File size: 4,899 Bytes
21bfe6f eec7490 21bfe6f 636df3a 21bfe6f 5328cf0 21bfe6f 5328cf0 21bfe6f bbf728c 5328cf0 bbf728c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import datasets
import numpy as np
import pandas as pd
import hickle as hkl
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {rsna-atd},
author = {Yeow Zi Qin},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset is the processed version of Kaggle Competition: RSNA 2023 Abdominal Trauma Detection.
It comprises of segmentation of 205 series of CT scans with 5 classes (liver, spleen, right_kidney,
left_kidney, bowel).
"""
_NAME = "rsna-atd"
_HOMEPAGE = f"https://huggingface.co/datasets/ziq/{_NAME}"
_LICENSE = "MIT"
_DATA = f"https://huggingface.co/datasets/ziq/{_NAME}/resolve/main/data/"
class RSNAATD(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
# "test": datasets.Value("string")
"patient_id": datasets.Value("int64"),
"series_id": datasets.Value("int64"),
"image": datasets.Array3D(shape=(None, 512, 512), dtype="uint8"),
"mask": datasets.Array3D(shape=(None, 512, 512), dtype="uint8"),
"aortic_hu": datasets.Value("float64"),
"incomplete_organ": datasets.Value("int64"),
"bowel_healthy": datasets.Value("int64"),
"bowel_injury": datasets.Value("int64"),
"extravasation_healthy": datasets.Value("int64"),
"extravasation_injury": datasets.Value("int64"),
"kidney_healthy": datasets.Value("int64"),
"kidney_low": datasets.Value("int64"),
"kidney_high": datasets.Value("int64"),
"liver_healthy": datasets.Value("int64"),
"liver_low": datasets.Value("int64"),
"liver_high": datasets.Value("int64"),
"spleen_healthy": datasets.Value("int64"),
"spleen_low": datasets.Value("int64"),
"spleen_high": datasets.Value("int64"),
"any_injury": datasets.Value("int64"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_images = dl_manager.download(f"{_DATA}images.tar.gz")
train_masks = dl_manager.download(f"{_DATA}masks.tar.gz")
metadata = dl_manager.download(f"{_DATA}metadata.csv")
train_images = dl_manager.iter_archive(train_images)
train_masks = dl_manager.iter_archive(train_masks)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": train_images,
"masks": train_masks,
"metadata": metadata,
},
),
]
def _generate_examples(self, images, masks, metadata):
df = pd.read_csv(metadata)
# for i, image in enumerate(images):
# yield i, {
# "test": image
# }
# return
for idx, (data, (image_path, image_obj), (mask_path, mask_obj)) in enumerate(zip(df.to_numpy(), images, masks)):
image, mask = [hkl.load(image_obj)], [hkl.load(mask_obj)]
(
patient_id,
series_id,
aortic_hu,
incomplete_organ,
bowel_healthy,
bowel_injury,
extravasation_healthy,
extravasation_injury,
kidney_healthy,
kidney_low,
kidney_high,
liver_healthy,
liver_low,
liver_high,
spleen_healthy,
spleen_low,
spleen_high,
any_injury,
) = data[1:]
yield idx, {
"patient_id": patient_id,
"series_id": series_id,
"image": image,
"mask": mask,
"aortic_hu": aortic_hu,
"incomplete_organ": incomplete_organ,
"bowel_healthy": bowel_healthy,
"bowel_injury": bowel_injury,
"extravasation_healthy": extravasation_healthy,
"extravasation_injury": extravasation_injury,
"kidney_healthy": kidney_healthy,
"kidney_low": kidney_low,
"kidney_high": kidney_high,
"liver_healthy": liver_healthy,
"liver_low": liver_low,
"liver_high": liver_high,
"spleen_healthy": spleen_healthy,
"spleen_low": spleen_low,
"spleen_high": spleen_high,
"any_injury": any_injury,
}
|