--- base_model: Fsoft-AIC/videberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: ComOM-VIDeBERTa-2 results: [] --- # ComOM-VIDeBERTa-2 This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3046 - Accuracy: 0.5357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 77 | 1.4249 | 0.4708 | | No log | 2.0 | 154 | 1.4096 | 0.4708 | | No log | 3.0 | 231 | 1.3871 | 0.4708 | | No log | 4.0 | 308 | 1.3809 | 0.5032 | | No log | 5.0 | 385 | 1.3529 | 0.5195 | | No log | 6.0 | 462 | 1.3257 | 0.5260 | | 1.4302 | 7.0 | 539 | 1.3101 | 0.5325 | | 1.4302 | 8.0 | 616 | 1.3046 | 0.5357 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1