import torch import torch.multiprocessing as mp import os, sys import threading from tqdm import tqdm import soundfile as sf import threading import librosa import numpy as np from utils import demix_track, demix_track_demucs, get_model_from_config import traceback import glob import argparse import warnings warnings.filterwarnings("ignore") def normalize_audio(y, target_dbfs=0): max_amplitude = np.max(np.abs(y)) if max_amplitude < 0.1: return y target_amplitude = 10.0**(target_dbfs / 20.0) scale_factor = target_amplitude / max_amplitude normalized_audio = y * scale_factor return normalized_audio def inference(rank, ckpt_root, out_dir, queue: mp.Queue): #print(f"thread {rank} start") device = f"cuda:{rank}" config = f"{ckpt_root}/model_bs_roformer_ep_317_sdr_12.9755.yaml" ckpt = f"{ckpt_root}/model_bs_roformer_ep_317_sdr_12.9755.ckpt" model, config = get_model_from_config("bs_roformer", config) state_dict = torch.load(ckpt, map_location='cpu') model.load_state_dict(state_dict) model = model.to(device) model.eval() with torch.no_grad(): while True: #print(texts) filename = queue.get() if filename is None: break filepath = filename[0] filename = filepath.split('/')[-1] try: mix, sr = librosa.load(filepath, sr=44100, mono=False) #mix = normalize_audio(mix, -6) mix = mix.T if len(mix.shape) == 1: mix = np.stack([mix, mix], axis=-1) mixture = torch.tensor(mix.T, dtype=torch.float32) res = demix_track(config, model, mixture, device) sf.write("{}/{}".format(os.path.join(out_dir, "vocal"), filename), res['vocals'].T.mean(-1), sr, subtype='FLOAT') sf.write("{}/{}".format(os.path.join(out_dir, "bgm"), filename), mix.mean(-1) - res['vocals'].T.mean(-1), sr, subtype='FLOAT') except Exception as e: traceback.print_exc() continue def setInterval(interval): def decorator(function): def wrapper(*args, **kwargs): stopped = threading.Event() def loop(): # executed in another thread while not stopped.wait(interval): # until stopped function(*args, **kwargs) t = threading.Thread(target=loop) t.daemon = True # stop if the program exits t.start() return stopped return wrapper return decorator last_batches = None @setInterval(3) def QueueWatcher(queue, bar): global last_batches curr_batches = queue.qsize() bar.update(last_batches-curr_batches) last_batches = curr_batches if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--filelist_or_dir", type=str, required=True, help="Path to save checkpoints") parser.add_argument("--out_dir", type=str, required=True, help="Path to save checkpoints") parser.add_argument("--ckpt_path", type=str, required=True, help="Path to save checkpoints") parser.add_argument("--jobs", type=int, required=False, default=2, help="Path to save checkpoints") parser.add_argument("--log_dir", type=str, required=False, default="large-v3", help="Path to save checkpoints") parser.add_argument("--model_dir", type=str, required=False, default="large-v3", help="Path to save checkpoints") args = parser.parse_args() filelist_or_dir = args.filelist_or_dir out_dir = args.out_dir ckpt_path = args.ckpt_path jobs = args.jobs vad_jobs = jobs * 2 if os.path.isfile(filelist_or_dir): filelist_name = filelist_or_dir.split('/')[-1].split('.')[0] generator = open(filelist_or_dir).read().splitlines() else: filelist_name = "single" generator = glob.glob(f"{filelist_or_dir}/*.wav") os.makedirs(os.path.join(out_dir, "vocal"), exist_ok=True) os.makedirs(os.path.join(out_dir, "bgm"), exist_ok=True) gpu_num = torch.cuda.device_count() processes = [] vad_processes = [] queue = mp.Queue() vad_queue = mp.Queue() for thread_num in range(jobs): rank = thread_num % gpu_num p = mp.Process(target=inference, args=(rank, ckpt_path, out_dir, queue)) p.start() processes.append(p) accum = [] for filename in tqdm(generator): accum.append(filename) if len(accum) == 1: queue.put(accum.copy()) accum.clear() for _ in range(jobs): queue.put(None) last_batches = queue.qsize() bar = tqdm(total=last_batches, desc="seperation") queue_watcher = QueueWatcher(queue, bar) for p in processes: p.join() queue_watcher.set() for p in vad_processes: p.join()