stars>100-1000 import logging import sys log = logging.getLogger(__name__) log.propagate = False out_hdlr = logging.StreamHandler(sys.stdout) out_hdlr.setFormatter(logging.Formatter('%(asctime)s %(message)s')) out_hdlr.setLevel(logging.INFO) log.addHandler(out_hdlr) log.setLevel(logging.INFO) root = logging.getLogger() root.addHandler(out_hdlr) root.propagate = False root.setLevel(logging.INFO)
src/jNlp/eProcessing.py
Reynolddoss/jProcessing
133
12772495
<filename>src/jNlp/eProcessing.py #!/usr/bin/env python # -*- coding: utf-8 -*- from pkg_resources import resource_stream import sys, os, subprocess from subprocess import call import xml.etree.cElementTree as etree import nltk from nltk.stem.wordnet import WordNetLemmatizer if __name__ == '__main__': pass
pgcontents/checkpoints.py
freedom079215/pgcontents
138
12772513
<reponame>freedom079215/pgcontents """ An IPython FileContentsManager that uses Postgres for checkpoints. """ from __future__ import unicode_literals from .api_utils import ( _decode_unknown_from_base64, outside_root_to_404, reads_base64, to_b64, writes_base64, ) from .managerbase import PostgresManagerMixin from .query import ( delete_remote_checkpoints, delete_single_remote_checkpoint, get_remote_checkpoint, list_remote_checkpoints, move_remote_checkpoints, purge_remote_checkpoints, save_remote_checkpoint, ) from .utils.ipycompat import Checkpoints, GenericCheckpointsMixin class PostgresCheckpoints(PostgresManagerMixin, GenericCheckpointsMixin, Checkpoints): """ A Checkpoints implementation that saves checkpoints to a remote database. """ @outside_root_to_404 def create_notebook_checkpoint(self, nb, path): """Create a checkpoint of the current state of a notebook Returns a checkpoint_id for the new checkpoint. """ b64_content = writes_base64(nb) with self.engine.begin() as db: return save_remote_checkpoint( db, self.user_id, path, b64_content, self.crypto.encrypt, self.max_file_size_bytes, ) @outside_root_to_404 def create_file_checkpoint(self, content, format, path): """Create a checkpoint of the current state of a file Returns a checkpoint_id for the new checkpoint. """ try: b64_content = to_b64(content, format) except ValueError as e: self.do_400(str(e)) with self.engine.begin() as db: return save_remote_checkpoint( db, self.user_id, path, b64_content, self.crypto.encrypt, self.max_file_size_bytes, ) @outside_root_to_404 def delete_checkpoint(self, checkpoint_id, path): """delete a checkpoint for a file""" with self.engine.begin() as db: return delete_single_remote_checkpoint( db, self.user_id, path, checkpoint_id, ) def get_checkpoint_content(self, checkpoint_id, path): """Get the content of a checkpoint.""" with self.engine.begin() as db: return get_remote_checkpoint( db, self.user_id, path, checkpoint_id, self.crypto.decrypt, )['content'] @outside_root_to_404 def get_notebook_checkpoint(self, checkpoint_id, path): b64_content = self.get_checkpoint_content(checkpoint_id, path) return { 'type': 'notebook', 'content': reads_base64(b64_content), } @outside_root_to_404 def get_file_checkpoint(self, checkpoint_id, path): b64_content = self.get_checkpoint_content(checkpoint_id, path) content, format = _decode_unknown_from_base64(path, b64_content) return { 'type': 'file', 'content': content, 'format': format, } @outside_root_to_404 def list_checkpoints(self, path): """Return a list of checkpoints for a given file""" with self.engine.begin() as db: return list_remote_checkpoints(db, self.user_id, path) @outside_root_to_404 def rename_all_checkpoints(self, old_path, new_path): """Rename all checkpoints for old_path to new_path.""" with self.engine.begin() as db: return move_remote_checkpoints( db, self.user_id, old_path, new_path, ) @outside_root_to_404 def delete_all_checkpoints(self, path): """Delete all checkpoints for the given path.""" with self.engine.begin() as db: delete_remote_checkpoints(db, self.user_id, path) def purge_db(self): """ Purge all database records for the current user. """ with self.engine.begin() as db: purge_remote_checkpoints(db, self.user_id)
riptable/rt_meta.py
972d5defe3218bd62b741e6a2f11f5b3/riptable
307
12772516
__all__ = ['Item', 'Info', 'Doc', 'apply_schema', 'info', 'doc'] from typing import Optional, List from .rt_struct import Struct from .rt_fastarray import FastArray from .rt_display import DisplayText META_DICT = '_meta' DOC_KEY = 'Doc' DESCRIPTION_KEY = 'Description' STEWARD_KEY = 'Steward' TYPE_KEY = 'Type' DETAIL_KEY = 'Detail' CONTENTS_KEY = 'Contents' NO_DESCRIPTION = '<no description>' NO_STEWARD = '<no steward>' NO_TYPE = '<none>' NAME_DEFAULT_WIDTH = 4 DESCRIPTION_DEFAULT_WIDTH = 50 STEWARD_DEFAULT_WIDTH = 12 TYPE_STR_DEFAULT_WIDTH = 4 # ERROR KEYS TYPE_MISMATCH = 'Type Mismatch' EXTRA_COLUMN = 'Extra Column' MISSING_COLUMN = 'Missing Column' class Item: """Descriptive information for a data object. Parameters ---------- name : str The name of the data object. type : str The type of the data object. description : str A description of the data object. steward : str The steward of the data object. """ name : str """str: The name of the data object.""" type : str """str: The type of the data object.""" description : str """str: A description of the data object.""" steward : str """steward: The steward of the data object.""" def __init__(self, name: str, type: str, description: str, steward: str): self.name = name self.type = type self.description = description self.steward = steward class Info: """A hierarchically structured container of descriptive information for a data object. """ title = [] """list: The title of the data object""" description : Optional[str] = None """str: The description of the data object.""" steward : Optional[str] = None """str: The steward of the data object.""" type : Optional[str] = None """str: The type of the data object.""" detail = None """str: Detail about the data object.""" items : Optional[List[Item]] = None """list of `Item`: For a :class:`~.rt_struct.Struct` or :class:`~.rt_dataset.Dataset`, the items contained within it.""" def __init__(self): pass def _make_text(self): title_format = DisplayText.title_format header_format = DisplayText.header_format rows = [] if self.title: rows += [title_format('{}'.format(self.title))] rows += [title_format('='*len(self.title))] if self.description: rows += [header_format('Description: ') + self.description] if self.steward: rows += [header_format('Steward: ') + self.steward] if self.type: rows += [header_format('Type: ') + self.type] if self.detail: rows += [header_format('Detail: ') + self.detail] if self.items: rows += [header_format('Contents:'), ''] # Set column widths name_width = max(NAME_DEFAULT_WIDTH, max(len(item.name) for item in self.items)) descrip_width = DESCRIPTION_DEFAULT_WIDTH steward_width = STEWARD_DEFAULT_WIDTH stype_width = max(TYPE_STR_DEFAULT_WIDTH, max(len(item.type) for item in self.items)) # Add list header rows += [header_format("{: <{}} {: <{}} {: <{}} {: <{}}".format( "Type", stype_width, "Name", name_width, "Description", descrip_width, "Steward", steward_width))] rows += [header_format("{} {} {} {}".format( "-" * stype_width, "-" * name_width, "-" * descrip_width, "-" * steward_width))] # Add item rows for item in self.items: rows += ["{: <{}} {} {: <{}} {: <{}}".format( item.type, stype_width, title_format('{: <{}}'.format(item.name, name_width)), item.description, descrip_width, item.steward, steward_width)] # Add a newline at the end if there is a title on top if self.title: rows += [''] return "\n".join(rows) def __str__(self): return DisplayText(self._make_text()).__str__() def __repr__(self): return DisplayText(self._make_text()).__repr__() def _repr_html_(self): return DisplayText(self._make_text())._repr_html_() class Doc(Struct): """A document object containing metadata about a data object. Parameters ---------- schema : dict See :meth:`apply_schema` for more information on the format of the dictionary. """ _type = NO_TYPE _descrip = NO_DESCRIPTION _steward = NO_STEWARD _detail = None def __init__(self, schema): super().__init__() self._type = schema.get(TYPE_KEY) self._descrip = schema.get(DESCRIPTION_KEY, NO_DESCRIPTION) self._steward = schema.get(STEWARD_KEY, NO_STEWARD) self._detail = schema.get(DETAIL_KEY, None) schema_contents = schema.get(CONTENTS_KEY) if schema_contents: for key in schema_contents.keys(): if self.is_valid_colname(key): self[key] = Doc(schema_contents[key]) def _as_info(self): info = Info() info.title = None info.description = self._descrip info.steward = self._steward info.type = self._type info.detail = self._detail info.items = [] for name in self.keys(): elem = self[name] info.items.append(Item(name, elem._type, elem._descrip, elem._steward)) return info def __str__(self): return self._as_info().