--- base_model: Fsoft-AIC/videberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: ComOM-VIDeBERTa-1 results: [] --- # ComOM-VIDeBERTa-1 This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3821 - Accuracy: 0.8270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 126 | 0.5622 | 0.6899 | | No log | 2.0 | 252 | 0.4775 | 0.7972 | | No log | 3.0 | 378 | 0.4007 | 0.8131 | | 0.512 | 4.0 | 504 | 0.3964 | 0.8171 | | 0.512 | 5.0 | 630 | 0.3821 | 0.8270 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1