import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {RSNA-ATD2023}, author = {Yeow Zi Qin}, year = {2023} } """ _DESCRIPTION = """\ The dataset is the processed version of Kaggle Competition: RSNA 2023 Abdominal Trauma Detection. It comprises of segmentation of 205 series of CT scans with 5 classes (liver, spleen, right_kidney, left_kidney, bowel). """ _NAME = "RSNA-ATD2023" _HOMEPAGE = f"https://huggingface.co/datasets/ziq/{_NAME}" _LICENSE = "MIT" _DATA = f"https://huggingface.co/datasets/ziq/{_NAME}/resolve/main/data/" class RSNAATD(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { # "image_path": datasets.Value("string"), "patient_id": datasets.Value("int64"), "series_id": datasets.Value("int64"), "frame_id": datasets.Value("int64"), "image": datasets.Image(), "mask": datasets.Image(), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): train_images = dl_manager.download(f"{_DATA}images.tar.gz") train_masks = dl_manager.download(f"{_DATA}masks.tar.gz") metadata = dl_manager.download(f"{_DATA}metadata.csv") train_images = dl_manager.iter_archive(train_images) train_masks = dl_manager.iter_archive(train_masks) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": train_images, "masks": train_masks, "metadata": metadata, }, ), ] # def sort_key(self, x): # patient_id, series_id, frame_id = ( # x[0][0].replace("images/", "").replace(".png", "").split("_") # ) # return int(patient_id), int(series_id), int(frame_id) def _generate_examples(self, images, masks, metadata): df = pd.read_csv(metadata) for idx, ((image_path, image), (mask_path, mask)) in enumerate( zip(images, masks) ): row = df.loc[df["path"] == image_path.lower().replace("images/", "")] yield idx, { "patient_id": row["patient_id"].values[0], "series_id": row["series_id"].values[0], "frame_id": row["frame_id"].values[0], "image": {"path": image_path, "bytes": image.read()}, "mask": {"path": mask_path, "bytes": mask.read()}, }