__str__() def __repr__(self): return self._as_info().__repr__() def _repr_html_(self): return self._as_info()._repr_html_() def apply_schema(obj, schema: dict, doc: bool=True): """ Apply a schema containing descriptive information recursively to the input data object. The schema should be in the form of a hierarchical dictionary, where for the data object, and recursively for each element it may contain, there is a descriptive dictionary with the following keys and values: * Type: 'Struct', 'Dataset', 'Multiset', 'FastArray', etc. * Description: a brief description of the data object * Steward: the name of the steward for that data object * Detail: any additional descriptive information * Contents: if the data object is a :class:`~.rt_struct.Struct`, :class:`~.rt_dataset.Dataset`, or :class:`~.rt_multiset.Multiset`, a recursively formed dictionary where there is a descriptive dictionary of this form associated with the name of each element contained by the data object. When the schema is applied to the data object, key/value pairs are set within the ``_meta`` dictionary attribute of the object and all of its elements, to enable subsequent retrieval of the descriptive information using the :meth:`.rt_struct.Struct.info` method or :meth:`.rt_struct.Struct.doc` property. In addition, during the schema application process, the contents and type of each data object is compared to the expectation of the schema, with any differences returned in the form of a dictionary. Parameters ---------- obj : Struct or FastArray The data object to apply the schema information to. schema : dict A descriptive dictionary defining the schema that should apply to the data object and any elements it may contain. doc : bool Indicates whether to create and attach a :class:`Doc` to the object, so that the :meth:`doc` method may be run on the object. Returns ------- res : dict Dictionary of deviations from the schema See Also -------- :meth:`.rt_struct.Struct.apply_schema` """ res = {} if isinstance(obj, (Struct, FastArray)): if not hasattr(obj, META_DICT): obj._meta = {} if doc: obj._meta[DOC_KEY] = Doc(schema) obj._meta[DESCRIPTION_KEY] = schema.get(DESCRIPTION_KEY, NO_DESCRIPTION) obj._meta[STEWARD_KEY] = schema.get(STEWARD_KEY, NO_STEWARD) obj._meta[DETAIL_KEY] = schema.get(DETAIL_KEY, None) stype = schema.get(TYPE_KEY) if stype and _type_str(obj) != stype: res[TYPE_MISMATCH] = "Type {} does not match schema type {}".\ format(_type_str(obj), stype) schema_contents = schema.get(CONTENTS_KEY) if schema_contents: for key in obj.keys(): elem_schema = schema_contents.get(key) if elem_schema: elem_res = apply_schema(obj[key], elem_schema, False) if elem_res: res[key] = elem_res else: res[EXTRA_COLUMN] = key for key in schema_contents.keys(): if key not in obj.keys(): res[MISSING_COLUMN] = key return res def _type_str(obj) -> str: """ Return the string representation of an object's type. Parameters ---------- obj : Any An object Returns ------- str : str String representation of an object's type. """ if isinstance(obj, FastArray): stype = obj.dtype.name else: stype = type(obj).__name__ return stype def info(obj, title=None) -> Info: """ Return the :class:`Info` for the object, describing its contents. Parameters ---------- obj : Any The object title : str The title to give the object, defaults to None. Returns ------- info : Info Information about `obj`. """ info = Info() info.title = title info.description = NO_DESCRIPTION info.steward = NO_STEWARD info.detail = None info.type = _type_str(obj) if hasattr(obj, META_DICT): info.description = obj._meta.get(DESCRIPTION_KEY, info.description) info.steward = obj._meta.get(STEWARD_KEY, info.steward) info.detail = obj._meta.get(DETAIL_KEY, None) if isinstance(obj, Struct): info.items = [] for name in obj.keys(): descrip = NO_DESCRIPTION steward = NO_STEWARD if hasattr(obj[name], META_DICT): descrip = obj[name]._meta.get(DESCRIPTION_KEY, descrip) steward = obj[name]._meta.get(STEWARD_KEY, steward) info.items.append(Item(name, _type_str(obj[name]), descrip, steward)) return info def doc(obj) -> Optional[Doc]: """ Return the :class:`Doc` for the object, describing its contents. Parameters ---------- obj : Any The object. Returns ------- doc : Doc Returns a :class:`Doc` instance if the object contains documentation metadata, otherwise None. """ if hasattr(obj, META_DICT): if DOC_KEY in obj._meta: return obj._meta[DOC_KEY] return None
en_transformer/utils.py
dumpmemory/En-transformer
108
12772518
<filename>en_transformer/utils.py import torch from torch import sin, cos, atan2, acos def rot_z(gamma): return torch.tensor([ [cos(gamma), -sin(gamma), 0], [sin(gamma), cos(gamma), 0], [0, 0, 1] ], dtype = gamma.dtype) def rot_y(beta): return torch.tensor([ [cos(beta), 0, sin(beta)], [0, 1, 0], [-sin(beta), 0, cos(beta)] ], dtype = beta.dtype) def rot(alpha, beta, gamma): return rot_z(alpha) @ rot_y(beta) @ rot_z(gamma)
recruiter/api_urls.py
b1pb1p/opensource-job-portal
199
12772554
<filename>recruiter/api_urls.py from django.urls import path, re_path from recruiter import api_views app_name = "api_recruiter" urlpatterns = [ path("login/", api_views.login_view, name="api_login"), path("out/", api_views.getout, name="getout"), path("change-password/", api_views.change_password, name="api_change_password"), path("profile/", api_views.user_profile, name="api_user_profile"), path("job/list/", api_views.jobs_list, name="api_list"), path("skill/list/", api_views.skill_list), path("industry/list/", api_views.industry_list), path("city/list/", api_views.city_list), path("state/list/", api_views.state_list), path("company/list/", api_views.company_list), path("functional-area/list/", api_views.functional_area_list), path("job/inactive/list/", api_views.inactive_jobs, name="api_inactive_jobs"), path("profile/edit/", api_views.edit_profile, name="edit_profile"), path("company-profile/", api_views.view_company, name="view_company"), re_path(r"^job/(?P<job_type>[-\w]+)/new/$", api_views.new_job, name="api_new_job"), re_path( r"^job/edit/(?P<job_post_id>[a-zA-Z0-9]+)/$", api_views.edit_job, name="api_edit_job", ), re_path( r"^job/delete/(?P<job_post_id>[a-zA-Z0-9]+)/$", api_views.delete_job, name="api_delete_job", ), ]
tools/reval_discovery.py
AdilSiddiqui131/OIM
231
12772556
<filename>tools/reval_discovery.py #!/usr/bin/env python # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- """Reval = re-eval. Re-evaluate saved detections.""" import _init_paths from fast_rcnn.config import cfg from datasets.factory import get_imdb import cPickle import os, sys, argparse import numpy as np def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Re-evaluate results') parser.add_argument('output_dir', nargs=1, help='results directory', type=str) parser.add_argument('--imdb', dest='imdb_name', help='dataset to re-evaluate', default='voc_2007_trainval', type=str) parser.add_argument('--comp', dest='comp_mode', help='competition mode', action='store_true') if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args def from_dets(imdb_name, output_dir, args): imdb = get_imdb(imdb_name) imdb.competition_mode(args.comp_mode) with open(os.path.join(output_dir, 'discovery.pkl'), 'rb') as f: dets = cPickle.load(f) print 'Evaluating discovery' imdb.evaluate_discovery(dets, output_dir) if __name__ == '__main__': args = parse_args() output_dir = os.path.abspath(args.output_dir[0]) imdb_name = args.imdb_name from_dets(imdb_name, output_dir, args)
pysec/core/ctx.py
benhunter/owasp-pysec
416
12772562
<filename>pysec/core/ctx.py # Python Security Project (PySec) and its related class files. # # PySec is a set of tools for secure application development under Linux # # Copyright 2014 PySec development team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # -*- coding: ascii -*- import sys from pysec.core import Object __all__ = 'Context', CONTEXTS = {'file', 'cmd', 'html', 'js'} class Context(Object): def __init__(self, name='none', info=None, locs=None): name = str(name) self.name = name self.info = {} if info is None else dict(info) CONTEXTS.add(name) def __enter__(self): frame = sys._getframe().f_back contexts = frame.f_locals.setdefault('__ctx__', []) contexts.append(self) def __exit__(self, exc_type, exc_value, exc_tb): sys._getframe().f_back.__ctx__.pop() return 0 def contexts(self): frame = sys._getframe().f_back while frame: ls = frame.f_locals.get('__ctx__', None) if ls: for ctx in ls: yield ctx frame = sys._getframe().f_back
