rsna-atd / rsna-atd.py
ziq's picture
Update rsna-atd.py
116859a
raw
history blame
3.68 kB
import datasets
import pandas as pd
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {rsna-atd},
author = {Yeow Zi Qin},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset is the processed version of Kaggle Competition: RSNA 2023 Abdominal Trauma Detection.
It comprises of segmentation of 205 series of CT scans with 5 classes (liver, spleen, right_kidney,
left_kidney, bowel).
"""
_NAME = "rsna-atd"
_HOMEPAGE = f"https://huggingface.co/datasets/ziq/{_NAME}"
_LICENSE = "MIT"
_DATA = f"https://huggingface.co/datasets/ziq/{_NAME}/resolve/main/data/"
class RSNAATD(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image_path": datasets.Value("string"),
"mask_path": datasets.Value("string")
# "patient_id": datasets.Value("int64"),
# "series_id": datasets.Value("int64"),
# "aortic_hu": datasets.Value("float64"),
# "incomplete_organ": datasets.Value("int64"),
# "bowel_healthy": datasets.Value("int64"),
# "bowel_injury": datasets.Value("int64"),
# "extravasation_healthy": datasets.Value("int64"),
# "extravasation_injury": datasets.Value("int64"),
# "kidney_healthy": datasets.Value("int64"),
# "kidney_low": datasets.Value("int64"),
# "kidney_high": datasets.Value("int64"),
# "liver_healthy": datasets.Value("int64"),
# "liver_low": datasets.Value("int64"),
# "liver_high": datasets.Value("int64"),
# "spleen_healthy": datasets.Value("int64"),
# "spleen_low": datasets.Value("int64"),
# "spleen_high": datasets.Value("int64"),
# "any_injury": datasets.Value("int64"),
# "image": datasets.Array3D(shape=(None, 512, 512)),
# "mask": datasets.Array3D(shape=(None, 512, 512)),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_images = dl_manager.download(f"{_DATA}images.tar.gz")
train_masks = dl_manager.download(f"{_DATA}masks.tar.gz")
metadata = dl_manager.download(f"{_DATA}metadata.csv")
train_images = dl_manager.iter_archive(train_images)
train_masks = dl_manager.iter_archive(train_masks)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": train_images,
"masks": train_masks,
"metadata": metadata,
},
),
]
def _generate_examples(self, images, masks, metadata):
df = pd.read_csv(metadata)
for idx, ((image_path), (mask_path)) in enumerate(zip(images, masks)):
# row = df.loc[df["path"] == image_path.lower().replace("images/", "")]
yield idx, {
"image_path": image_path,
"mask_path": mask_path
# "patient_id": row["patient_id"].values[0],
# "series_id": row["series_id"].values[0],
# "frame_id": row["frame_id"].values[0],
# "image": {"path": image_path, "bytes": image.read()},
# "mask": {"path": mask_path, "bytes": mask.read()},
}