zpn commited on
Commit
57280ea
·
1 Parent(s): 8160a0c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -2
README.md CHANGED
@@ -1,5 +1,110 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
 
5
- Regression dataset from [MoleculeNet](https://moleculenet.org/datasets-1). With heavy inspiration from [DeepChem](https://github.com/deepchem/deepchem/tree/master), we additionally add a column with SELFIES representations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language_creators:
5
+ - machine-generated
6
+ license:
7
+ - mit
8
+ multilinguality:
9
+ - monolingual
10
+ pretty_name: bace_classification
11
+ size_categories:
12
+ - 1K<n<10K
13
+ source_datasets: []
14
+ tags:
15
+ - bio
16
+ - bio-chem
17
+ - molnet
18
+ - molecule-net
19
+ - biophysics
20
+ task_categories:
21
+ - other
22
+ task_ids: []
23
  ---
24
 
25
+ # Dataset Card for bace_classification
26
+
27
+ ## Table of Contents
28
+ - [Table of Contents](#table-of-contents)
29
+ - [Dataset Description](#dataset-description)
30
+ - [Dataset Summary](#dataset-summary)
31
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
32
+ - [Languages](#languages)
33
+ - [Dataset Structure](#dataset-structure)
34
+ - [Data Instances](#data-instances)
35
+ - [Data Fields](#data-fields)
36
+ - [Data Splits](#data-splits)
37
+ - [Dataset Creation](#dataset-creation)
38
+ - [Curation Rationale](#curation-rationale)
39
+ - [Source Data](#source-data)
40
+ - [Annotations](#annotations)
41
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
42
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
43
+ - [Social Impact of Dataset](#social-impact-of-dataset)
44
+ - [Discussion of Biases](#discussion-of-biases)
45
+ - [Other Known Limitations](#other-known-limitations)
46
+ - [Additional Information](#additional-information)
47
+ - [Dataset Curators](#dataset-curators)
48
+ - [Licensing Information](#licensing-information)
49
+ - [Citation Information](#citation-information)
50
+ - [Contributions](#contributions)
51
+
52
+ ## Dataset Description
53
+
54
+ - **Homepage: https://moleculenet.org/**
55
+ - **Repository: https://github.com/deepchem/deepchem/tree/master**
56
+ - **Paper: https://arxiv.org/abs/1703.00564**
57
+
58
+ ### Dataset Summary
59
+
60
+ `bace_classification` is a dataset included in [MoleculeNet](https://moleculenet.org/). This dataset consists of qualitative (binary label) binding binding results for a set of inhibitors of human β-secretase 1(BACE-1).
61
+
62
+ ## Dataset Structure
63
+
64
+ ### Data Fields
65
+
66
+ Each split contains
67
+
68
+ * `smiles`: the [SMILES](https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system) representation of a molecule
69
+ * `selfies`: the [SELFIES](https://github.com/aspuru-guzik-group/selfies) representation of a molecule
70
+ * `target`: the binary label binding results
71
+
72
+ ### Data Splits
73
+
74
+ The dataset is split into an 80/10/10 train/valid/test split using scaffold split.
75
+
76
+ ### Source Data
77
+
78
+ #### Initial Data Collection and Normalization
79
+
80
+ Data was originially generated by the Pande Group at Standford
81
+
82
+ ### Licensing Information
83
+
84
+ This dataset was originally released under an MIT license
85
+
86
+ ### Citation Information
87
+
88
+ ```
89
+ @misc{https://doi.org/10.48550/arxiv.1703.00564,
90
+ doi = {10.48550/ARXIV.1703.00564},
91
+
92
+ url = {https://arxiv.org/abs/1703.00564},
93
+
94
+ author = {Wu, Zhenqin and Ramsundar, Bharath and Feinberg, Evan N. and Gomes, Joseph and Geniesse, Caleb and Pappu, Aneesh S. and Leswing, Karl and Pande, Vijay},
95
+
96
+ keywords = {Machine Learning (cs.LG), Chemical Physics (physics.chem-ph), Machine Learning (stat.ML), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Physical sciences, FOS: Physical sciences},
97
+
98
+ title = {MoleculeNet: A Benchmark for Molecular Machine Learning},
99
+
100
+ publisher = {arXiv},
101
+
102
+ year = {2017},
103
+
104
+ copyright = {arXiv.org perpetual, non-exclusive license}
105
+ }
106
+ ```
107
+
108
+ ### Contributions
109
+
110
+ Thanks to [@zanussbaum](https://github.com/zanussbaum) for adding this dataset.