--- license: cc-by-sa-4.0 datasets: - csitfun/LogiCoT language: - en library_name: transformers pipeline_tag: text-generation tags: - logical --- This model is tuned on the **LogiCoT** data and the GPT-4 alpaca data with the **LLaMa-7b** model. We use 2 A100 GPUs We first instruction-tuning LLaMa-7b on the GPT-4 alpaca data for 3 days, then on the LogiCoT data for 4 days. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_csitfun__llama-7b-logicot) | Metric | Value | |-----------------------|---------------------------| | Avg. | 39.37 | | ARC (25-shot) | 47.01 | | HellaSwag (10-shot) | 72.56 | | MMLU (5-shot) | 38.93 | | TruthfulQA (0-shot) | 43.63 | | Winogrande (5-shot) | 67.56 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 5.92 |