Datasets:
File size: 9,343 Bytes
fc10d73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import sys
import os
import torch
import torch.multiprocessing as mp
import threading
import numpy as np
import glob
import argparse
import librosa
import soxr
from tqdm import tqdm
import traceback
import multiprocessing
#from speechmos import dnsmos
import onnxruntime as ort
os.environ["OMP_NUM_THREADS"] = "1"
#os.environ["MKL_NUM_THREADS"] = "1"
file_lock = multiprocessing.Lock()
SR = 16000
INPUT_LENGTH = 9.01
dnsmos = None
class DNSMOS:
def __init__(self, primary_model_path, p808_model_path, rank) -> None:
self.primary_model_path = primary_model_path
sess_opt = ort.SessionOptions()
sess_opt.intra_op_num_threads = 1
sess_opt.inter_op_num_threads = 1
sess_opt.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
#providers = [("CUDAExecutionProvider", {"device_id": torch.cuda.current_device(),})]
#providers = ["CUDAExecutionProvider"]
#providers = ["CPUExecutionProvider"]
providers = [
('CUDAExecutionProvider', {
'device_id': rank,
}),
'CPUExecutionProvider',
]
#self.onnx_sess = ort.InferenceSession(self.primary_model_path, sess_opt, providers=providers)
self.p808_onnx_sess = ort.InferenceSession(p808_model_path, sess_opt, providers=providers)
#print(self.p808_onnx_sess.get_providers())
def audio_melspec(self, audio, n_mels=120, frame_size=320, hop_length=160, sr=16000, to_db=True):
mel_spec = librosa.feature.melspectrogram(
y=audio, sr=sr, n_fft=frame_size + 1, hop_length=hop_length, n_mels=n_mels)
if to_db:
mel_spec = (librosa.power_to_db(mel_spec, ref=np.max) + 40) / 40
return mel_spec.T
def get_polyfit_val(self, sig, bak, ovr, is_personalized_MOS):
if is_personalized_MOS:
p_ovr = np.poly1d(
[-0.00533021, 0.005101, 1.18058466, -0.11236046])
p_sig = np.poly1d(
[-0.01019296, 0.02751166, 1.19576786, -0.24348726])
p_bak = np.poly1d(
[-0.04976499, 0.44276479, -0.1644611, 0.96883132])
else:
p_ovr = np.poly1d([-0.06766283, 1.11546468, 0.04602535])
p_sig = np.poly1d([-0.08397278, 1.22083953, 0.0052439])
p_bak = np.poly1d([-0.13166888, 1.60915514, -0.39604546])
sig_poly = p_sig(sig)
bak_poly = p_bak(bak)
ovr_poly = p_ovr(ovr)
return sig_poly, bak_poly, ovr_poly
def __call__(self, sample, fs, is_personalized_MOS):
clip_dict = {}
if isinstance(sample, np.ndarray):
audio = sample
if not ((audio >= -1).all() and (audio <= 1).all()):
raise ValueError("np.ndarray values must be between -1 and 1.")
elif isinstance(sample, str) and os.path.isfile(sample):
audio, _ = librosa.load(sample, sr=fs)
clip_dict['filename'] = sample
else:
raise ValueError(
f"Input must be a numpy array or a path to an audio file.")
len_samples = int(INPUT_LENGTH * fs)
while len(audio) < len_samples:
audio = np.append(audio, audio)
num_hops = int(np.floor(len(audio) / fs) - INPUT_LENGTH) + 1
hop_len_samples = fs
predicted_mos_sig_seg = []
predicted_mos_bak_seg = []
predicted_mos_ovr_seg = []
predicted_p808_mos = []
for idx in range(num_hops):
audio_seg = audio[int(idx * hop_len_samples): int((idx + INPUT_LENGTH) * hop_len_samples)]
if len(audio_seg) < len_samples:
continue
input_features = np.array(audio_seg).astype(
'float32')[np.newaxis, :]
p808_input_features = np.array(self.audio_melspec(
audio=audio_seg[:-160])).astype('float32')[np.newaxis, :, :]
oi = {'input_1': input_features}
p808_oi = {'input_1': p808_input_features}
p808_mos = self.p808_onnx_sess.run(None, p808_oi)[0][0][0]
#mos_sig_raw, mos_bak_raw, mos_ovr_raw = self.onnx_sess.run(None, oi)[
# 0][0]
#mos_sig, mos_bak, mos_ovr = self.get_polyfit_val(
# mos_sig_raw, mos_bak_raw, mos_ovr_raw, is_personalized_MOS)
#predicted_mos_sig_seg.append(mos_sig)
#predicted_mos_bak_seg.append(mos_bak)
#predicted_mos_ovr_seg.append(mos_ovr)
predicted_p808_mos.append(p808_mos)
#clip_dict['ovrl_mos'] = np.mean(predicted_mos_ovr_seg)
