Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
zqning's picture
init data
fc10d73 verified
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
__version__ = '1.0.3'
import random
import argparse
import time
import copy
from tqdm import tqdm
import sys
import os
import glob
import torch
import soundfile as sf
import numpy as np
import auraloss
import torch.nn as nn
from torch.optim import Adam, AdamW, SGD
from torch.utils.data import DataLoader
from torch.cuda.amp.grad_scaler import GradScaler
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch.nn.functional as F
from dataset import MSSDataset
from utils import demix_track, demix_track_demucs, sdr, get_model_from_config
import warnings
warnings.filterwarnings("ignore")
def masked_loss(y_, y, q, coarse=True):
# shape = [num_sources, batch_size, num_channels, chunk_size]
loss = torch.nn.MSELoss(reduction='none')(y_, y).transpose(0, 1)
if coarse:
loss = torch.mean(loss, dim=(-1, -2))
loss = loss.reshape(loss.shape[0], -1)
L = loss.detach()
quantile = torch.quantile(L, q, interpolation='linear', dim=1, keepdim=True)
mask = L < quantile
return (loss * mask).mean()
def manual_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if multi-GPU
torch.backends.cudnn.deterministic = True
os.environ["PYTHONHASHSEED"] = str(seed)
def load_not_compatible_weights(model, weights, verbose=False):
new_model = model.state_dict()
old_model = torch.load(weights)
if 'state' in old_model:
# Fix for htdemucs weights loading
old_model = old_model['state']
for el in new_model:
if el in old_model:
if verbose:
print('Match found for {}!'.format(el))
if new_model[el].shape == old_model[el].shape:
if verbose:
print('Action: Just copy weights!')
new_model[el] = old_model[el]
else:
if len(new_model[el].shape) != len(old_model[el].shape):
if verbose:
print('Action: Different dimension! Too lazy to write the code... Skip it')
else:
if verbose:
print('Shape is different: {} != {}'.format(tuple(new_model[el].shape), tuple(old_model[el].shape)))
ln = len(new_model[el].shape)
max_shape = []
slices_old = []
slices_new = []
for i in range(ln):
max_shape.append(max(new_model[el].shape[i], old_model[el].shape[i]))
slices_old.append(slice(0, old_model[el].shape[i]))
slices_new.append(slice(0, new_model[el].shape[i]))
# print(max_shape)
# print(slices_old, slices_new)
slices_old = tuple(slices_old)
slices_new = tuple(slices_new)
max_matrix = np.zeros(max_shape, dtype=np.float32)
for i in range(ln):
max_matrix[slices_old] = old_model[el].cpu().numpy()
max_matrix = torch.from_numpy(max_matrix)
new_model[el] = max_matrix[slices_new]
else:
if verbose:
print('Match not found for {}!'.format(el))
model.load_state_dict(
new_model
)
def valid(model, args, config, device, verbose=False):
# For multiGPU extract single model
if len(args.device_ids) > 1:
model = model.module
model.eval()
all_mixtures_path = []
for valid_path in args.valid_path:
part = sorted(glob.glob(valid_path + '/*/mixture.wav'))
if len(part) == 0:
print('No validation data found in: {}'.format(valid_path))
all_mixtures_path += part
if verbose:
print('Total mixtures: {}'.format(len(all_mixtures_path)))
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
if not verbose:
all_mixtures_path = tqdm(all_mixtures_path)
pbar_dict = {}
for path in all_mixtures_path:
mix, sr = sf.read(path)
folder = os.path.dirname(path)
if verbose:
print('Song: {}'.format(os.path.basename(folder)))
mixture = torch.tensor(mix.T, dtype=torch.float32)
if args.model_type == 'htdemucs':
res = demix_track_demucs(config, model, mixture, device)
else:
res = demix_track(config, model, mixture, device)
for instr in instruments:
if instr != 'other' or config.training.other_fix is False:
track, sr1 = sf.read(folder + '/{}.wav'.format(instr))
else:
# other is actually instrumental
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals'))
track = mix - track
# sf.write("{}.wav".format(instr), res[instr].T, sr, subtype='FLOAT')
references = np.expand_dims(track, axis=0)
estimates = np.expand_dims(res[instr].T, axis=0)
sdr_val = sdr(references, estimates)[0]
if verbose:
print(instr, res[instr].shape, sdr_val)
all_sdr[instr].append(sdr_val)
pbar_dict['sdr_{}'.format(instr)] = sdr_val
if not verbose:
all_mixtures_path.set_postfix(pbar_dict)
sdr_avg = 0.0
