import sys import os import torch import torch.multiprocessing as mp import multiprocessing import threading import numpy as np import glob import argparse from tqdm import tqdm from collections import defaultdict import traceback from pyannote.audio import Pipeline file_lock = multiprocessing.Lock() def inference(rank, text_path, queue: mp.Queue): device=f"cuda:{rank}" pipeline = Pipeline.from_pretrained( "pyannote/speaker-diarization-3.1", use_auth_token="Your huggingface token") pipeline.to(torch.device(device)) def write_to_file(data): with file_lock: with open(text_path, 'a') as f: f.write(data) buffer = "" with torch.no_grad(): while True: #print(texts) filename = queue.get() if filename is None: write_to_file(buffer) break try: filename = filename[0] audio_path = filename spks = defaultdict(float) total_duration = 0. diarization = pipeline(audio_path) for turn, _, speaker in diarization.itertracks(yield_label=True): duration = turn.end - turn.start spks[speaker] += duration total_duration += duration if len(spks) == 0: percentage = 0. else: sorted_spks = sorted(spks.items(), key=lambda s:s[1], reverse=True) percentage = sorted_spks[0][1] / total_duration buffer += f"{filename}|{percentage:3}\n" if len(buffer) > 10000: write_to_file(buffer) buffer = "" except Exception as e: #print(sorted_spks) traceback.print_exc() def setInterval(interval): def decorator(function): def wrapper(*args, **kwargs): stopped = threading.Event() def loop(): # executed in another thread while not stopped.wait(interval): # until stopped function(*args, **kwargs) t = threading.Thread(target=loop) t.daemon = True # stop if the program exits t.start() return stopped return wrapper return decorator last_batches = None @setInterval(5) def QueueWatcher(queue, bar): global last_batches curr_batches = queue.qsize() bar.update(last_batches-curr_batches) last_batches = curr_batches if __name__ == "__main__": #audio_dir = sys.argv[1] parser = argparse.ArgumentParser() parser.add_argument("--filelist_or_dir", type=str, required=True) parser.add_argument("--text_path", type=str, required=True, help="Dir to save output") parser.add_argument("--jobs", type=int, required=False, default=2) parser.add_argument("--log_dir", type=str, required=False, help="For aml compatibility") parser.add_argument("--model_dir", type=str, required=False, help="For aml compatibility") args = parser.parse_args() mp.set_start_method('spawn',force=True) filelist_or_dir = args.filelist_or_dir text_path = args.text_path jobs = args.jobs os.makedirs(text_path, exist_ok=True) if os.path.isfile(filelist_or_dir): filelist_name = filelist_or_dir.split('/')[-1].split('.')[0] generator = open(filelist_or_dir).read().splitlines() text_path = os.path.join(text_path, f"{filelist_name}_spk.txt") else: filelist_name = "single" generator = glob.glob(f"{filelist_or_dir}/*.wav") text_path = os.path.join(text_path, "spk.txt") os.system(f"rm {text_path}") gpu_num = torch.cuda.device_count() processes = [] queue = mp.Queue() for thread_num in range(jobs): rank = thread_num % gpu_num p = mp.Process(target=inference, args=(rank, text_path, queue)) p.start() processes.append(p) accum = [] tmp_file = [] for filename in generator: accum.append(filename) if len(accum) == 1: queue.put(accum.copy()) accum.clear() for _ in range(jobs): queue.put(None) last_batches = queue.qsize() bar = tqdm(total=last_batches, desc='pyannote') queue_watcher = QueueWatcher(queue, bar) for p in processes: p.join() queue_watcher.set()