examples/pytorch/vision/Face_Detection/eval.py
cw18-coder/EdgeML
719
12772567
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. import torch import torch.nn as nn import torch.utils.data as data import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import os import time import argparse import numpy as np from PIL import Image import cv2 from data.choose_config import cfg cfg = cfg.cfg from utils.augmentations import to_chw_bgr from importlib import import_module def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser(description='face detection demo') parser.add_argument('--save_dir', type=str, default='results/', help='Directory for detect result') parser.add_argument('--model', type=str, default='weights/rpool_face_c.pth', help='trained model') parser.add_argument('--thresh', default=0.17, type=float, help='Final confidence threshold') parser.add_argument('--multigpu', default=False, type=str2bool, help='Specify whether model was trained with multigpu') parser.add_argument('--model_arch', default='RPool_Face_C', type=str, choices=['RPool_Face_C', 'RPool_Face_Quant', 'RPool_Face_QVGA_monochrome', 'RPool_Face_M4'], help='choose architecture among rpool variants') parser.add_argument('--image_folder', default=None, type=str, help='folder containing images') parser.add_argument('--save_traces', default=False, type=str2bool, help='Specify whether to save input output traces') args = parser.parse_args() if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) use_cuda = torch.cuda.is_available() if use_cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') def detect(net, img_path, thresh, save_traces): img = Image.open(img_path) img = img.convert('RGB') img = np.array(img) height, width, _ = img.shape if os.environ['IS_QVGA_MONO'] == '1': max_im_shrink = np.sqrt( 320 * 240 / (img.shape[0] * img.shape[1])) else: max_im_shrink = np.sqrt( 640 * 480 / (img.shape[0] * img.shape[1])) if save_traces==True and os.environ['IS_QVGA_MONO'] == '1': image = cv2.resize(img, (320, 240)) elif save_traces==True: image = cv2.resize(img, (640, 480)) else: image = cv2.resize(img, None, None, fx=max_im_shrink, fy=max_im_shrink, interpolation=cv2.INTER_LINEAR) x = to_chw_bgr(image) x = x.astype('float32') x -= cfg.img_mean x = x[[2, 1, 0], :, :] if cfg.IS_MONOCHROME == True: x = 0.299 * x[0] + 0.587 * x[1] + 0.114 * x[2] x = torch.from_numpy(x).unsqueeze(0).unsqueeze(0) else: x = torch.from_numpy(x).unsqueeze(0) if use_cuda: x = x.cuda() t1 = time.time() y, loc, conf = net(x) detections = y.data scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img = cv2.imread(img_path, cv2.IMREAD_COLOR) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= thresh: score = detections[0, i, j, 0] pt = (detections[0, i, j, 1:] * scale).cpu().numpy() left_up, right_bottom = (pt[0], pt[1]), (pt[2], pt[3]) j += 1 cv2.rectangle(img, left_up, right_bottom, (0, 0, 255), 2) conf_score = "{:.3f}".format(score) point = (int(left_up[0]), int(left_up[1] - 5)) cv2.putText(img, conf_score, point, cv2.FONT_HERSHEY_COMPLEX, 0.6, (0, 255, 0), 1) t2 = time.time() print('detect:{} timer:{}'.format(img_path, t2 - t1)) cv2.imwrite(os.path.join(args.save_dir, os.path.basename(img_path)), img) if save_traces == True: return x, loc, conf if __name__ == '__main__': module = import_module('models.' + args.model_arch) net = module.build_s3fd('test', cfg.NUM_CLASSES) if args.multigpu == True: net = torch.nn.DataParallel(net) checkpoint_dict = torch.load(args.model) model_dict = net.state_dict() model_dict.update(checkpoint_dict) net.load_state_dict(model_dict) net.eval() if use_cuda: net.cuda() cudnn.benckmark = True img_path = args.image_folder img_list = [os.path.join(img_path, x) for x in os.listdir(img_path)] x = [] loc = [] conf = [] for path in img_list: if args.save_traces == True: x_temp, loc_temp, conf_temp = detect(net, path, args.thresh, args.save_traces) x.append(x_temp) loc.append(loc_temp) conf.append(conf_temp) else: detect(net, path, args.thresh, args.save_traces) if args.save_traces == True: np.save('trace_inputs.npy', torch.cat(x).cpu().detach().numpy()) np.save('trace_outputs.npy', torch.cat([torch.cat(conf), torch.cat(loc)], dim=1).cpu().detach().numpy())
codigo/Live173/exemplo_tk.py
BrunoPontesLira/live-de-python
572
12772586
from tkinter import Tk, Label root = Tk() a = Label(root, text='Live de Python', font=('Arial', 30)) a.pack() root.mainloop()
flightrl/rpg_baselines/ppo/ppo2_test.py
MarioBonse/flightmare
596
12772587
<reponame>MarioBonse/flightmare<filename>flightrl/rpg_baselines/ppo/ppo2_test.py<gh_stars>100-1000 import matplotlib.pyplot as plt import numpy as np import matplotlib.gridspec as gridspec def test_model(env, model, render=False): # fig = plt.figure(figsize=(18, 12), tight_layout=True) gs = gridspec.GridSpec(5, 12) # ax_x = fig.add_subplot(gs[0, 0:4]) ax_y = fig.add_subplot(gs[0, 4:8]) ax_z = fig.add_subplot(gs[0, 8:12]) # ax_dx = fig.add_subplot(gs[1, 0:4]) ax_dy = fig.add_subplot(gs[1, 4:8]) ax_dz = fig.add_subplot(gs[1, 8:12]) # ax_euler_x = fig.add_subplot(gs[2, 0:4]) ax_euler_y = fig.add_subplot(gs[2, 4:8]) ax_euler_z = fig.add_subplot(gs[2, 8:12]) # ax_euler_vx = fig.add_subplot(gs[3, 0:4]) ax_euler_vy = fig.add_subplot(gs[3, 4:8]) ax_euler_vz = fig.add_subplot(gs[3, 8:12]) # ax_action0 = fig.add_subplot(gs[4, 0:3]) ax_action1 = fig.add_subplot(gs[4, 3:6]) ax_action2 = fig.add_subplot(gs[4, 6:9]) ax_action3 = fig.add_subplot(gs[4, 9:12]) max_ep_length = env.max_episode_steps num_rollouts = 5 if render: env.connectUnity() for n_roll in range(num_rollouts): pos, euler, dpos, deuler = [], [], [], [] actions = [] obs, done, ep_len = env.reset(), False, 0 while not (done or (ep_len >= max_ep_length)): act, _ = model.predict(obs, deterministic=True) obs, rew, done, infos = env.step(act) # ep_len += 1 # pos.append(obs[0, 0:3].tolist()) dpos.append(obs[0, 6:9].tolist()) euler.append(obs[0, 3:6].tolist()) deuler.append(obs[0, 9:12].tolist()) # actions.append(act[0, :].tolist()) pos = np.asarray(pos) dpos = np.asarray(dpos) euler = np.asarray(euler) deuler = np.asarray(deuler) actions = np.asarray(actions) # t = np.arange(0, pos.shape[0]) ax_x.step(t, pos[:, 0], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_y.step(t, pos[:, 1], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_z.step(t, pos[:, 2], color="C{0}".format( n_roll), label="pos [x, y, z] -- trail: {0}".format(n_roll)) # ax_dx.step(t, dpos[:, 0], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_dy.step(t, dpos[:, 1], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_dz.step(t, dpos[:, 2], color="C{0}".format( n_roll), label="vel [x, y, z] -- trail: {0}".format(n_roll)) # ax_euler_x.step(t, euler[:, -1], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_euler_y.step(t, euler[:, 0], color="C{0}".format( n_roll), label="trail :{0}".format(n_roll)) ax_euler_z.step(t, euler[:, 1], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) # ax_euler_vx.step(t, deuler[:, -1], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_euler_vy.step(t, deuler[:, 0], color="C{0}".format( n_roll), label="trail :{0}".format(n_roll)) ax_euler_vz.step(t, deuler[:, 1], color="C{0}".format( n_roll), label=r"$\theta$ [x, y, z] -- trail: {0}".format(n_roll)) # ax_action0.step(t, actions[:, 0], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_action1.step(t, actions[:, 1], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_action2.step(t, actions[:, 2], color="C{0}".format( n_roll), label="trail: {0}".format(n_roll)) ax_action3.step(t, actions[:, 3], color="C{0}".format( n_roll), label="act [0, 1, 2, 3] -- trail: {0}".format(n_roll)) # if render: env.disconnectUnity() ax_z.legend() ax_dz.legend() ax_euler_z.legend() ax_euler_vz.legend() ax_action3.legend() # plt.tight_layout() plt.show()
test_numpy_embedding.py
morpheusthewhite/twitter-sent-dnn
314
12772591
