|
|
|
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' |
|
|
|
import argparse |
|
import time |
|
from tqdm import tqdm |
|
import sys |
|
import os |
|
import glob |
|
import copy |
|
import torch |
|
import soundfile as sf |
|
import numpy as np |
|
import torch.nn as nn |
|
import multiprocessing |
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
from utils import demix_track, demix_track_demucs, sdr, get_model_from_config |
|
|
|
|
|
def proc_list_of_files( |
|
mixture_paths, |
|
model, |
|
args, |
|
config, |
|
device, |
|
verbose=False, |
|
is_tqdm=True |
|
): |
|
instruments = config.training.instruments |
|
if config.training.target_instrument is not None: |
|
instruments = [config.training.target_instrument] |
|
|
|
if args.store_dir != "": |
|
if not os.path.isdir(args.store_dir): |
|
os.mkdir(args.store_dir) |
|
|
|
all_sdr = dict() |
|
for instr in config.training.instruments: |
|
all_sdr[instr] = [] |
|
|
|
if is_tqdm: |
|
mixture_paths = tqdm(mixture_paths) |
|
|
|
for path in mixture_paths: |
|
mix, sr = sf.read(path) |
|
folder = os.path.dirname(path) |
|
folder_name = os.path.abspath(folder) |
|
if verbose: |
|
print('Song: {}'.format(folder_name)) |
|
mixture = torch.tensor(mix.T, dtype=torch.float32) |
|
if args.model_type == 'htdemucs': |
|
res = demix_track_demucs(config, model, mixture, device) |
|
else: |
|
res = demix_track(config, model, mixture, device) |
|
if 1: |
|
pbar_dict = {} |
|
for instr in instruments: |
|
if instr != 'other' or config.training.other_fix is False: |
|
try: |
|
track, sr1 = sf.read(folder + '/{}.wav'.format(instr)) |
|
except Exception as e: |
|
|
|
continue |
|
else: |
|
|
|
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals')) |
|
track = mix - track |
|
|
|
if args.store_dir != "": |
|
sf.write("{}/{}_{}.wav".format(args.store_dir, os.path.basename(folder), instr), res[instr].T, sr, |
|
subtype='FLOAT') |
|
references = np.expand_dims(track, axis=0) |
|
estimates = np.expand_dims(res[instr].T, axis=0) |
|
sdr_val = sdr(references, estimates)[0] |
|
if verbose: |
|
print(instr, res[instr].shape, sdr_val) |
|
all_sdr[instr].append(sdr_val) |
|
pbar_dict['sdr_{}'.format(instr)] = sdr_val |
|
|
|
try: |
|
mixture_paths.set_postfix(pbar_dict) |
|
except Exception as e: |
|
pass |
|
|
|
return all_sdr |
|
|
|
|
|
def valid(model, args, config, device, verbose=False): |
|
start_time = time.time() |
|
model.eval().to(device) |
|
all_mixtures_path = glob.glob(args.valid_path + '/*/mixture.wav') |
|
print('Total mixtures: {}'.format(len(all_mixtures_path))) |
|
print('Overlap: {} Batch size: {}'.format(config.inference.num_overlap, config.inference.batch_size)) |
|
|
|
all_sdr = proc_list_of_files(all_mixtures_path, model, args, config, device, verbose, not verbose) |
|
|
|
instruments = config.training.instruments |
|
if config.training.target_instrument is not None: |
|
instruments = [config.training.target_instrument] |
|
|
|
if args.store_dir != "": |
|
out = open(args.store_dir + '/results.txt', 'w') |
|
out.write(str(args) + "\n") |
|
print("Num overlap: {}".format(config.inference.num_overlap)) |
|
sdr_avg = 0.0 |
|
for instr in instruments: |
|
sdr_val = np.array(all_sdr[instr]).mean() |
|
print("Instr SDR {}: {:.4f}".format(instr, sdr_val)) |
|
if args.store_dir != "": |
|
out.write("Instr SDR {}: {:.4f}".format(instr, sdr_val) + "\n") |
|
sdr_avg += sdr_val |
|
sdr_avg /= len(instruments) |
|
if len(instruments) > 1: |
|
print('SDR Avg: {:.4f}'.format(sdr_avg)) |
|
if args.store_dir != "": |
|
out.write('SDR Avg: {:.4f}'.format(sdr_avg) + "\n") |
|
print("Elapsed time: {:.2f} sec".format(time.time() - start_time)) |
|
if args.store_dir != "": |
|
out.write("Elapsed time: {:.2f} sec".format(time.time() - start_time) + "\n") |
|
out.close() |
|
|
|
return sdr_avg |
|
|
|
|
|
def valid_mp(proc_id, queue, all_mixtures_path, model, args, config, device, return_dict): |
|
m1 = model.eval().to(device) |
|
if proc_id == 0: |
|
progress_bar = tqdm(total=len(all_mixtures_path)) |
|
all_sdr = dict() |
|
for instr in config.training.instruments: |
|
all_sdr[instr] = [] |
|
while True: |
|
current_step, path = queue.get() |
|
if path is None: |
|
break |
|
sdr_single = proc_list_of_files([path], m1, args, config, device, False, False) |
|
pbar_dict = {} |
