|
|
|
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' |
|
__version__ = '1.0.3' |
|
|
|
import random |
|
import argparse |
|
import time |
|
import copy |
|
from tqdm import tqdm |
|
import sys |
|
import os |
|
import glob |
|
import torch |
|
import soundfile as sf |
|
import numpy as np |
|
import auraloss |
|
import torch.nn as nn |
|
from torch.optim import Adam, AdamW, SGD |
|
from torch.utils.data import DataLoader |
|
from torch.cuda.amp.grad_scaler import GradScaler |
|
from torch.optim.lr_scheduler import ReduceLROnPlateau |
|
import torch.nn.functional as F |
|
|
|
from dataset import MSSDataset |
|
from utils import demix_track, demix_track_demucs, sdr, get_model_from_config |
|
|
|
import warnings |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
def masked_loss(y_, y, q, coarse=True): |
|
|
|
loss = torch.nn.MSELoss(reduction='none')(y_, y).transpose(0, 1) |
|
if coarse: |
|
loss = torch.mean(loss, dim=(-1, -2)) |
|
loss = loss.reshape(loss.shape[0], -1) |
|
L = loss.detach() |
|
quantile = torch.quantile(L, q, interpolation='linear', dim=1, keepdim=True) |
|
mask = L < quantile |
|
return (loss * mask).mean() |
|
|
|
|
|
def manual_seed(seed): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
torch.backends.cudnn.deterministic = True |
|
os.environ["PYTHONHASHSEED"] = str(seed) |
|
|
|
|
|
def load_not_compatible_weights(model, weights, verbose=False): |
|
new_model = model.state_dict() |
|
old_model = torch.load(weights) |
|
if 'state' in old_model: |
|
|
|
old_model = old_model['state'] |
|
|
|
for el in new_model: |
|
if el in old_model: |
|
if verbose: |
|
print('Match found for {}!'.format(el)) |
|
if new_model[el].shape == old_model[el].shape: |
|
if verbose: |
|
print('Action: Just copy weights!') |
|
new_model[el] = old_model[el] |
|
else: |
|
if len(new_model[el].shape) != len(old_model[el].shape): |
|
if verbose: |
|
print('Action: Different dimension! Too lazy to write the code... Skip it') |
|
else: |
|
if verbose: |
|
print('Shape is different: {} != {}'.format(tuple(new_model[el].shape), tuple(old_model[el].shape))) |
|
ln = len(new_model[el].shape) |
|
max_shape = [] |
|
slices_old = [] |
|
slices_new = [] |
|
for i in range(ln): |
|
max_shape.append(max(new_model[el].shape[i], old_model[el].shape[i])) |
|
slices_old.append(slice(0, old_model[el].shape[i])) |
|
slices_new.append(slice(0, new_model[el].shape[i])) |
|
|
|
|
|
slices_old = tuple(slices_old) |
|
slices_new = tuple(slices_new) |
|
max_matrix = np.zeros(max_shape, dtype=np.float32) |
|
for i in range(ln): |
|
max_matrix[slices_old] = old_model[el].cpu().numpy() |
|
max_matrix = torch.from_numpy(max_matrix) |
|
new_model[el] = max_matrix[slices_new] |
|
else: |
|
if verbose: |
|
print('Match not found for {}!'.format(el)) |
|
model.load_state_dict( |
|
new_model |
|
) |
|
|
|
def valid(model, args, config, device, verbose=False): |
|
|
|
if len(args.device_ids) > 1: |
|
model = model.module |
|
|
|
model.eval() |
|
all_mixtures_path = [] |
|
for valid_path in args.valid_path: |
|
part = sorted(glob.glob(valid_path + '/*/mixture.wav')) |
|
if len(part) == 0: |
|
print('No validation data found in: {}'.format(valid_path)) |
|
all_mixtures_path += part |
|
if verbose: |
|
print('Total mixtures: {}'.format(len(all_mixtures_path))) |
|
|
|
