Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,904 Bytes
fc10d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import re
from unidecode import unidecode
from transformers import T5ForConditionalGeneration, AutoTokenizer
import matplotlib.pyplot as plt
import traceback
import sys
import os
from tqdm import tqdm
import numpy as np


# Regular expression matching whitespace:
_whitespace_re = re.compile(r'\s+')

# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
  ('mrs', 'misess'),
  ('mr', 'mister'),
  ('dr', 'doctor'),
  ('st', 'saint'),
  ('co', 'company'),
  ('jr', 'junior'),
  ('maj', 'major'),
  ('gen', 'general'),
  ('drs', 'doctors'),
  ('rev', 'reverend'),
  ('lt', 'lieutenant'),
  ('hon', 'honorable'),
  ('sgt', 'sergeant'),
  ('capt', 'captain'),
  ('esq', 'esquire'),
  ('ltd', 'limited'),
  ('col', 'colonel'),
  ('ft', 'fort'),
]]


def expand_abbreviations(text):
  for regex, replacement in _abbreviations:
    text = re.sub(regex, replacement, text)
  return text


def expand_numbers(text):
  return normalize_numbers(text)


def lowercase(text):
  return text.lower()


def collapse_whitespace(text):
  return re.sub(_whitespace_re, ' ', text)


def convert_to_ascii(text):
  return unidecode(text)

puncs_to_remove = ["♪", "#", "¿", "¡", "-", "*"]
puncs_to_remove = "".join(puncs_to_remove)
def normalize(text):
  text = text.translate(str.maketrans('', '', puncs_to_remove))
  text = text.strip()
  return text


def basic_cleaners(text):
  '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
  text = lowercase(text)
  text = collapse_whitespace(text)
  return text


def transliteration_cleaners(text):
  '''Pipeline for non-English text that transliterates to ASCII.'''
  text = convert_to_ascii(text)
  text = lowercase(text)
  text = collapse_whitespace(text)
  return text


def english_cleaners(text):
  '''Pipeline for English text, including abbreviation expansion.'''
  text = convert_to_ascii(text)
  text = lowercase(text)
  text = expand_abbreviations(text)
  phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
  phonemes = collapse_whitespace(phonemes)
  return phonemes


def english_cleaners2(text):
  '''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''


if __name__ == '__main__':
  text_file = sys.argv[1]
  phoneme_file = sys.argv[2]


  model = T5ForConditionalGeneration.from_pretrained('charsiu/g2p_multilingual_byT5_tiny_16_layers_100')
  #model.cuda()
  tokenizer = AutoTokenizer.from_pretrained('google/byt5-small')

  buffer = ""

  out_file = open(phoneme_file, 'w')
  for line in tqdm(open(text_file, errors='ignore').read().splitlines()):
    try:
      filepath, text, language, confidence = line.split('|')
      confidence = float(confidence)
      filename = os.path.basename(filepath).split('.')[0]
      duration = float(filename.split('_')[-1]) / 1000

      if language == "es":
        #text = convert_to_ascii(text)
        text = normalize(text)
        text = lowercase(text)
        print(text)

        words = text.split(' ')
        words = ['<spa>: '+i for i in words]
        out = tokenizer(words,padding=True,add_special_tokens=False,return_tensors='pt')

        preds = model.generate(**out,num_beams=1,max_length=50) # We do not find beam search helpful. Greedy decoding is enough. 
        phone = tokenizer.batch_decode(preds.tolist(),skip_special_tokens=True)
        phone = " ".join(phone)
        print(phone)

        phone = collapse_whitespace(phone)
        ratio = len(phone) / duration
      else:
        phone = "[blank]"
        ratio = 0
      buffer += f"{filepath}|{text}|{phone}|{language}|{confidence:.3f}|{ratio:.3f}\n"
      if len(buffer) > 100000:
        out_file.write(buffer)
        buffer = ""
      #break
    except Exception as e:
      print(filename, line, e)
      continue
  out_file.write(buffer)