<gh_stars>100-1000 import theano import numpy as np from dcnn import WordEmbeddingLayer from dcnn_train import WordEmbeddingLayer as TheanoWordEmbeddingLayer from test_util import assert_matrix_eq ########### NUMPY ########### vocab_size, embed_dm = 10, 5 embeddings = np.random.rand(vocab_size, embed_dm) sents = np.asarray(np.random.randint(10, size = (3, 6)), dtype = np.int32) np_l = WordEmbeddingLayer(embeddings) actual = np_l.output(sents) ########### THEANO ########### x_symbol = theano.tensor.imatrix('x') # the word indices matrix th_l = TheanoWordEmbeddingLayer(rng = np.random.RandomState(1234), input = x_symbol, vocab_size = vocab_size, embed_dm = embed_dm, embeddings = theano.shared(value = embeddings, name = "embeddings" ) ) f = theano.function(inputs = [x_symbol], outputs = th_l.output) expected = f(sents) assert_matrix_eq(actual, expected, "Embedding")
recipes/structopt/all/conanfile.py
rockandsalt/conan-center-index
562
12772595
import os from conans import ConanFile, tools from conans.errors import ConanInvalidConfiguration class StructoptConan(ConanFile): name = "structopt" homepage = "https://github.com/p-ranav/structopt" url = "https://github.com/conan-io/conan-center-index" description = "Parse command line arguments by defining a struct+" license = "MIT" settings = "compiler", "os" topics = ("conan", "structopt", "argument-parser", "cpp17", "header-only", "single-header-lib", "header-library", "command-line", "arguments", "mit-license", "modern-cpp", "structopt", "lightweight", "reflection", "cross-platform", "library", "type-safety", "type-safe", "argparse", "clap", "visit-struct-library", "magic-enum") no_copy_source = True @property def _source_subfolder(self): return "source_subfolder" @property def _supported_compiler(self): compiler = str(self.settings.compiler) version = tools.Version(self.settings.compiler.version) if compiler == "Visual Studio" and version >= "15": return True elif compiler == "gcc" and version >= "9": return True elif compiler == "clang" and version >= "5": return True elif compiler == "apple-clang" and version >= "10": return True else: self.output.warn("{} recipe lacks information about the {} compiler standard version support".format(self.name, compiler)) return False def configure(self): if self.settings.compiler.get_safe("cppstd"): tools.check_min_cppstd(self, "17") if not self._supported_compiler: raise ConanInvalidConfiguration("structopt: Unsupported compiler: {}-{} " "(https://github.com/p-ranav/structopt#compiler-compatibility).".format(self.settings.compiler, self.settings.compiler.version)) def source(self): tools.get(**self.conan_data["sources"][self.version]) os.rename("{}-{}".format(self.name, self.version), self._source_subfolder) def package(self): self.copy(pattern="LICENSE", src=self._source_subfolder, dst="licenses") self.copy(pattern="*.h", src=os.path.join(self._source_subfolder, "include"), dst="include") self.copy(pattern="*.hpp", src=os.path.join(self._source_subfolder, "include"), dst="include") def package_id(self): self.info.header_only()
src/TulsiGenerator/Scripts/install_genfiles_tests.py
comius/tulsi
511
12772607
<gh_stars>100-1000 # Copyright 2018 The Tulsi Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for install_genfiles.py.""" import os import unittest import install_genfiles DOES_EXIST_DATA = { 'generated_sources': [ ('src/TulsiGenerator/Scripts/install_genfiles.py', 'install_genfiles.py'), ], } DOES_NOT_EXIST_DATA = { 'generated_sources': [('src/does/not/exist.txt', 'exist.txt')], } class TestInstallForData(unittest.TestCase): def testSrcDoeNotExist(self): tmpdir = os.environ['TEST_TMPDIR'] installer = install_genfiles.Installer('.', output_root=tmpdir) installer.InstallForData(DOES_NOT_EXIST_DATA) self.assertFalse(os.path.lexists( os.path.join(tmpdir, 'bazel-tulsi-includes/x/x/exist.txt'))) def testSrcDoesExist(self): tmpdir = os.environ['TEST_TMPDIR'] installer = install_genfiles.Installer('.', output_root=tmpdir) installer.InstallForData(DOES_EXIST_DATA) # Must use lexists because we create a link but use the wrong exec root, # so the symlink is not valid. self.assertTrue(os.path.lexists( os.path.join(tmpdir, 'bazel-tulsi-includes/x/x/install_genfiles.py'))) if __name__ == '__main__': unittest.main()
Tests/Marketplace/Tests/test_pack_dependencies.py
satyakidroid/content
799
12772636
<reponame>satyakidroid/content<gh_stars>100-1000 # type: ignore[attr-defined] from unittest.mock import patch import networkx as nx from Tests.Marketplace.packs_dependencies import calculate_single_pack_dependencies def find_pack_display_name_mock(pack_folder_name): return pack_folder_name class TestCalculateSinglePackDependencies: @classmethod def setup_class(cls): patch('demisto_sdk.commands.find_dependencies.find_dependencies.find_pack_display_name', side_effect=find_pack_display_name_mock) patch('Tests.scripts.utils.log_util.install_logging') graph = nx.DiGraph() graph.add_node('pack1', mandatory_for_packs=[]) graph.add_node('pack2', mandatory_for_packs=[]) graph.add_node('pack3', mandatory_for_packs=[]) graph.add_node('pack4', mandatory_for_packs=[]) graph.add_node('pack5', mandatory_for_packs=[]) graph.add_edge('pack1', 'pack2') graph.add_edge('pack2', 'pack3') graph.add_edge('pack1', 'pack4') graph.nodes()['pack4']['mandatory_for_packs'].append('pack1') dependencies = calculate_single_pack_dependencies('pack1', graph) cls.first_level_dependencies, cls.all_level_dependencies, _ = dependencies def test_calculate_single_pack_dependencies_first_level_dependencies(self): """ Given - A full dependency graph where: - pack1 -> pack2 -> pack3 - pack1 -> pack4 - pack4 is mandatory for pack1 - pack5 and pack1 are not a dependency for any pack When - Running `calculate_single_pack_dependencies` to extract the first and all levels dependencies Then - Ensure first level dependencies for pack1 are only pack2 and pack4 """ all_nodes = {'pack1', 'pack2', 'pack3', 'pack4', 'pack5'} expected_first_level_dependencies = {'pack2', 'pack4'} for node in expected_first_level_dependencies: assert node in self.first_level_dependencies for node in all_nodes - expected_first_level_dependencies: assert node not in self.first_level_dependencies def test_calculate_single_pack_dependencies_all_levels_dependencies(self): """ Given - A full dependency graph where: - pack1 -> pack2 -> pack3 - pack1 -> pack4 - pack4 is mandatory for pack1 - pack5 and pack1 are not a dependency for any pack When - Running `calculate_single_pack_dependencies` to extract the first and all levels dependencies Then - Ensure all levels dependencies for pack1 are pack2, pack3 and pack4 only """ all_nodes = {'pack1', 'pack2', 'pack3', 'pack4', 'pack5'} expected_all_level_dependencies = {'pack2', 'pack3', 'pack4'} for node in expected_all_level_dependencies: assert node in self.all_level_dependencies for node in all_nodes - expected_all_level_dependencies: assert node not in self.all_level_dependencies def test_calculate_single_pack_dependencies_mandatory_dependencies(self): """ Given - A full dependency graph where: - pack1 -> pack2 -> pack3 - pack1 -> pack4 - pack4 is mandatory for pack1 - pack5 and pack1 are not a dependency for any pack When - Running `calculate_single_pack_dependencies` to extract the first and all levels dependencies Then - pack4 is mandatory for pack1 and that there are no other mandatory dependencies """ expected_mandatory_dependency = 'pack4' assert self.first_level_dependencies[expected_mandatory_dependency]['mandatory'] for node in self.first_level_dependencies: if node != expected_mandatory_dependency: assert not self.first_level_dependencies[node]['mandatory']
util/rev_info.py
ccwanggl/smartknob
3,836
12772649
<reponame>ccwanggl/smartknob import datetime import subprocess def git_short_rev(): try: return subprocess.check_output([ 'git', 'rev-parse', '--short', 'HEAD', ]).decode('utf-8').strip() except Exception: raise RuntimeError("Could not read git revision. Make sure you have git installed and you're working with a git clone of the repository.") def current_date(): return datetime.date.today().strftime('%Y-%m-%d') def git_date(short=True): try: iso = subprocess.check_output([ 'git', 'log', '-1', '--format=%ci', 'HEAD', ]).decode('utf-8').strip() if short: return iso.split(' ')[0] else: return iso except Exception: raise RuntimeError("Could not read git commit date. Make sure you have git installed and you're working with a git clone of the repository.") def git_release_version(search_prefix): try: tags = subprocess.check_output([ 'git', 'tag', '--points-at', 'HEAD', ]).decode('utf-8').splitlines() for tag in tags: if tag.startswith(search_prefix): return tag[len(search_prefix):] return None except Exception: raise RuntimeError("Could not read git release tags. Make sure you have git installed and you're working with a git clone of the repository.")