for instr in instruments:
sdr_val = np.array(all_sdr[instr]).mean()
print("Instr SDR {}: {:.4f}".format(instr, sdr_val))
sdr_avg += sdr_val
sdr_avg /= len(instruments)
if len(instruments) > 1:
print('SDR Avg: {:.4f}'.format(sdr_avg))
return sdr_avg
def proc_list_of_files(
mixture_paths,
model,
args,
config,
device,
verbose=False,
):
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
for path in mixture_paths:
mix, sr = sf.read(path)
folder = os.path.dirname(path)
folder_name = os.path.abspath(folder)
if verbose:
print('Song: {}'.format(folder_name))
mixture = torch.tensor(mix.T, dtype=torch.float32)
if args.model_type == 'htdemucs':
res = demix_track_demucs(config, model, mixture, device)
else:
res = demix_track(config, model, mixture, device)
if 1:
pbar_dict = {}
for instr in instruments:
if instr != 'other' or config.training.other_fix is False:
try:
track, sr1 = sf.read(folder + '/{}.wav'.format(instr))
except Exception as e:
# print('No data for stem: {}. Skip!'.format(instr))
continue
else:
# other is actually instrumental
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals'))
track = mix - track
references = np.expand_dims(track, axis=0)
estimates = np.expand_dims(res[instr].T, axis=0)
sdr_val = sdr(references, estimates)[0]
if verbose:
print(instr, res[instr].shape, sdr_val)
all_sdr[instr].append(sdr_val)
pbar_dict['sdr_{}'.format(instr)] = sdr_val
try:
mixture_paths.set_postfix(pbar_dict)
except Exception as e:
pass
return all_sdr
def valid_mp(proc_id, queue, all_mixtures_path, model, args, config, device, return_dict):
m1 = model
# m1 = copy.deepcopy(m1)
m1 = m1.eval().to(device)
if proc_id == 0:
progress_bar = tqdm(total=len(all_mixtures_path))
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
while True:
current_step, path = queue.get()
if path is None: # check for sentinel value
break
sdr_single = proc_list_of_files([path], m1, args, config, device, False)
pbar_dict = {}
for instr in config.training.instruments:
all_sdr[instr] += sdr_single[instr]
if len(sdr_single[instr]) > 0:
pbar_dict['sdr_{}'.format(instr)] = "{:.4f}".format(sdr_single[instr][0])
if proc_id == 0:
progress_bar.update(current_step - progress_bar.n)
progress_bar.set_postfix(pbar_dict)
# print(f"Inference on process {proc_id}", all_sdr)
return_dict[proc_id] = all_sdr
return
def valid_multi_gpu(model, args, config, verbose=False):
device_ids = args.device_ids
model = model.to('cpu')
# For multiGPU extract single model
if len(device_ids) > 1:
model = model.module
all_mixtures_path = []
for valid_path in args.valid_path:
part = sorted(glob.glob(valid_path + '/*/mixture.wav'))
if len(part) == 0:
print('No validation data found in: {}'.format(valid_path))
all_mixtures_path += part
model = model.to('cpu')
torch.cuda.empty_cache()
queue = torch.multiprocessing.Queue()
processes = []
return_dict = torch.multiprocessing.Manager().dict()
for i, device in enumerate(device_ids):
if torch.cuda.is_available():
device = 'cuda:{}'.format(device)
else:
device = 'cpu'
p = torch.multiprocessing.Process(target=valid_mp, args=(i, queue, all_mixtures_path, model, args, config, device, return_dict))
p.start()
processes.append(p)
for i, path in enumerate(all_mixtures_path):
queue.put((i, path))
for _ in range(len(device_ids)):
queue.put((None, None)) # sentinel value to signal subprocesses to exit
for p in processes:
p.join() # wait for all subprocesses to finish
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
for i in range(len(device_ids)):
all_sdr[instr] += return_dict[i][instr]
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
sdr_avg = 0.0
for instr in instruments:
sdr_val = np.array(all_sdr[instr]).mean()
print("Instr SDR {}: {:.4f}".format(instr, sdr_val))
sdr_avg += sdr_val
sdr_avg /= len(instruments)
if len(instruments) > 1:
print('SDR Avg: {:.4f}'.format(sdr_avg))
return sdr_avg
def train_model(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit")
parser.add_argument("--config_path", type=str, help="path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to start training")
parser.add_argument("--results_path", type=str, help="path to folder where results will be stored (weights, metadata)")
parser.add_argument("--data_path", nargs="+", type=str, help="Dataset data paths. You can provide several folders.")