instruments = config.training.instruments |
|
if config.training.target_instrument is not None: |
|
instruments = [config.training.target_instrument] |
|
|
|
all_sdr = dict() |
|
for instr in config.training.instruments: |
|
all_sdr[instr] = [] |
|
|
|
if not verbose: |
|
all_mixtures_path = tqdm(all_mixtures_path) |
|
|
|
pbar_dict = {} |
|
for path in all_mixtures_path: |
|
mix, sr = sf.read(path) |
|
folder = os.path.dirname(path) |
|
if verbose: |
|
print('Song: {}'.format(os.path.basename(folder))) |
|
mixture = torch.tensor(mix.T, dtype=torch.float32) |
|
if args.model_type == 'htdemucs': |
|
res = demix_track_demucs(config, model, mixture, device) |
|
else: |
|
res = demix_track(config, model, mixture, device) |
|
for instr in instruments: |
|
if instr != 'other' or config.training.other_fix is False: |
|
track, sr1 = sf.read(folder + '/{}.wav'.format(instr)) |
|
else: |
|
|
|
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals')) |
|
track = mix - track |
|
|
|
references = np.expand_dims(track, axis=0) |
|
estimates = np.expand_dims(res[instr].T, axis=0) |
|
sdr_val = sdr(references, estimates)[0] |
|
if verbose: |
|
print(instr, res[instr].shape, sdr_val) |
|
all_sdr[instr].append(sdr_val) |
|
pbar_dict['sdr_{}'.format(instr)] = sdr_val |
|
if not verbose: |
|
all_mixtures_path.set_postfix(pbar_dict) |
|
|
|
sdr_avg = 0.0 |
|
for instr in instruments: |
|
sdr_val = np.array(all_sdr[instr]).mean() |
|
print("Instr SDR {}: {:.4f}".format(instr, sdr_val)) |
|
sdr_avg += sdr_val |
|
sdr_avg /= len(instruments) |
|
if len(instruments) > 1: |
|
print('SDR Avg: {:.4f}'.format(sdr_avg)) |
|
return sdr_avg |
|
|
|
|
|
def proc_list_of_files( |
|
mixture_paths, |
|
model, |
|
args, |
|
config, |
|
device, |
|
verbose=False, |
|
): |
|
instruments = config.training.instruments |
|
if config.training.target_instrument is not None: |
|
instruments = [config.training.target_instrument] |
|
|
|
all_sdr = dict() |
|
for instr in config.training.instruments: |
|
all_sdr[instr] = [] |
|
|
|
for path in mixture_paths: |
|
mix, sr = sf.read(path) |
|
folder = os.path.dirname(path) |
|
folder_name = os.path.abspath(folder) |
|
if verbose: |
|
print('Song: {}'.format(folder_name)) |
|
mixture = torch.tensor(mix.T, dtype=torch.float32) |
|
if args.model_type == 'htdemucs': |
|
res = demix_track_demucs(config, model, mixture, device) |
|
else: |
|
res = demix_track(config, model, mixture, device) |
|
if 1: |
|
pbar_dict = {} |
|
for instr in instruments: |
|
if instr != 'other' or config.training.other_fix is False: |
|
try: |
|
track, sr1 = sf.read(folder + '/{}.wav'.format(instr)) |
|
except Exception as e: |
|
|
|
continue |
|
else: |
|
|
|
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals')) |
|
track = mix - track |
|
|
|
references = np.expand_dims(track, axis=0) |
|
estimates = np.expand_dims(res[instr].T, axis=0) |
|
sdr_val = sdr(references, estimates)[0] |
|
if verbose: |
|
print(instr, res[instr].shape, sdr_val) |
|
all_sdr[instr].append(sdr_val) |
|
pbar_dict['sdr_{}'.format(instr)] = sdr_val |
|
|
|
try: |
|
mixture_paths.set_postfix(pbar_dict) |
|
except Exception as e: |
|
pass |
|
|
|
return all_sdr |
|
|
|
|
|
def valid_mp(proc_id, queue, all_mixtures_path, model, args, config, device, return_dict): |
|
m1 = model |
|
|
|
m1 = m1.eval().to(device) |
