File size: 2,466 Bytes
8102559
 
44228fc
8102559
 
1c3c2b5
 
 
 
 
8102559
 
 
 
 
 
 
 
 
566949f
8102559
 
 
1c3c2b5
 
 
 
 
 
8102559
 
 
 
 
 
 
 
 
 
 
 
566949f
8102559
1c3c2b5
 
 
 
 
 
 
 
 
 
 
 
 
 
8102559
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: gpt2-text-classification-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/date3k2/gpt2-text-classification/runs/52an6tu1)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/date3k2/gpt2-text-classification/runs/lu5o1szk)
# gpt2-text-classification-v2

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2002
- Accuracy: 0.9342
- F1: 0.9340
- Recall: 0.9314
- Precision: 0.9367

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Accuracy | F1     | Validation Loss | Precision | Recall |
|:-------------:|:------:|:----:|:--------:|:------:|:---------------:|:---------:|:------:|
| 0.327         | 0.9974 | 260  | 0.8973   | 0.8929 | 0.2559          | 0.9333    | 0.8558 |
| 0.241         | 1.9987 | 521  | 0.919    | 0.9180 | 0.2039          | 0.9296    | 0.9066 |
| 0.244         | 3.0    | 782  | 0.9154   | 0.9192 | 0.2156          | 0.8799    | 0.9621 |
| 0.1843        | 3.9974 | 1042 | 0.9299   | 0.9288 | 0.1888          | 0.9427    | 0.9154 |
| 0.1608        | 4.9987 | 1303 | 0.9301   | 0.9291 | 0.1855          | 0.9428    | 0.9158 |
| 0.124         | 6.0    | 1564 | 0.9322   | 0.9319 | 0.1826          | 0.9357    | 0.9282 |
| 0.112         | 6.9974 | 1820 | 0.2099   | 0.9315 | 0.9303          | 0.9138    | 0.9473 |
| 0.0903        | 7.9987 | 2081 | 0.2002   | 0.9342 | 0.9340          | 0.9314    | 0.9367 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1