""" from https://github.com/keithito/tacotron """ ''' Cleaners are transformations that run over the input text at both training and eval time. Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" hyperparameter. Some cleaners are English-specific. You'll typically want to use: 1. "english_cleaners" for English text 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using the Unidecode library (https://pypi.python.org/pypi/Unidecode) 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update the symbols in symbols.py to match your data). ''' import re from unidecode import unidecode from phonemizer import phonemize from phonemizer.backend import EspeakBackend import matplotlib.pyplot as plt import traceback import sys import os from tqdm import tqdm import numpy as np # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('mrs', 'misess'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ]] def expand_abbreviations(text): for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text def expand_numbers(text): return normalize_numbers(text) def lowercase(text): return text.lower() def collapse_whitespace(text): return re.sub(_whitespace_re, ' ', text) def convert_to_ascii(text): return unidecode(text) def basic_cleaners(text): '''Basic pipeline that lowercases and collapses whitespace without transliteration.''' text = lowercase(text) text = collapse_whitespace(text) return text def transliteration_cleaners(text): '''Pipeline for non-English text that transliterates to ASCII.''' text = convert_to_ascii(text) text = lowercase(text) text = collapse_whitespace(text) return text def english_cleaners(text): '''Pipeline for English text, including abbreviation expansion.''' text = convert_to_ascii(text) text = lowercase(text) text = expand_abbreviations(text) phonemes = phonemize(text, language='en-us', backend='espeak', strip=True) phonemes = collapse_whitespace(phonemes) return phonemes def english_cleaners2(text): '''Pipeline for English text, including abbreviation expansion. + punctuation + stress''' if __name__ == '__main__': text_file = sys.argv[1] phoneme_file = sys.argv[2] backend = EspeakBackend('en-us', preserve_punctuation=True, with_stress=True) buffer = "" out_file = open(phoneme_file, 'w') for line in tqdm(open(text_file, errors='ignore').read().splitlines()): try: filepath, text, language, confidence = line.split('|') confidence = float(confidence) filename = os.path.basename(filepath).split('.')[0] duration = float(filename.split('_')[-1]) / 1000 if language == "en": phone = convert_to_ascii(text) phone = lowercase(phone) phone = expand_abbreviations(phone) phone = backend.phonemize([phone], strip=True)[0] phone = collapse_whitespace(phone) ratio = len(phone) / duration else: phone = "[blank]" ratio = 0 buffer += f"{filepath}|{text}|{phone}|{language}|{confidence:.3f}|{ratio:.3f}\n" if len(buffer) > 100000: out_file.write(buffer) buffer = "" except Exception as e: print(filename, line, e) continue out_file.write(buffer)