parser.add_argument("--dataset_type", type=int, default=1, help="Dataset type. Must be one of: 1, 2, 3 or 4. Details here: https://github.com/ZFTurbo/Music-Source-Separation-Training/blob/main/docs/dataset_types.md")
parser.add_argument("--valid_path", nargs="+", type=str, help="validation data paths. You can provide several folders.")
parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--pin_memory", type=bool, default=False, help="dataloader pin_memory")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--device_ids", nargs='+', type=int, default=[0], help='list of gpu ids')
parser.add_argument("--use_multistft_loss", action='store_true', help="Use MultiSTFT Loss (from auraloss package)")
parser.add_argument("--use_mse_loss", action='store_true', help="Use default MSE loss")
parser.add_argument("--use_l1_loss", action='store_true', help="Use L1 loss")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
manual_seed(args.seed + int(time.time()))
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False # Fix possible slow down with dilation convolutions
torch.multiprocessing.set_start_method('spawn')
model, config = get_model_from_config(args.model_type, args.config_path)
print("Instruments: {}".format(config.training.instruments))
if not os.path.isdir(args.results_path):
os.mkdir(args.results_path)
use_amp = True
try:
use_amp = config.training.use_amp
except:
pass
device_ids = args.device_ids
batch_size = config.training.batch_size * len(device_ids)
trainset = MSSDataset(
config,
args.data_path,
batch_size=batch_size,
metadata_path=os.path.join(args.results_path, 'metadata_{}.pkl'.format(args.dataset_type)),
dataset_type=args.dataset_type,
)
train_loader = DataLoader(
trainset,
batch_size=batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
if args.start_check_point != '':
print('Start from checkpoint: {}'.format(args.start_check_point))
if 1:
load_not_compatible_weights(model, args.start_check_point, verbose=False)
else:
model.load_state_dict(
torch.load(args.start_check_point)
)
if torch.cuda.is_available():
if len(device_ids) <= 1:
print('Use single GPU: {}'.format(device_ids))
device = torch.device(f'cuda:{device_ids[0]}')
model = model.to(device)
else:
print('Use multi GPU: {}'.format(device_ids))
device = torch.device(f'cuda:{device_ids[0]}')
model = nn.DataParallel(model, device_ids=device_ids).to(device)
else:
device = 'cpu'
print('CUDA is not avilable. Run training on CPU. It will be very slow...')