test/pytest/test_anonymous_group.py
showipintbri/ttp
254
12772650
<filename>test/pytest/test_anonymous_group.py import sys sys.path.insert(0, "../..") import pprint from ttp import ttp def test_simple_anonymous_template(): template_1 = """interface {{ interface }} description {{ description | ORPHRASE }}""" data_1 = """ interface Port-Chanel11 description Storage Management interface Loopback0 description RID """ parser = ttp(template=template_1, data=data_1) # check that data added: datums_added = { "{}:{}".format(template.name, input_name): input_obj.data for template in parser._templates for input_name, input_obj in template.inputs.items() } # pprint.pprint(datums_added) parser.parse() res = parser.result() # pprint.pprint(res) # assert res == [[[{'description': 'Storage Management', 'interface': 'Port-Chanel11'}, {'description': 'RID', 'interface': 'Loopback0'}]]] # test_simple_anonymous_template() def test_anonymous_group_with_vars(): template = """ <input load="text"> interface Port-Chanel11 description Storage Management interface Loopback0 description RID </input> <vars name="my.var.s"> a = 1 b = 2 </vars> <group> interface {{ interface }} description {{ description | ORPHRASE }} </group> """ parser = ttp(template=template) parser.parse() res = parser.result() # pprint.pprint(res) assert res == [ [ [ {"description": "Storage Management", "interface": "Port-Chanel11"}, {"description": "RID", "interface": "Loopback0"}, {"my": {"var": {"s": {"a": 1, "b": 2}}}}, ] ] ] # test_anonymous_group_with_vars() def test_anonymous_group_with_child_group_empty_absolute_path(): template = """ <template results="per_template"> <input name="Cisco_ios" load="text"> r2#show interfaces | inc line protocol interface GigabitEthernet1 vrf forwarding MGMT ip address 10.123.89.55 255.255.255.0 </input> <input name="Cisco_ios" load="text"> r1#show interfaces | inc line protocol: interface GigabitEthernet1 description some info vrf forwarding MGMT ip address 10.123.89.56 255.255.255.0 interface GigabitEthernet2 ip address 10.123.89.55 255.255.255.0 </input> <group void=""> interface {{ interface }} description {{ description | ORPHRASE }} <group name="/"> ip address {{ ip }} {{ mask }} </group> </group> </template> """ parser = ttp(template=template) parser.parse() res = parser.result() # pprint.pprint(res) assert res == [ [ {"ip": "10.123.89.55", "mask": "255.255.255.0"}, {"ip": "10.123.89.56", "mask": "255.255.255.0"}, {"ip": "10.123.89.55", "mask": "255.255.255.0"}, ] ] # test_anonymous_group_with_child_group_empty_absolute_path() def test_anonymous_group_with_per_template_mode(): template = """ <template results="per_template"> <group void=""> hostname {{ hostname | record(hostname_abc) }} </group> <group> interface {{ interface }} description {{ description | ORPHRASE }} ip address {{ ip }} {{ mask }} {{ hostname | set(hostname_abc) }} </group> </template> """ datum_1 = """ hostname r2 ! interface GigabitEthernet1 vrf forwarding MGMT ip address 10.123.89.55 255.255.255.0 """ datum_2 = """ hostname r1 ! interface GigabitEthernet1 description some info vrf forwarding MGMT ip address 10.123.89.56 255.255.255.0 interface GigabitEthernet2 ip address 10.123.89.55 255.255.255.0 """ parser_a = ttp(template=template) parser_a.add_input(datum_1) parser_a.add_input(datum_2) parser_a.parse() res = parser_a.result() # pprint.pprint(res) assert res == [ [ { "hostname": "r2", "interface": "GigabitEthernet1", "ip": "10.123.89.55", "mask": "255.255.255.0", }, { "description": "some info", "hostname": "r1", "interface": "GigabitEthernet1", "ip": "10.123.89.56", "mask": "255.255.255.0", }, { "hostname": "r1", "interface": "GigabitEthernet2", "ip": "10.123.89.55", "mask": "255.255.255.0", }, ] ] # test_anonymous_group_with_per_template_mode()
openproblems/utils.py
bendemeo/SingleCellOpenProblems
134
12772674
<reponame>bendemeo/SingleCellOpenProblems from .version import __version__ import decorator import packaging.version @decorator.decorator def temporary(func, version=None, *args, **kwargs): """Decorate a function as a temporary fix. Parameters ---------- version : str Version after which this function should raise a RuntimeError """ if version is None: raise TypeError("temporary() missing 1 required keyword argument: 'version'") if packaging.version.parse(__version__) >= packaging.version.parse(version): raise RuntimeError( "Temporary function {}.{} is temporary and should not be used " "after version {} (current version: {})".format( func.__module__, func.__name__, version, __version__ ) ) return func(*args, **kwargs) def get_members(module): """Get all public members from a module.""" namespace = [attr for attr in dir(module) if not attr.startswith("_")] return [getattr(module, attr) for attr in namespace] def get_callable_members(module): """Get all callable public members from a module.""" return [member for member in get_members(module) if callable(member)]
Multiprocessing/single.py
commoncdp2021/Gun-Gaja-Gun
171
12772676
<filename>Multiprocessing/single.py #!/usr/bin/python from gen_rand import gen_random_data if __name__ == '__main__': gen_random_data() gen_random_data() gen_random_data() gen_random_data()
src/mobile_seg/modules/wrapper.py
murez/mobile-semantic-segmentation
713
12772678
<reponame>murez/mobile-semantic-segmentation import torch import torch.nn as nn from mobile_seg.modules.net import MobileNetV2_unet class Wrapper(nn.Module): def __init__( self, unet: MobileNetV2_unet, scale: float = 255. ): super().__init__() self.unet = unet self.scale = scale def forward(self, x): x = x / self.scale x = self.unet(x) x = x * self.scale x = torch.cat((x, x, x), dim=1) return x # %% if __name__ == '__main__': # %% model = MobileNetV2_unet() wrapper = Wrapper(model) inputs = torch.randn((1, 3, 224, 224)) out = wrapper(inputs) print(out.shape)
nanopore-human-transcriptome/scripts/bulk_signal_read_correction/make_reads.py
hasindu2008/NA12878
345
12772693
import sys from pathlib import Path from argparse import ArgumentParser import h5py import pandas as pd import numpy as np from tqdm import tqdm from export import export_read_file def get_args(): parser = ArgumentParser(description="Parse sequencing_summary.txt files and .paf files to find split reads " "in an Oxford Nanopore Dataset", add_help=False) general = parser.add_argument_group(title='General options') general.add_argument("-h", "--help", action="help", help="Show this help and exit" ) in_args = parser.add_argument_group( title='Input sources' ) in_args.add_argument("-s", "--summary", required=True, nargs='+', help='Sequencing summary file(s) generated by albacore or guppy. Can be compressed ' 'using gzip, bzip2, xz, or zip') in_args.add_argument("--start-events", help="start_events.csv file generated by event_finder.py", default="", required=True, ) in_args.add_argument("--end-events", help="end_events.csv file generated by event_finder.py", default="", required=True, ) in_args.add_argument("--targets", help="A text file of target read ids with one per line.", default="", required=True, ) in_args.add_argument("--bulk-files", help="ONT bulk FAST5 files.", nargs='+', default="", ) in_args.add_argument("-o", "--output-name", help="Name of the output folder, this will be generated if it does not exist", required=True, default="" ) in_args.add_argument("--extra-classifications", help="Any extra MinKNOW classifications to include.", nargs='*', default="", ) return parser.parse_args() def main(): args = get_args() # debug(args) # # sys.exit() # Make folders for j in ['starts', 'ends']: Path('{i}/{j}/{k}'.format(i=args.output_name, j=j, k='fast5')).mkdir(parents=True, exist_ok=True) # Open files start_events = pd.read_csv(args.start_events, sep=',') end_events = pd.read_csv(args.end_events, sep=',') seq_sum_df = concat_files_to_df(file_list=args.summary, sep='\t') # Create end_time Series in seq_sum_df seq_sum_df['end_time'] = seq_sum_df['start_time'] + seq_sum_df['duration'] # Sort and Groupby to segregate runs and channels seq_sum_df = seq_sum_df.sort_values(by=['run_id', 'channel', 'start_time'], ascending=True) seq_sum_df_1 = seq_sum_df.copy() gb = seq_sum_df.groupby(['run_id', 'channel']) gb1 = seq_sum_df_1.groupby(['run_id', 'channel']) # Get previous and next start times within groupby seq_sum_df['next_start'] = gb['start_time'].shift(-1) seq_sum_df_1['prev_start'] = gb1['start_time'].shift(1) target_read_ids = [] with open(args.targets, 'r') as file: for line in file: target_read_ids.append(line.strip()) classifications = ['pore', 'inrange', 'good_single', 'unblocking'] if args.extra_classifications: classifications.extend(args.extra_classifications) # Get end_events for target_read_ids end_events = end_events[end_events['read_id'].isin(target_read_ids)] normal_ending_ids = end_events[end_events['time'].ge(0) & end_events['label'].isin(classifications)]['read_id'].unique() abnormally_ending_ids = end_events[~end_events['read_id'].isin(normal_ending_ids)]['read_id'].unique() end_target_ss = seq_sum_df[seq_sum_df['read_id'].isin(abnormally_ending_ids)] # Get start_events for target_read_ids start_events = start_events[start_events['read_id'].isin(target_read_ids)] normal_starting_ids = start_events[start_events['time'].le(0) & start_events['label'].isin(classifications)]['read_id'].unique() abnormally_starting_ids = start_events[~start_events['read_id'].isin(normal_starting_ids)]['read_id'].unique() start_target_ss = seq_sum_df_1[seq_sum_df_1['read_id'].isin(abnormally_starting_ids)] print('Collecting abnormally ending reads:') end_read_info = write_files(end_target_ss, args.bulk_files, 'start_time', 'next_start', '{i}/ends/fast5/'.format(i=args.output_name)) end_read_info.to_csv('{}/ends_read_info.txt'.format(args.output_name), sep='\t', index=False, header=True) end_read_info.to_csv('{}/ends_filenames.txt'.format(args.output_name), sep='\t', index=False, header=False, columns=['filename']) print('Collecting abnormally starting reads:') start_read_info = write_files(start_target_ss, args.bulk_files, 'prev_start', 'end_time', '{i}/starts/fast5/'.format(i=args.output_name)) start_read_info.to_csv('{}/starts_read_info.txt'.format(args.output_name), sep='\t', index=False, header=True) start_read_info.to_csv('{}/starts_filenames.txt'.format(args.output_name), sep='\t', index=False, header=False, columns=['filename']) return def write_files(target_ss, bulkfiles, read_start_col, read_end_col, export_path, remove_pore=True): """Abstraction for export_read_file for collecting read info Parameters ---------- target_ss : pd.DataFrame DataFrame of reads to generate reads for bulkfiles: list list of bulk FAST5 files read_start_col : str Column in the target_ss that start index is derived from read_end_col : str Column in the target_ss that end index is derived from export_path : str The folder where read files will be written remove_pore : bool Remove pore-like signal from trace (>1500) Returns ------- pd.DataFrame DataFrame of read info about reads that have been written """ d = { 'read_id': [], 'channel': [], 'start_index': [], 'end_index': [], 'bv_read_id': [], 'filename': [], 'bv_filename': [] } files_written = 0 for bf in tqdm(bulkfiles): f = h5py.File(bf, 'r') run_id = f['UniqueGlobalKey']["tracking_id"].attrs["run_id"].decode('utf8') sf = int(f["UniqueGlobalKey"]["context_tags"].attrs["sample_frequency"].decode('utf8')) t = target_ss[target_ss['run_id'] == run_id] t = t.dropna() f.close() file = h5py.File(bf, 'r') for idx, row in tqdm(t.iterrows(), total=t.shape[0], desc=run_id): si = int(np.floor(row[read_start_col] * sf)) ei = int(np.floor(row[read_end_col] * sf)) d['read_id'].append(row['read_id']) d['channel'].append(row['channel']) d['start_index'].append(si) d['end_index'].append(ei) d['bv_read_id'].append("{ch}-{start}-{end}".format(ch=row['channel'], start=si, end=ei)) d['filename'].append(row['filename']) d['bv_filename'].append(export_read_file(row['channel'], si, ei, file, export_path, remove_pore=remove_pore)) files_written += 1 print('{} reads written'.format(files_written)) return pd.DataFrame(d) def concat_files_to_df(file_list, **kwargs): """Return a pandas.DataFrame from a list of files """ df_list = [] for f in file_list: try: df_list.append(pd.read_csv(filepath_or_buffer=f, **kwargs)) except pd.errors.ParserError as e: print('{}\nThis is usually caused by an input file not being the expected format'.format(repr(e))) sys.exit(1) except Exception as e: sys.exit(1) return pd.concat(df_list, ignore_index=True) def debug(args): dirs = dir(args) for attr in dirs: if attr[0] != '_': print('{a:<25} {b}'.format(a=attr, b=getattr(args, attr))) if __name__ == '__main__': main()
src/chapter-4/conftest.py
luizyao/pytest-chinese-doc
283
12772698
#!/usr/bin/env python3 # -*- coding:utf-8 -*- ''' Author: <NAME> (<EMAIL>) Created Date: 2019-09-19 5:35:12 ----- Last Modified: 2019-10-07 8:27:16 Modified By: <NAME> (<EMAIL>) ----- THIS PROGRAM IS FREE SOFTWARE, IS LICENSED UNDER MIT. A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Copyright © 2019 <NAME> ----- HISTORY: Date By Comments ---------- -------- --------------------------------------------------------- ''' import os import smtplib import tempfile import pytest @pytest.fixture(scope='module') def smtp_connection(): return smtplib.SMTP("smtp.163.com", 25, timeout=5) @pytest.fixture(scope='package') def smtp_connection_package(): return smtplib.SMTP("smtp.163.com", 25, timeout=5) @pytest.fixture() def smtp_connection_yield(): smtp_connection = smtplib.SMTP("smtp.163.com", 25, timeout=5) yield smtp_connection print("关闭SMTP连接") smtp_connection.close() @pytest.fixture(scope='module') def smtp_connection_request(request): server, port = getattr(request.module, 'smtp_server', ("smtp.163.com", 25)) with smtplib.SMTP(server, port, timeout=5) as smtp_connection: yield smtp_connection print("断开 %s:%d" % (server, port)) @pytest.fixture(scope='module', params=['smtp.163.com', 'smtp.126.com']) def smtp_connection_params(request): server = request.param with smtplib.SMTP(server, 25, timeout=5) as smtp_connection: yield smtp_connection print("断开 %s:%d" % (server, 25)) @pytest.fixture() def cleandir(): newpath = tempfile.mkdtemp() os.chdir(newpath)
tests/python/frontend/mxnet/model_zoo/squeezenet.py
XiaoSong9905/tvm
4,640
12772719
<reponame>XiaoSong9905/tvm # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Symbol of SqueezeNet Reference: Iandola, <NAME>., et al. "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016). """ import mxnet as mx # Helpers def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels): net = _make_fire_conv(net, squeeze_channels, 1, 0) left = _make_fire_conv(net, expand1x1_channels, 1, 0) right = _make_fire_conv(net, expand3x3_channels, 3, 1) # NOTE : Assume NCHW layout here net = mx.sym.concat(left, right, dim=1) return net def _make_fire_conv(net, channels, kernel_size, padding=0): net = mx.sym.Convolution( net, num_filter=channels, kernel=(kernel_size, kernel_size), pad=(padding, padding) ) net = mx.sym.Activation(net, act_type="relu") return net # Net def get_symbol(num_classes=1000, version="1.0", **kwargs): """Get symbol of SqueezeNet Parameters ---------- num_classes: int The number of classification results version : str, optional "1.0" or "1.1" of SqueezeNet """ assert version in [ "1.0", "1.1", ], "Unsupported SqueezeNet version {version}:" "1.0 or 1.1 expected".format(version=version) net = mx.sym.Variable("data") if version == "1.0": net = mx.sym.Convolution(net, num_filter=96, kernel=(7, 7), stride=(2, 2), pad=(3, 3)) net = mx.sym.Activation(net, act_type="relu") net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 16, 64, 64) net = _make_fire(net, 16, 64, 64) net = _make_fire(net, 32, 128, 128) net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 32, 128, 128) net = _make_fire(net, 48, 192, 192) net = _make_fire(net, 48, 192, 192) net = _make_fire(net, 64, 256, 256) net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 64, 256, 256) else: net = mx.sym.Convolution(net, num_filter=64, kernel=(3, 3), stride=(2, 2), pad=(1, 1)) net = mx.sym.Activation(net, act_type="relu") net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 16, 64, 64) net = _make_fire(net, 16, 64, 64) net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 32, 128, 128) net = _make_fire(net, 32, 128, 128) net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 48, 192, 192) net = _make_fire(net, 48, 192, 192) net = _make_fire(net, 64, 256, 256) net = _make_fire(net, 64, 256, 256) net = mx.sym.Dropout(net, p=0.5) net = mx.sym.Convolution(net, num_filter=num_classes, kernel=(1, 1)) net = mx.sym.Activation(net, act_type="relu") net = mx.sym.Pooling(data=net, global_pool=True, kernel=(13, 13), pool_type="avg") net = mx.sym.flatten(net) return mx.sym.softmax(net)
homeassistant/components/webostv/trigger.py
MrDelik/core
30,023
12772799
"""webOS Smart TV trigger dispatcher.""" from __future__ import annotations from typing import cast from homeassistant.components.automation import ( AutomationActionType, AutomationTriggerInfo, ) from homeassistant.const import CONF_PLATFORM from homeassistant.core import CALLBACK_TYPE, HomeAssistant from homeassistant.helpers.typing import ConfigType from .triggers import TriggersPlatformModule, turn_on TRIGGERS = { "turn_on": turn_on, } def _get_trigger_platform(config: ConfigType) -> TriggersPlatformModule: """Return trigger platform.""" platform_split = config[CONF_PLATFORM].split(".", maxsplit=1) if len(platform_split) < 2 or platform_split[1] not in TRIGGERS: raise ValueError( f"Unknown webOS Smart TV trigger platform {config[CONF_PLATFORM]}" ) return cast(TriggersPlatformModule, TRIGGERS[platform_split[1]]) async def async_validate_trigger_config( hass: HomeAssistant, config: ConfigType ) -> ConfigType: """Validate config.""" platform = _get_trigger_platform(config) return cast(ConfigType, platform.TRIGGER_SCHEMA(config)) async def async_attach_trigger( hass: HomeAssistant, config: ConfigType, action: AutomationActionType, automation_info: AutomationTriggerInfo, ) -> CALLBACK_TYPE: """Attach trigger of specified platform.""" platform = _get_trigger_platform(config) assert hasattr(platform, "async_attach_trigger") return cast( CALLBACK_TYPE, await getattr(platform, "async_attach_trigger")( hass, config, action, automation_info ), )
model.py
lFatality/tensorflow2caffe
115
12772825