#clip_dict['sig_mos'] = np.mean(predicted_mos_sig_seg)
#clip_dict['bak_mos'] = np.mean(predicted_mos_bak_seg)
clip_dict['p808_mos'] = np.mean(predicted_p808_mos)
return clip_dict
def normalize_audio(y, target_dbfs=0):
max_amplitude = np.max(np.abs(y))
if max_amplitude < 0.1:
return y
target_amplitude = 10.0**(target_dbfs / 20.0)
scale_factor = target_amplitude / max_amplitude
#print(max_amplitude, target_amplitude, scale_factor)
normalized_audio = y * scale_factor
return normalized_audio
def inference(rank, ckpt_dir, text_path, queue: mp.Queue):
p808_model_path = os.path.join(ckpt_dir, 'dnsmos_p808.onnx')
primary_model_path = os.path.join(ckpt_dir, 'sig_bak_ovr.onnx')
dnsmos = DNSMOS(primary_model_path, p808_model_path, rank)
def write_to_file(data):
with file_lock:
with open(text_path, 'a') as f:
f.write(data)
buffer = ""
with torch.no_grad():
while True:
#print(texts)
filename = queue.get()
if filename is None:
write_to_file(buffer)
break
try:
filename = filename[0]
audio_path = filename
wav, sr = librosa.load(audio_path, sr=None)
wav = normalize_audio(wav, -6)
wav = soxr.resample(
wav, # 1D(mono) or 2D(frames, channels) array input
sr, # input samplerate
16000 # target samplerate
)
if wav.min() < -1 or wav.min() > 1:
print(audio_path)
mos_dict = dnsmos(wav, 16000, False)
p808_mos = mos_dict['p808_mos']
buffer += f"{filename}|{p808_mos:3}\n"
if len(buffer) > 10000:
write_to_file(buffer)
buffer = ""
except Exception as e:
print(audio_path)
traceback.print_exc()
def setInterval(interval):
def decorator(function):
def wrapper(*args, **kwargs):
stopped = threading.Event()
def loop(): # executed in another thread
while not stopped.wait(interval): # until stopped
function(*args, **kwargs)
t = threading.Thread(target=loop)
t.daemon = True # stop if the program exits
t.start()
return stopped
return wrapper
return decorator
last_batches = None
@setInterval(5)
def QueueWatcher(queue, bar):
global last_batches
curr_batches = queue.qsize()
bar.update(last_batches-curr_batches)
last_batches = curr_batches
if __name__ == "__main__":
#audio_dir = sys.argv[1]
parser = argparse.ArgumentParser()
parser.add_argument("--filelist_or_dir", type=str, required=True)
parser.add_argument("--text_path", type=str, required=True, help="Dir to save output")
parser.add_argument("--jobs", type=int, required=False, default=2)
parser.add_argument("--log_dir", type=str, required=False, help="For aml compatibility")
parser.add_argument("--model_dir", type=str, required=False, help="For aml compatibility")
parser.add_argument("--ckpt_path", type=str, required=False, default=".")
args = parser.parse_args()
mp.set_start_method('spawn',force=True)
filelist_or_dir = args.filelist_or_dir
text_path = args.text_path
jobs = args.jobs
ckpt_path = args.ckpt_path
os.makedirs(text_path, exist_ok=True)
if os.path.isfile(filelist_or_dir):
filelist_name = filelist_or_dir.split('/')[-1].split('.')[0]
generator = open(filelist_or_dir).read().splitlines()
text_path = os.path.join(text_path, f"{filelist_name}_dnsmos.txt")
else:
filelist_name = "single"
generator = glob.glob(f"{filelist_or_dir}/*.wav")
text_path = os.path.join(text_path, "dnsmos.txt")
os.system(f"rm {text_path}")
gpu_num = torch.cuda.device_count()
processes = []
queue = mp.Queue()
for thread_num in range(jobs):
rank = thread_num % gpu_num
p = mp.Process(target=inference, args=(rank, ckpt_path, text_path, queue))
p.start()
processes.append(p)
accum = []
tmp_file = []
for filename in generator:
accum.append(filename)
if len(accum) == 1:
queue.put(accum.copy())
accum.clear()
for _ in range(jobs):
queue.put(None)
last_batches = queue.qsize()
bar = tqdm(total=last_batches, desc='dnsmos')
queue_watcher = QueueWatcher(queue, bar)
for p in processes:
p.join()
queue_watcher.set() |