Update rsna-atd.py
Browse files- rsna-atd.py +11 -7
rsna-atd.py
CHANGED
@@ -2,6 +2,7 @@ import datasets
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import hickle as hkl
|
|
|
5 |
|
6 |
_CITATION = """\
|
7 |
@InProceedings{huggingface:dataset,
|
@@ -62,7 +63,7 @@ class RSNAATD(datasets.GeneratorBasedBuilder):
|
|
62 |
|
63 |
def _split_generators(self, dl_manager):
|
64 |
train_images = dl_manager.download_and_extract(f"{_DATA}images.tar.gz")
|
65 |
-
train_masks = dl_manager.
|
66 |
|
67 |
metadata = dl_manager.download(f"{_DATA}metadata.csv")
|
68 |
train_images = dl_manager.iter_archive(train_images)
|
@@ -81,16 +82,19 @@ class RSNAATD(datasets.GeneratorBasedBuilder):
|
|
81 |
|
82 |
def _generate_examples(self, images, masks, metadata):
|
83 |
df = pd.read_csv(metadata)
|
84 |
-
yield 0, {
|
85 |
-
|
86 |
-
|
87 |
-
return
|
88 |
for i, image in enumerate(images):
|
|
|
|
|
89 |
yield i, {
|
90 |
-
"test":
|
91 |
}
|
92 |
return
|
93 |
-
for idx, (data, (image_path
|
|
|
94 |
image, mask = [hkl.load(image_obj)], [hkl.load(mask_obj)]
|
95 |
(
|
96 |
patient_id,
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import hickle as hkl
|
5 |
+
from pathlib import Path
|
6 |
|
7 |
_CITATION = """\
|
8 |
@InProceedings{huggingface:dataset,
|
|
|
63 |
|
64 |
def _split_generators(self, dl_manager):
|
65 |
train_images = dl_manager.download_and_extract(f"{_DATA}images.tar.gz")
|
66 |
+
train_masks = dl_manager.download_and_extract(f"{_DATA}masks.tar.gz")
|
67 |
|
68 |
metadata = dl_manager.download(f"{_DATA}metadata.csv")
|
69 |
train_images = dl_manager.iter_archive(train_images)
|
|
|
82 |
|
83 |
def _generate_examples(self, images, masks, metadata):
|
84 |
df = pd.read_csv(metadata)
|
85 |
+
# yield 0, {
|
86 |
+
# "test": images
|
87 |
+
# }
|
88 |
+
# return
|
89 |
for i, image in enumerate(images):
|
90 |
+
image_path = Path(image_path).name
|
91 |
+
test = hkl.load(image_path)
|
92 |
yield i, {
|
93 |
+
"test": image_path
|
94 |
}
|
95 |
return
|
96 |
+
for idx, (data, (image_path), (mask_path)) in enumerate(zip(df.to_numpy(), images, masks)):
|
97 |
+
image_path = Path(image_path)
|
98 |
image, mask = [hkl.load(image_obj)], [hkl.load(mask_obj)]
|
99 |
(
|
100 |
patient_id,
|