|
for instr in config.training.instruments: |
|
all_sdr[instr] += sdr_single[instr] |
|
if len(sdr_single[instr]) > 0: |
|
pbar_dict['sdr_{}'.format(instr)] = "{:.4f}".format(sdr_single[instr][0]) |
|
if proc_id == 0: |
|
progress_bar.update(current_step - progress_bar.n) |
|
progress_bar.set_postfix(pbar_dict) |
|
|
|
return_dict[proc_id] = all_sdr |
|
return |
|
|
|
|
|
def valid_multi_gpu(model, args, config, device_ids, verbose=False): |
|
start_time = time.time() |
|
all_mixtures_path = glob.glob(args.valid_path + '/*/mixture.wav') |
|
print('Total mixtures: {}'.format(len(all_mixtures_path))) |
|
print('Overlap: {} Batch size: {}'.format(config.inference.num_overlap, config.inference.batch_size)) |
|
|
|
model = model.to('cpu') |
|
queue = torch.multiprocessing.Queue() |
|
processes = [] |
|
return_dict = torch.multiprocessing.Manager().dict() |
|
for i, device in enumerate(device_ids): |
|
if torch.cuda.is_available(): |
|
device = 'cuda:{}'.format(device) |
|
else: |
|
device = 'cpu' |
|
p = torch.multiprocessing.Process(target=valid_mp, args=(i, queue, all_mixtures_path, model, args, config, device, return_dict)) |
|
p.start() |
|
processes.append(p) |
|
for i, path in enumerate(all_mixtures_path): |
|
queue.put((i, path)) |
|
for _ in range(len(device_ids)): |
|
queue.put((None, None)) |
|
for p in processes: |
|
p.join() |
|
|
|
all_sdr = dict() |
|
for instr in config.training.instruments: |
|
all_sdr[instr] = [] |
|
for i in range(len(device_ids)): |
|
all_sdr[instr] += return_dict[i][instr] |
|
|
|
instruments = config.training.instruments |
|
if config.training.target_instrument is not None: |
|
instruments = [config.training.target_instrument] |
|
|
|
if args.store_dir != "": |
|
out = open(args.store_dir + '/results.txt', 'w') |
|
out.write(str(args) + "\n") |
|
print("Num overlap: {}".format(config.inference.num_overlap)) |
|
sdr_avg = 0.0 |
|
for instr in instruments: |
|
sdr_val = np.array(all_sdr[instr]).mean() |
|
print("Instr SDR {}: {:.4f}".format(instr, sdr_val)) |
|
if args.store_dir != "": |
|
out.write("Instr SDR {}: {:.4f}".format(instr, sdr_val) + "\n") |
|
sdr_avg += sdr_val |
|
sdr_avg /= len(instruments) |
|
if len(instruments) > 1: |
|
print('SDR Avg: {:.4f}'.format(sdr_avg)) |
|
if args.store_dir != "": |
|
out.write('SDR Avg: {:.4f}'.format(sdr_avg) + "\n") |
|
print("Elapsed time: {:.2f} sec".format(time.time() - start_time)) |
|
if args.store_dir != "": |
|
out.write("Elapsed time: {:.2f} sec".format(time.time() - start_time) + "\n") |
|
out.close() |
|
|
|
return sdr_avg |
|
|
|
|
|
def check_validation(args): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit") |
|
parser.add_argument("--config_path", type=str, help="path to config file") |
|
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights") |
|
parser.add_argument("--valid_path", type=str, help="validate path") |
|
parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file") |
|
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids') |
|
parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers") |
|
parser.add_argument("--pin_memory", type=bool, default=False, help="dataloader pin_memory") |
|
if args is None: |
|
args = parser.parse_args() |
|
else: |
|
args = parser.parse_args(args) |
|
|
|
torch.backends.cudnn.benchmark = True |
|
torch.multiprocessing.set_start_method('spawn') |
|
|
|
model, config = get_model_from_config(args.model_type, args.config_path) |
|
if args.start_check_point != '': |
|
print('Start from checkpoint: {}'.format(args.start_check_point)) |
|
state_dict = torch.load(args.start_check_point) |
|
if args.model_type == 'htdemucs': |
|
|
|
if 'state' in state_dict: |
|
state_dict = state_dict['state'] |
|
model.load_state_dict(state_dict) |
|
|
|
print("Instruments: {}".format(config.training.instruments)) |
|
|
|
device_ids = args.device_ids |
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda:0') |
|
else: |
|
device = 'cpu' |
|
print('CUDA is not available. Run validation on CPU. It will be very slow...') |
|
|
|
if torch.cuda.is_available() and len(device_ids) > 1: |
|
valid_multi_gpu(model, args, config, device_ids, verbose=False) |
|
else: |
|
valid(model, args, config, device, verbose=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
check_validation(None) |
|
|