Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Sub-tasks:
semantic-segmentation
Languages:
English
Size:
10K - 100K
License:
File size: 2,784 Bytes
b01bc48 d49e2e9 b01bc48 aa362df b01bc48 8745815 b01bc48 8745815 b01bc48 0a92020 d77fe25 b01bc48 0a92020 b01bc48 b926b05 693682c b01bc48 b926b05 b01bc48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import datasets
import pandas as pd
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {RSNA-ATD2023},
author = {Yeow Zi Qin},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset is the processed version of Kaggle Competition: RSNA 2023 Abdominal Trauma Detection.
It comprises of segmentation of 205 series of CT scans with 5 classes (liver, spleen, right_kidney,
left_kidney, bowel).
"""
_NAME = "RSNA-ATD2023"
_HOMEPAGE = f"https://huggingface.co/datasets/ziq/{_NAME}"
_LICENSE = "MIT"
_DATA = f"https://huggingface.co/datasets/ziq/{_NAME}/resolve/main/data/"
class RSNAATD(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
# "image_path": datasets.Value("string"),
"patient_id": datasets.Value("int64"),
"series_id": datasets.Value("int64"),
"frame_id": datasets.Value("int64"),
"image": datasets.Image(),
"mask": datasets.Image(),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_images = dl_manager.download(f"{_DATA}images.tar.gz")
train_masks = dl_manager.download(f"{_DATA}masks.tar.gz")
metadata = dl_manager.download(f"{_DATA}metadata.csv")
train_images = dl_manager.iter_archive(train_images)
train_masks = dl_manager.iter_archive(train_masks)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": train_images,
"masks": train_masks,
"metadata": metadata,
},
),
]
# def sort_key(self, x):
# patient_id, series_id, frame_id = (
# x[0][0].replace("images/", "").replace(".png", "").split("_")
# )
# return int(patient_id), int(series_id), int(frame_id)
def _generate_examples(self, images, masks, metadata):
df = pd.read_csv(metadata)
for idx, ((image_path, image), (mask_path, mask)) in enumerate(
zip(images, masks)
):
row = df.loc[df["path"] == image_path.lower().replace("images/", "")]
yield idx, {
"patient_id": row["patient_id"].values[0],
"series_id": row["series_id"].values[0],
"frame_id": row["frame_id"].values[0],
"image": {"path": image_path, "bytes": image.read()},
"mask": {"path": mask_path, "bytes": mask.read()},
}
|