|
if proc_id == 0: |
|
progress_bar = tqdm(total=len(all_mixtures_path)) |
|
all_sdr = dict() |
|
for instr in config.training.instruments: |
|
all_sdr[instr] = [] |
|
while True: |
|
current_step, path = queue.get() |
|
if path is None: |
|
break |
|
sdr_single = proc_list_of_files([path], m1, args, config, device, False) |
|
pbar_dict = {} |
|
for instr in config.training.instruments: |
|
all_sdr[instr] += sdr_single[instr] |
|
if len(sdr_single[instr]) > 0: |
|
pbar_dict['sdr_{}'.format(instr)] = "{:.4f}".format(sdr_single[instr][0]) |
|
if proc_id == 0: |
|
progress_bar.update(current_step - progress_bar.n) |
|
progress_bar.set_postfix(pbar_dict) |
|
|
|
return_dict[proc_id] = all_sdr |
|
return |
|
|
|
|
|
def valid_multi_gpu(model, args, config, verbose=False): |
|
device_ids = args.device_ids |
|
model = model.to('cpu') |
|
|
|
|
|
if len(device_ids) > 1: |
|
model = model.module |
|
|
|
all_mixtures_path = [] |
|
for valid_path in args.valid_path: |
|
part = sorted(glob.glob(valid_path + '/*/mixture.wav')) |
|
if len(part) == 0: |
|
print('No validation data found in: {}'.format(valid_path)) |
|
all_mixtures_path += part |
|
|
|
model = model.to('cpu') |
|
torch.cuda.empty_cache() |
|
queue = torch.multiprocessing.Queue() |
|
processes = [] |
|
return_dict = torch.multiprocessing.Manager().dict() |
|
for i, device in enumerate(device_ids): |
|
if torch.cuda.is_available(): |
|
device = 'cuda:{}'.format(device) |
|
else: |
|
device = 'cpu' |
|
p = torch.multiprocessing.Process(target=valid_mp, args=(i, queue, all_mixtures_path, model, args, config, device, return_dict)) |
|
p.start() |
|
processes.append(p) |
|
for i, path in enumerate(all_mixtures_path): |
|
queue.put((i, path)) |
|
for _ in range(len(device_ids)): |
|
queue.put((None, None)) |
|
for p in processes: |
|
p.join() |
|
|
|
all_sdr = dict() |
|
for instr in config.training.instruments: |
|
all_sdr[instr] = [] |
|
for i in range(len(device_ids)): |
|
all_sdr[instr] += return_dict[i][instr] |
|
|
|
instruments = config.training.instruments |
|
if config.training.target_instrument is not None: |
|
instruments = [config.training.target_instrument] |
|
|
|
sdr_avg = 0.0 |
|
for instr in instruments: |
|
sdr_val = np.array(all_sdr[instr]).mean() |
|
print("Instr SDR {}: {:.4f}".format(instr, sdr_val)) |
|
sdr_avg += sdr_val |
|
sdr_avg /= len(instruments) |
|
if len(instruments) > 1: |
|
print('SDR Avg: {:.4f}'.format(sdr_avg)) |
|
return sdr_avg |
|
|
|
|
|
def train_model(args): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit") |
|
parser.add_argument("--config_path", type=str, help="path to config file") |
|
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to start training") |
|
parser.add_argument("--results_path", type=str, help="path to folder where results will be stored (weights, metadata)") |
|
parser.add_argument("--data_path", nargs="+", type=str, help="Dataset data paths. You can provide several folders.") |
|
parser.add_argument("--dataset_type", type=int, default=1, help="Dataset type. Must be one of: 1, 2, 3 or 4. Details here: https://github.com/ZFTurbo/Music-Source-Separation-Training/blob/main/docs/dataset_types.md") |
|
parser.add_argument("--valid_path", nargs="+", type=str, help="validation data paths. You can provide several folders.") |
|
parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers") |
|
parser.add_argument("--pin_memory", type=bool, default=False, help="dataloader pin_memory") |
|
parser.add_argument("--seed", type=int, default=0, help="random seed") |
|
parser.add_argument("--device_ids", nargs='+', type=int, default=[0], help='list of gpu ids') |
|
parser.add_argument("--use_multistft_loss", action='store_true', help="Use MultiSTFT Loss (from auraloss package)") |
|
parser.add_argument("--use_mse_loss", action='store_true', help="Use default MSE loss") |
|
parser.add_argument("--use_l1_loss", action='store_true', help="Use L1 loss") |
|
if args is None: |
|
args = parser.parse_args() |
|
else: |
|
args = parser.parse_args(args) |
|
|
|
manual_seed(args.seed + int(time.time())) |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cudnn.deterministic = False |
|
torch.multiprocessing.set_start_method('spawn') |
|
|
|
model, config = get_model_from_config(args.model_type, args.config_path) |
|
print("Instruments: {}".format(config.training.instruments)) |
|
|
|
if not os.path.isdir(args.results_path): |
|
os.mkdir(args.results_path) |
|
|
|
use_amp = True |
|
try: |
|
use_amp = config.training.use_amp |
|
except: |
|
pass |
|
|
|
device_ids = args.device_ids |
|
batch_size = config.training.batch_size * len(device_ids) |
|
|
|
trainset = MSSDataset( |
|
config, |
|
args.data_path, |
|
batch_size=batch_size, |
|
metadata_path=os.path.join(args.results_path, 'metadata_{}.pkl'.format(args.dataset_type)), |
|
dataset_type=args.dataset_type, |
|
) |
|
|
|
train_loader = DataLoader( |
|
trainset, |
|
batch_size=batch_size, |
|
shuffle=True, |
|
num_workers=args.num_workers, |
|
pin_memory=args.pin_memory |
|
) |
|
|
|
if args.start_check_point != '': |
|
print('Start from checkpoint: {}'.format(args.start_check_point)) |
|
if 1: |
|
load_not_compatible_weights(model, args.start_check_point, verbose=False) |
|
else: |
|
model.load_state_dict( |
|
torch.load(args.start_check_point) |
|
) |
|
|
|
if torch.cuda.is_available(): |
|
if len(device_ids) <= 1: |
|
print('Use single GPU: {}'.format(device_ids)) |
|
device = torch.device(f'cuda:{device_ids[0]}') |
|
model = model.to(device) |
|
else: |
|
print('Use multi GPU: {}'.format(device_ids)) |
|
device = torch.device(f'cuda:{device_ids[0]}') |
|
model = nn.DataParallel(model, device_ids=device_ids).to(device) |
|
else: |
|
device = 'cpu' |
|
print('CUDA is not avilable. Run training on CPU. It will be very slow...') |
|
model = model.to(device) |
|
|
|
if 0: |
|
valid_multi_gpu(model, args, config, verbose=True) |
|
|
|
if config.training.optimizer == 'adam': |
|
optimizer = Adam(model.parameters(), lr=config.training.lr) |
|
elif config.training.optimizer == 'adamw': |
|
optimizer = AdamW(model.parameters(), lr=config.training.lr) |
|
elif config.training.optimizer == 'sgd': |
|
print('Use SGD optimizer') |
|
optimizer = SGD(model.parameters(), lr=config.training.lr, momentum=0.999) |
|
else: |
|
print('Unknown optimizer: {}'.format(config.training.optimizer)) |
|
exit() |
|
|
|
gradient_accumulation_steps = 1 |
|
try: |
|
gradient_accumulation_steps = int(config.training.gradient_accumulation_steps) |
|
except: |
|
pass |
|
|
|
print("Patience: {} Reduce factor: {} Batch size: {} Grad accum steps: {} Effective batch size: {}".format( |