model = model.to(device)
if 0:
valid_multi_gpu(model, args, config, verbose=True)
if config.training.optimizer == 'adam':
optimizer = Adam(model.parameters(), lr=config.training.lr)
elif config.training.optimizer == 'adamw':
optimizer = AdamW(model.parameters(), lr=config.training.lr)
elif config.training.optimizer == 'sgd':
print('Use SGD optimizer')
optimizer = SGD(model.parameters(), lr=config.training.lr, momentum=0.999)
else:
print('Unknown optimizer: {}'.format(config.training.optimizer))
exit()
gradient_accumulation_steps = 1
try:
gradient_accumulation_steps = int(config.training.gradient_accumulation_steps)
except:
pass
print("Patience: {} Reduce factor: {} Batch size: {} Grad accum steps: {} Effective batch size: {}".format(
config.training.patience,
config.training.reduce_factor,
batch_size,
gradient_accumulation_steps,
batch_size * gradient_accumulation_steps,
))
# Reduce LR if no SDR improvements for several epochs
scheduler = ReduceLROnPlateau(optimizer, 'max', patience=config.training.patience, factor=config.training.reduce_factor)
if args.use_multistft_loss:
try:
loss_options = dict(config.loss_multistft)
except:
loss_options = dict()
print('Loss options: {}'.format(loss_options))
loss_multistft = auraloss.freq.MultiResolutionSTFTLoss(
**loss_options
)
scaler = GradScaler()
print('Train for: {}'.format(config.training.num_epochs))
best_sdr = -100
for epoch in range(config.training.num_epochs):
model.train().to(device)
print('Train epoch: {} Learning rate: {}'.format(epoch, optimizer.param_groups[0]['lr']))
loss_val = 0.
total = 0
# total_loss = None
pbar = tqdm(train_loader)
for i, (batch, mixes) in enumerate(pbar):
y = batch.to(device)
x = mixes.to(device) # mixture
with torch.cuda.amp.autocast(enabled=use_amp):
if args.model_type in ['mel_band_roformer', 'bs_roformer']:
# loss is computed in forward pass
loss = model(x, y)
if type(device_ids) != int:
# If it's multiple GPUs sum partial loss
loss = loss.mean()
else:
y_ = model(x)
if args.use_multistft_loss:
y1_ = torch.reshape(y_, (y_.shape[0], y_.shape[1] * y_.shape[2], y_.shape[3]))
y1 = torch.reshape(y, (y.shape[0], y.shape[1] * y.shape[2], y.shape[3]))
loss = loss_multistft(y1_, y1)
# We can use many losses at the same time
if args.use_mse_loss:
loss += 1000 * nn.MSELoss()(y1_, y1)
if args.use_l1_loss:
loss += 1000 * F.l1_loss(y1_, y1)
elif args.use_mse_loss:
loss = nn.MSELoss()(y_, y)
elif args.use_l1_loss:
loss = F.l1_loss(y_, y)
else:
loss = masked_loss(
y_,
y,
q=config.training.q,
coarse=config.training.coarse_loss_clip
)
loss /= gradient_accumulation_steps
scaler.scale(loss).backward()
if config.training.grad_clip:
nn.utils.clip_grad_norm_(model.parameters(), config.training.grad_clip)
if ((i + 1) % gradient_accumulation_steps == 0) or (i == len(train_loader) - 1):
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
li = loss.item() * gradient_accumulation_steps
loss_val += li
total += 1
pbar.set_postfix({'loss': 100 * li, 'avg_loss': 100 * loss_val / (i + 1)})
loss.detach()
print('Training loss: {:.6f}'.format(loss_val / total))
# Save last
store_path = args.results_path + '/last_{}.ckpt'.format(args.model_type)
state_dict = model.state_dict() if len(device_ids) <= 1 else model.module.state_dict()
torch.save(
state_dict,
store_path
)
# if you have problem with multiproc validation change 0 to 1
if 0:
sdr_avg = valid(model, args, config, device, verbose=False)
else:
sdr_avg = valid_multi_gpu(model, args, config, verbose=False)
if sdr_avg > best_sdr:
store_path = args.results_path + '/model_{}_ep_{}_sdr_{:.4f}.ckpt'.format(args.model_type, epoch, sdr_avg)
print('Store weights: {}'.format(store_path))
state_dict = model.state_dict() if len(device_ids) <= 1 else model.module.state_dict()
torch.save(
state_dict,
store_path
)
best_sdr = sdr_avg
scheduler.step(sdr_avg)
if __name__ == "__main__":
train_model(None)