Update rsna-atd.py
Browse files- rsna-atd.py +30 -30
rsna-atd.py
CHANGED
@@ -33,27 +33,27 @@ class RSNAATD(datasets.GeneratorBasedBuilder):
|
|
33 |
description=_DESCRIPTION,
|
34 |
features=datasets.Features(
|
35 |
{
|
36 |
-
"test": datasets.Value("string"),
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
}
|
58 |
),
|
59 |
supervised_keys=None,
|
@@ -62,8 +62,8 @@ class RSNAATD(datasets.GeneratorBasedBuilder):
|
|
62 |
)
|
63 |
|
64 |
def _split_generators(self, dl_manager):
|
65 |
-
train_images = dl_manager.
|
66 |
-
train_masks = dl_manager.
|
67 |
|
68 |
metadata = dl_manager.download(f"{_DATA}metadata.csv")
|
69 |
train_images = dl_manager.iter_files(train_images)
|
@@ -86,13 +86,13 @@ class RSNAATD(datasets.GeneratorBasedBuilder):
|
|
86 |
# "test": images
|
87 |
# }
|
88 |
# return
|
89 |
-
for i, image in enumerate(images):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
return
|
96 |
for idx, (data, image_path, mask_path) in enumerate(zip(df.to_numpy(), images, masks)):
|
97 |
image_path = Path(image_path) / data[0]
|
98 |
mask_path = Path(mask_path) / data[0]
|
|
|
33 |
description=_DESCRIPTION,
|
34 |
features=datasets.Features(
|
35 |
{
|
36 |
+
# "test": datasets.Value("string"),
|
37 |
+
"patient_id": datasets.Value("int64"),
|
38 |
+
"series_id": datasets.Value("int64"),
|
39 |
+
"image": datasets.Array3D(shape=(None, 512, 512), dtype="uint8"),
|
40 |
+
"mask": datasets.Array3D(shape=(None, 512, 512), dtype="uint8"),
|
41 |
+
"aortic_hu": datasets.Value("float64"),
|
42 |
+
"incomplete_organ": datasets.Value("int64"),
|
43 |
+
"bowel_healthy": datasets.Value("int64"),
|
44 |
+
"bowel_injury": datasets.Value("int64"),
|
45 |
+
"extravasation_healthy": datasets.Value("int64"),
|
46 |
+
"extravasation_injury": datasets.Value("int64"),
|
47 |
+
"kidney_healthy": datasets.Value("int64"),
|
48 |
+
"kidney_low": datasets.Value("int64"),
|
49 |
+
"kidney_high": datasets.Value("int64"),
|
50 |
+
"liver_healthy": datasets.Value("int64"),
|
51 |
+
"liver_low": datasets.Value("int64"),
|
52 |
+
"liver_high": datasets.Value("int64"),
|
53 |
+
"spleen_healthy": datasets.Value("int64"),
|
54 |
+
"spleen_low": datasets.Value("int64"),
|
55 |
+
"spleen_high": datasets.Value("int64"),
|
56 |
+
"any_injury": datasets.Value("int64"),
|
57 |
}
|
58 |
),
|
59 |
supervised_keys=None,
|
|
|
62 |
)
|
63 |
|
64 |
def _split_generators(self, dl_manager):
|
65 |
+
train_images = dl_manager.download_and_extract(f"{_DATA}images.zip")
|
66 |
+
train_masks = dl_manager.download_and_extract(f"{_DATA}masks.zip")
|
67 |
|
68 |
metadata = dl_manager.download(f"{_DATA}metadata.csv")
|
69 |
train_images = dl_manager.iter_files(train_images)
|
|
|
86 |
# "test": images
|
87 |
# }
|
88 |
# return
|
89 |
+
# for i, image in enumerate(images):
|
90 |
+
# # image_path = Path(image).name
|
91 |
+
# # test = hkl.load(image_path)
|
92 |
+
# yield i, {
|
93 |
+
# "test": image
|
94 |
+
# }
|
95 |
+
# return
|
96 |
for idx, (data, image_path, mask_path) in enumerate(zip(df.to_numpy(), images, masks)):
|
97 |
image_path = Path(image_path) / data[0]
|
98 |
mask_path = Path(mask_path) / data[0]
|