|
config.training.patience, |
|
config.training.reduce_factor, |
|
batch_size, |
|
gradient_accumulation_steps, |
|
batch_size * gradient_accumulation_steps, |
|
)) |
|
|
|
scheduler = ReduceLROnPlateau(optimizer, 'max', patience=config.training.patience, factor=config.training.reduce_factor) |
|
|
|
if args.use_multistft_loss: |
|
try: |
|
loss_options = dict(config.loss_multistft) |
|
except: |
|
loss_options = dict() |
|
print('Loss options: {}'.format(loss_options)) |
|
loss_multistft = auraloss.freq.MultiResolutionSTFTLoss( |
|
**loss_options |
|
) |
|
|
|
scaler = GradScaler() |
|
print('Train for: {}'.format(config.training.num_epochs)) |
|
best_sdr = -100 |
|
for epoch in range(config.training.num_epochs): |
|
model.train().to(device) |
|
print('Train epoch: {} Learning rate: {}'.format(epoch, optimizer.param_groups[0]['lr'])) |
|
loss_val = 0. |
|
total = 0 |
|
|
|
|
|
pbar = tqdm(train_loader) |
|
for i, (batch, mixes) in enumerate(pbar): |
|
y = batch.to(device) |
|
x = mixes.to(device) |
|
|
|
with torch.cuda.amp.autocast(enabled=use_amp): |
|
if args.model_type in ['mel_band_roformer', 'bs_roformer']: |
|
|
|
loss = model(x, y) |
|
if type(device_ids) != int: |
|
|
|
loss = loss.mean() |
|
else: |
|
y_ = model(x) |
|
if args.use_multistft_loss: |
|
y1_ = torch.reshape(y_, (y_.shape[0], y_.shape[1] * y_.shape[2], y_.shape[3])) |
|
y1 = torch.reshape(y, (y.shape[0], y.shape[1] * y.shape[2], y.shape[3])) |
|
loss = loss_multistft(y1_, y1) |
|
|
|
if args.use_mse_loss: |
|
loss += 1000 * nn.MSELoss()(y1_, y1) |
|
if args.use_l1_loss: |
|
loss += 1000 * F.l1_loss(y1_, y1) |
|
elif args.use_mse_loss: |
|
loss = nn.MSELoss()(y_, y) |
|
elif args.use_l1_loss: |
|
loss = F.l1_loss(y_, y) |
|
else: |
|
loss = masked_loss( |
|
y_, |
|
y, |
|
q=config.training.q, |
|
coarse=config.training.coarse_loss_clip |
|
) |
|
|
|
loss /= gradient_accumulation_steps |
|
scaler.scale(loss).backward() |
|
if config.training.grad_clip: |
|
nn.utils.clip_grad_norm_(model.parameters(), config.training.grad_clip) |
|
|
|
if ((i + 1) % gradient_accumulation_steps == 0) or (i == len(train_loader) - 1): |
|
scaler.step(optimizer) |
|
scaler.update() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
li = loss.item() * gradient_accumulation_steps |
|
loss_val += li |
|
total += 1 |
|
pbar.set_postfix({'loss': 100 * li, 'avg_loss': 100 * loss_val / (i + 1)}) |
|
loss.detach() |
|
|
|
print('Training loss: {:.6f}'.format(loss_val / total)) |
|
|
|
|
|
store_path = args.results_path + '/last_{}.ckpt'.format(args.model_type) |
|
state_dict = model.state_dict() if len(device_ids) <= 1 else model.module.state_dict() |
|
torch.save( |
|
state_dict, |
|
store_path |
|
) |
|
|
|
|
|
if 0: |
|
sdr_avg = valid(model, args, config, device, verbose=False) |
|
else: |
|
sdr_avg = valid_multi_gpu(model, args, config, verbose=False) |
|
if sdr_avg > best_sdr: |
|
store_path = args.results_path + '/model_{}_ep_{}_sdr_{:.4f}.ckpt'.format(args.model_type, epoch, sdr_avg) |
|
print('Store weights: {}'.format(store_path)) |
|
state_dict = model.state_dict() if len(device_ids) <= 1 else model.module.state_dict() |
|
torch.save( |
|
state_dict, |
|
store_path |
|
) |
|
best_sdr = sdr_avg |
|
scheduler.step(sdr_avg) |
|
|
|
|
|
if __name__ == "__main__": |
|
train_model(None) |
|
|