<reponame>lFatality/tensorflow2caffe from tflearn import input_data, conv_2d, max_pool_2d, fully_connected, dropout, Momentum, regression, DNN #model of vgg-19 def vgg_net_19(width, height): network = input_data(shape=[None, height, width, 3], name='input') network = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4) network = dropout(network, keep_prob=0.5) network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4) network = dropout(network, keep_prob=0.5) network = fully_connected(network, 1000, activation='softmax', weight_decay=5e-4) opt = Momentum(learning_rate=0, momentum = 0.9) network = regression(network, optimizer=opt, loss='categorical_crossentropy', name='targets') model = DNN(network, checkpoint_path='', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='') return model #model of vgg-19 for testing of the activations #rename the output you want to test, connect it to the next layer and change the output layer at the bottom (model = DNN(...)) #make sure to use the correct test function (depending if your output is a tensor or a vector) def vgg_net_19_activations(width, height): network = input_data(shape=[None, height, width, 3], name='input') network1 = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network2 = conv_2d(network1, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network2, 2, strides=2) network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4) network = max_pool_2d(network, 2, strides=2) network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4) network = dropout(network, keep_prob=0.5) network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4) network = dropout(network, keep_prob=0.5) network = fully_connected(network, 1000, activation='softmax', weight_decay=5e-4) opt = Momentum(learning_rate=0, momentum = 0.9) network = regression(network, optimizer=opt, loss='categorical_crossentropy', name='targets') model = DNN(network1, checkpoint_path='', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='') return model
docs/snippets/ov_python_exclusives.py
kurylo/openvino
1,127
12772826
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np #! [auto_compilation] import openvino.runtime as ov compiled_model = ov.compile_model("model.xml") #! [auto_compilation] #! [properties_example] core = ov.Core() input_a = ov.opset8.parameter([8]) res = ov.opset8.absolute(input_a) model = ov.Model(res, [input_a]) compiled = core.compile_model(model, "CPU") print(model.inputs) print(model.outputs) print(compiled.inputs) print(compiled.outputs) #! [properties_example] #! [tensor_basics] data_float64 = np.ones(shape=(2,8)) tensor = ov.Tensor(data_float64) assert tensor.element_type == ov.Type.f64 data_int32 = np.ones(shape=(2,8), dtype=np.int32) tensor = ov.Tensor(data_int32) assert tensor.element_type == ov.Type.i32 #! [tensor_basics] #! [tensor_shared_mode] data_to_share = np.ones(shape=(2,8)) shared_tensor = ov.Tensor(data_to_share, shared_memory=True) # Editing of the numpy array affects Tensor's data data_to_share[0][2] = 6.0 assert shared_tensor.data[0][2] == 6.0 # Editing of Tensor's data affects the numpy array shared_tensor.data[0][2] = 0.6 assert data_to_share[0][2] == 0.6 #! [tensor_shared_mode] infer_request = compiled.create_infer_request() data = np.random.randint(-5, 3 + 1, size=(8)) #! [passing_numpy_array] # Passing inputs data in form of a dictionary infer_request.infer(inputs={0: data}) # Passing inputs data in form of a list infer_request.infer(inputs=[data]) #! [passing_numpy_array] #! [getting_results] # Get output tensor results = infer_request.get_output_tensor().data # Get tensor with CompiledModel's output node results = infer_request.get_tensor(compiled.outputs[0]).data # Get all results with special helper property results = list(infer_request.results.values()) #! [getting_results] #! [sync_infer] # Simple call to InferRequest results = infer_request.infer(inputs={0: data}) # Extra feature: calling CompiledModel directly results = compiled_model(inputs={0: data}) #! [sync_infer] #! [asyncinferqueue] core = ov.Core() # Simple model that adds two inputs together input_a = ov.opset8.parameter([8]) input_b = ov.opset8.parameter([8]) res = ov.opset8.add(input_a, input_b) model = ov.Model(res, [input_a, input_b]) compiled = core.compile_model(model, "CPU") # Number of InferRequests that AsyncInferQueue holds jobs = 4 infer_queue = ov.AsyncInferQueue(compiled, jobs) # Create data data = [np.array([i] * 8, dtype=np.float32) for i in range(jobs)] # Run all jobs for i in range(len(data)): infer_queue.start_async({0: data[i], 1: data[i]}) infer_queue.wait_all() #! [asyncinferqueue] #! [asyncinferqueue_access] results = infer_queue[3].get_output_tensor().data #! [asyncinferqueue_access] #! [asyncinferqueue_set_callback] data_done = [False for _ in range(jobs)] def f(request, userdata): print(f"Done! Result: {request.get_output_tensor().data}") data_done[userdata] = True infer_queue.set_callback(f) for i in range(len(data)): infer_queue.start_async({0: data[i], 1: data[i]}, userdata=i) infer_queue.wait_all() assert all(data_done) #! [asyncinferqueue_set_callback] unt8_data = np.ones([100]) #! [packing_data] from openvino.helpers import pack_data packed_buffer = pack_data(unt8_data, ov.Type.u4) # Create tensor with shape in element types t = ov.Tensor(packed_buffer, [1, 128], ov.Type.u4) #! [packing_data] #! [unpacking] from openvino.helpers import unpack_data unpacked_data = unpack_data(t.data, t.element_type, t.shape) assert np.array_equal(unpacked_data , unt8_data) #! [unpacking] #! [releasing_gil] import openvino.runtime as ov import cv2 as cv from threading import Thread input_data = [] # Processing input data will be done in a separate thread # while compilation of the model and creation of the infer request # is going to be executed in the main thread. def prepare_data(input, image_path): image = cv.imread(image_path) h, w = list(input.shape)[-2:] image = cv.resize(image, (h, w)) image = image.transpose((2, 0, 1)) image = np.expand_dims(image, 0) input_data.append(image) core = ov.Core() model = core.read_model("model.xml") # Create thread with prepare_data function as target and start it thread = Thread(target=prepare_data, args=[model.input(), "path/to/image"]) thread.start() # The GIL will be released in compile_model. # It allows a thread above to start the job, # while main thread is running in the background. compiled = core.compile_model(model, "GPU") # After returning from compile_model, the main thread acquires the GIL # and starts create_infer_request which releases it once again. request = compiled.create_infer_request() # Join the thread to make sure the input_data is ready thread.join() # running the inference request.infer(input_data) #! [releasing_gil]
samples/aci-epg-reports-in-yaml.py
richardstrnad/acitoolkit
351
12772846
#!/usr/bin/env python """ Simple application that logs on to the APIC and displays all EPGs. """ import socket import yaml import sys from acitoolkit import Credentials, Session, Tenant, AppProfile, EPG, Endpoint def main(): """ Main show EPGs routine :return: None """ # Login to APIC description = ('Simple application that logs on to the APIC' ' and displays all of the EPGs.') creds = Credentials('apic', description) args = creds.get() session = Session(args.url, args.login, args.password) resp = session.login() if not resp.ok: print('%% Could not login to APIC') return # Download all of the tenants, app profiles, and EPGs # and store the names as tuples in a list tenants = Tenant.get_deep(session) tenants_list = [] for tenant in tenants: tenants_dict = {} tenants_dict['name'] = tenant.name if tenant.descr: tenants_dict['description'] = tenant.descr tenants_dict['app-profiles'] = [] for app in tenant.get_children(AppProfile): app_profiles = {'name': app.name} if app.descr: app_profiles['description'] = app.descr app_profiles['epgs'] = [] for epg in app.get_children(EPG): epgs_info = {'name': epg.name} if epg.descr: epgs_info['description'] = epg.descr epgs_info['endpoints'] = [] for endpoint in epg.get_children(Endpoint): endpoint_info = {'name': endpoint.name} if endpoint.ip != '0.0.0.0': endpoint_info['ip'] = endpoint.ip try: hostname = socket.gethostbyaddr(endpoint.ip)[0] except socket.error: hostname = None if hostname: endpoint_info['hostname'] = hostname if endpoint.descr: endpoint_info['description'] = endpoint.descr epgs_info['endpoints'].append(endpoint_info) app_profiles['epgs'].append(epgs_info) tenants_dict['app-profiles'].append(app_profiles) tenants_list.append(tenants_dict) tenants_info = {'tenants': tenants_list} print(yaml.safe_dump(tenants_info, sys.stdout, indent=4, default_flow_style=False)) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass
tests/test_write.py
sphh/RPLCD
231
12772849
<reponame>sphh/RPLCD # -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import, unicode_literals import pytest from RPLCD.gpio import CharLCD from RPLCD.common import LCD_SETDDRAMADDR def test_write_simple(mocker, charlcd_kwargs): """ Write "HelloWorld" to the display. """ lcd = CharLCD(**charlcd_kwargs) send_data = mocker.patch.object(lcd, '_send_data') text = 'HelloWorld' lcd.write_string(text) assert send_data.call_count == len(text) calls = [c[0] for c in send_data.call_args_list] assert calls[0] == (72,) assert calls[1] == (101,) assert calls[2] == (108,) assert calls[3] == (108,) assert calls[4] == (111,) assert calls[5] == (87,) assert calls[6] == (111,) assert calls[7] == (114,) assert calls[8] == (108,) assert calls[9] == (100,) def test_caching(mocker, charlcd_kwargs): """ Characters should only be written if they have changed """ lcd = CharLCD(**charlcd_kwargs) send_data = mocker.patch.object(lcd, '_send_data') send_instruction = mocker.patch.object(lcd, '_send_instruction') lcd.write_string('hello') assert send_data.call_count == 5 data_calls = [c[0] for c in send_data.call_args_list] assert data_calls[0] == (104,) assert data_calls[1] == (101,) assert data_calls[2] == (108,) assert data_calls[3] == (108,) assert data_calls[4] == (111,) lcd.home() send_data.reset_mock() send_instruction.reset_mock() lcd.write_string('he77o') assert send_data.call_count == 2 assert send_instruction.call_count == 3 data_calls = [c[0] for c in send_data.call_args_list] instruction_calls = [c[0] for c in send_instruction.call_args_list] assert