import re from unidecode import unidecode from transformers import T5ForConditionalGeneration, AutoTokenizer import matplotlib.pyplot as plt import traceback import sys import os from tqdm import tqdm import numpy as np # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('mrs', 'misess'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ]] def expand_abbreviations(text): for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text def expand_numbers(text): return normalize_numbers(text) def lowercase(text): return text.lower() def collapse_whitespace(text): return re.sub(_whitespace_re, ' ', text) def convert_to_ascii(text): return unidecode(text) puncs_to_remove = ["♪", "#", "¿", "¡", "-", "*"] puncs_to_remove = "".join(puncs_to_remove) def normalize(text): text = text.translate(str.maketrans('', '', puncs_to_remove)) text = text.strip() return text def basic_cleaners(text): '''Basic pipeline that lowercases and collapses whitespace without transliteration.''' text = lowercase(text) text = collapse_whitespace(text) return text def transliteration_cleaners(text): '''Pipeline for non-English text that transliterates to ASCII.''' text = convert_to_ascii(text) text = lowercase(text) text = collapse_whitespace(text) return text def english_cleaners(text): '''Pipeline for English text, including abbreviation expansion.''' text = convert_to_ascii(text) text = lowercase(text) text = expand_abbreviations(text) phonemes = phonemize(text, language='en-us', backend='espeak', strip=True) phonemes = collapse_whitespace(phonemes) return phonemes def english_cleaners2(text): '''Pipeline for English text, including abbreviation expansion. + punctuation + stress''' if __name__ == '__main__': text_file = sys.argv[1] phoneme_file = sys.argv[2] model = T5ForConditionalGeneration.from_pretrained('charsiu/g2p_multilingual_byT5_tiny_16_layers_100') #model.cuda() tokenizer = AutoTokenizer.from_pretrained('google/byt5-small') buffer = "" out_file = open(phoneme_file, 'w') for line in tqdm(open(text_file, errors='ignore').read().splitlines()): try: filepath, text, language, confidence = line.split('|') confidence = float(confidence) filename = os.path.basename(filepath).split('.')[0] duration = float(filename.split('_')[-1]) / 1000 if language == "es": #text = convert_to_ascii(text) text = normalize(text) text = lowercase(text) print(text) words = text.split(' ') words = [': '+i for i in words] out = tokenizer(words,padding=True,add_special_tokens=False,return_tensors='pt') preds = model.generate(**out,num_beams=1,max_length=50) # We do not find beam search helpful. Greedy decoding is enough. phone = tokenizer.batch_decode(preds.tolist(),skip_special_tokens=True) phone = " ".join(phone) print(phone) phone = collapse_whitespace(phone) ratio = len(phone) / duration else: phone = "[blank]" ratio = 0 buffer += f"{filepath}|{text}|{phone}|{language}|{confidence:.3f}|{ratio:.3f}\n" if len(buffer) > 100000: out_file.write(buffer) buffer = "" #break except Exception as e: print(filename, line, e) continue out_file.write(buffer)