import sys from transformers import pipeline # Define candidate labels for classification candidate_labels_spam = ['Spam', 'not Spam'] candidate_labels_urgent = ['Urgent', 'not Urgent'] model="SpamUrgencyDetection" clf = pipeline("zero-shot-classification", model=model) 32 def predict(text): p_spam = clf(text, candidate_labels_spam)["labels"][0] p_urgent = clf(text, candidate_labels_urgent)["labels"][0] return p_spam,p_urgent import pandas as pd df = pd.read_csv("test.csv") texts=df["text"] for i in range( len(texts)): print(texts[i],predict(texts[i]))