instruction_calls[0] == (LCD_SETDDRAMADDR | 1,) assert instruction_calls[1] == (LCD_SETDDRAMADDR | 2,) assert data_calls[0] == (55,) assert data_calls[1] == (55,) assert instruction_calls[2] == (LCD_SETDDRAMADDR | 5,) @pytest.mark.parametrize(['charmap', 'ue'], [ ('A00', 0b11110101), ('A02', 0b11111100), ]) def test_charmap(mocker, charmap, ue, charlcd_kwargs): """ The charmap should be used. The "ü" Umlaut should be encoded correctly. """ lcd = CharLCD(charmap=charmap, **charlcd_kwargs) send = mocker.patch.object(lcd, '_send_data') text = 'Züri' lcd.write_string(text) assert send.call_count == 4, 'call count was %d' % send.call_count calls = [c[0] for c in send.call_args_list] assert calls[0] == (90,) assert calls[1] == (ue,) assert calls[2] == (114,) assert calls[3] == (105,) @pytest.mark.parametrize(['rows', 'cols'], [ (2, 16), (4, 20), ]) def test_write_newline(mocker, rows, cols, charlcd_kwargs): """ Write text containing CR/LF chars to the display. """ lcd = CharLCD(rows=rows, cols=cols, **charlcd_kwargs) send_data = mocker.patch.object(lcd, '_send_data') send_instruction = mocker.patch.object(lcd, '_send_instruction') text = '\nab\n\rcd' lcd.write_string(text) assert send_data.call_count + send_instruction.call_count == len(text) data_calls = [c[0] for c in send_data.call_args_list] instruction_calls = [c[0] for c in send_instruction.call_args_list] assert instruction_calls[0] == (0x80 + 0x40,), instruction_calls assert data_calls[0] == (97,), data_calls assert data_calls[1] == (98,), data_calls if rows == 2: assert instruction_calls[1] == (0x80 + 2,), instruction_calls assert instruction_calls[2] == (0x80 + 0,), instruction_calls else: assert instruction_calls[1] == (0x80 + cols + 2,), instruction_calls assert instruction_calls[2] == (0x80 + cols + 0,), instruction_calls assert data_calls[2] == (99,), data_calls assert data_calls[3] == (100,), data_calls
demo/align_face.py
hologerry/pix2pix-flow
2,898
12772853
# OLD USAGE # python align_faces.py --shape-predictor shape_predictor_68_face_landmarks.dat --image images/example_01.jpg # import the necessary packages from imutils.face_utils import FaceAligner from PIL import Image import numpy as np # import argparse import imutils import dlib import cv2 # construct the argument parser and parse the arguments # ap = argparse.ArgumentParser() # ap.add_argument("--shape-predictor", help="path to facial landmark predictor", default='shape_predictor_68_face_landmarks.dat') # ap.add_argument("--input", help="path to input images", default='input_raw') # ap.add_argument("--output", help="path to input images", default='input_aligned') # args = vars(ap.parse_args()) # initialize dlib's face detector (HOG-based) and then create # the facial landmark predictor and the face aligner detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') fa = FaceAligner(predictor, desiredFaceWidth=256, desiredLeftEye=(0.371, 0.480)) # Input: numpy array for image with RGB channels # Output: (numpy array, face_found) def align_face(img): img = img[:, :, ::-1] # Convert from RGB to BGR format img = imutils.resize(img, width=800) # detect faces in the grayscale image gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) rects = detector(gray, 2) if len(rects) > 0: # align the face using facial landmarks align_img = fa.align(img, gray, rects[0])[:, :, ::-1] align_img = np.array(Image.fromarray(align_img).convert('RGB')) return align_img, True else: # No face found return None, False # Input: img_path # Output: aligned_img if face_found, else None def align(img_path): img = Image.open(img_path) img = img.convert('RGB') # if image is RGBA or Grayscale etc img = np.array(img) x, face_found = align_face(img) return x
data_pipeline/testing_helpers/kafka_docker.py
poros/data_pipeline
110
12772865
# -*- coding: utf-8 -*- # Copyright 2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import from __future__ import unicode_literals from contextlib import contextmanager from kafka import KafkaClient from kafka import SimpleConsumer from data_pipeline.config import get_config from data_pipeline.message import create_from_offset_and_message _ONE_MEGABYTE = 1024 * 1024 logger = get_config().logger @contextmanager def capture_new_data_pipeline_messages(topic): """contextmanager that moves to the tail of the given topic, and waits to receive new messages, returning a function that can be called zero or more times which will retrieve decoded data pipeline messages from the topic. Returns: Callable[[int], List[Message]]: Function that takes a single optional argument, count, and returns up to count decoded data pipeline messages. This function does not block, and will return however many messages are available immediately. Default count is 100. """ with capture_new_messages(topic) as get_kafka_messages: def get_data_pipeline_messages(count=100): kafka_messages = get_kafka_messages(count) return [ create_from_offset_and_message(kafka_message) for kafka_message in kafka_messages ] yield get_data_pipeline_messages @contextmanager def capture_new_messages(topic): """Seeks to the tail of the topic then returns a function that can consume messages from that point. """ with setup_capture_new_messages_consumer(topic) as consumer: def get_messages(count=100): return consumer.get_messages(count=count) yield get_messages @contextmanager def setup_capture_new_messages_consumer(topic): """Seeks to the tail of the topic then returns a function that can consume messages from that point. """ kafka = KafkaClient(get_config().cluster_config.broker_list) group = str('data_pipeline_clientlib_test') consumer = SimpleConsumer(kafka, group, topic, max_buffer_size=_ONE_MEGABYTE) consumer.seek(0, 2) # seek to tail, 0 is the offset, and 2 is the tail yield consumer kafka.close()
lib/bindings/samples/server/debug/profiling_output.py
tlalexander/stitchEm
182
12772903
import threading import errors import vs import logging import gc from blinker import signal from utils import performance from output.output import Output # We need to be able to load (not run) vs_server on windows to generate the documentation. # So we're skipping non-windows imports try: import psutil except ImportError: pass PROFILING_STITCH_FORMAT = vs.NV12 class ProfilingOutput(Output): """Profiling output """ def __init__(self, stitcher, name="profiling", critical=False, preserved=False): super(ProfilingOutput, self).__init__(stitcher, name, critical, preserved) self.writer = None self.pid = psutil.Process() def reset(self): self._transition_check() self.pid.cpu_percent(interval=None) vs.Output_reset(self.writer.object()) def _start(self, profiling_time=0, preserve=False): # Todo I don't like that it's created differently from other outputs here, but for now I left it like this panorama = self.stitcher.project_manager.panorama self.writer = vs.Output_profiling(self.name, panorama.width, panorama.height, self.stitcher.project_manager.controller.getFrameRateFromInputController(), PROFILING_STITCH_FORMAT) if self.writer is None: raise errors.InternalError() self.shared_writer = vs.writerSharedPtr(self.writer.object()) self.shared_video = vs.videoWriterSharedPtr(self.shared_writer) self.has_audio = False if self.shared_video is not None and not self.stitcher.stitch_output.addWriter(self.shared_video): raise errors.InternalError("Cannot add profiling writer to stitcher") if profiling_time > 0: threading.Timer(profiling_time, self.t_stop).start() self.pid.cpu_percent(interval=None) #jump automatically from starting state to started state self.t_writer_ok() def _stop(self): self.fps = vs.Output_getFps(self.writer.release()) self.writer = None logging.info("fps is %f:" % self.fps) logging.info("cpu_util is %d" % self.pid.cpu_percent(interval=None)) cuda = performance.getCudaInfo() logging.info("gpu_util is %d" % int(cuda['utilization.gpu'])) logging.info("enc_util is %s" % cuda['utilization.enc']) success = self.stitcher.stitch_output.removeWriterNoGIL(self.name) signal("profiling_stopping").send() if not success: raise errors.InternalError("Cannot remove writer") self.shared_video = None self.shared_writer = None gc.collect() #jump automatically from stopping state to stopped state self.t_writer_completed() def get_statistics(self): cuda = performance.getCudaInfo() self._transition_check() if self.writer is not None: self.fps = vs.Output_getFps(self.writer.object()) return {"fps": self.fps, "cpu": self.pid.cpu_percent(interval=None), "gpu": float(cuda['utilization.gpu']), "enc": float(cuda['utilization.enc'])}
cloudpathlib/local/__init__.py
kabirkhan/cloudpathlib
128
12772926
<filename>cloudpathlib/local/__init__.py """This module implements "Local" classes that mimic their associated `cloudpathlib` non-local counterparts but use the local filesystem in place of cloud storage. They can be used as drop-in replacements, with the intent that you can use them as mock or monkepatch substitutes in your tests. See ["Testing code that uses cloudpathlib"](../../testing_mocked_cloudpathlib/) for usage examples. """ from .implementations import ( local_azure_blob_implementation, LocalAzureBlobClient, LocalAzureBlobPath, local_gs_implementation, LocalGSClient, LocalGSPath, local_s3_implementation, LocalS3Client, LocalS3Path, ) from .localclient import LocalClient from .localpath import LocalPath __all__ = [ "local_azure_blob_implementation", "LocalAzureBlobClient", "LocalAzureBlobPath", "LocalClient", "local_gs_implementation", "LocalGSClient", "LocalGSPath", "LocalPath", "local_s3_implementation", "LocalS3Client", "LocalS3Path", ]