ziq commited on
Commit
2a6fab4
·
1 Parent(s): 6212f83

Update rsna-atd.py

Browse files
Files changed (1) hide show
  1. rsna-atd.py +11 -7
rsna-atd.py CHANGED
@@ -2,6 +2,7 @@ import datasets
2
  import numpy as np
3
  import pandas as pd
4
  import hickle as hkl
 
5
 
6
  _CITATION = """\
7
  @InProceedings{huggingface:dataset,
@@ -62,7 +63,7 @@ class RSNAATD(datasets.GeneratorBasedBuilder):
62
 
63
  def _split_generators(self, dl_manager):
64
  train_images = dl_manager.download_and_extract(f"{_DATA}images.tar.gz")
65
- train_masks = dl_manager.download(f"{_DATA}masks.tar.gz")
66
 
67
  metadata = dl_manager.download(f"{_DATA}metadata.csv")
68
  train_images = dl_manager.iter_archive(train_images)
@@ -81,16 +82,19 @@ class RSNAATD(datasets.GeneratorBasedBuilder):
81
 
82
  def _generate_examples(self, images, masks, metadata):
83
  df = pd.read_csv(metadata)
84
- yield 0, {
85
- "test": images
86
- }
87
- return
88
  for i, image in enumerate(images):
 
 
89
  yield i, {
90
- "test": image
91
  }
92
  return
93
- for idx, (data, (image_path, image_obj), (mask_path, mask_obj)) in enumerate(zip(df.to_numpy(), images, masks)):
 
94
  image, mask = [hkl.load(image_obj)], [hkl.load(mask_obj)]
95
  (
96
  patient_id,
 
2
  import numpy as np
3
  import pandas as pd
4
  import hickle as hkl
5
+ from pathlib import Path
6
 
7
  _CITATION = """\
8
  @InProceedings{huggingface:dataset,
 
63
 
64
  def _split_generators(self, dl_manager):
65
  train_images = dl_manager.download_and_extract(f"{_DATA}images.tar.gz")
66
+ train_masks = dl_manager.download_and_extract(f"{_DATA}masks.tar.gz")
67
 
68
  metadata = dl_manager.download(f"{_DATA}metadata.csv")
69
  train_images = dl_manager.iter_archive(train_images)
 
82
 
83
  def _generate_examples(self, images, masks, metadata):
84
  df = pd.read_csv(metadata)
85
+ # yield 0, {
86
+ # "test": images
87
+ # }
88
+ # return
89
  for i, image in enumerate(images):
90
+ image_path = Path(image_path).name
91
+ test = hkl.load(image_path)
92
  yield i, {
93
+ "test": image_path
94
  }
95
  return
96
+ for idx, (data, (image_path), (mask_path)) in enumerate(zip(df.to_numpy(), images, masks)):
97
+ image_path = Path(image_path)
98
  image, mask = [hkl.load(image_obj)], [hkl.load(mask_obj)]
99
  (
100
  patient_id,