Update handler.py
Browse files- handler.py +14 -4
handler.py
CHANGED
@@ -3,23 +3,29 @@ from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
|
3 |
from PIL import Image
|
4 |
import requests
|
5 |
import torch
|
|
|
6 |
|
7 |
class EndpointHandler:
|
8 |
def __init__(self, path=""):
|
9 |
self.processor = AutoProcessor.from_pretrained(
|
10 |
path,
|
11 |
trust_remote_code=True,
|
12 |
-
torch_dtype=
|
13 |
device_map='auto'
|
14 |
)
|
15 |
self.model = AutoModelForCausalLM.from_pretrained(
|
16 |
path,
|
17 |
trust_remote_code=True,
|
18 |
-
torch_dtype=
|
19 |
-
device_map='auto'
|
|
|
20 |
)
|
21 |
|
22 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
|
|
|
|
|
|
|
23 |
# Extract inputs from the request data
|
24 |
inputs = data.get("inputs", {})
|
25 |
image_url = inputs.get("image_url")
|
@@ -38,7 +44,7 @@ class EndpointHandler:
|
|
38 |
|
39 |
# Process the image and text
|
40 |
try:
|
41 |
-
with torch.cuda.amp.autocast(enabled=True):
|
42 |
inputs = self.processor.process(
|
43 |
images=[image],
|
44 |
text=text_prompt
|
@@ -58,6 +64,10 @@ class EndpointHandler:
|
|
58 |
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
59 |
generated_text = self.processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
60 |
|
|
|
|
|
|
|
|
|
61 |
return [{"generated_text": generated_text}]
|
62 |
except Exception as e:
|
63 |
return [{"error": f"Error during generation: {str(e)}"}]
|
|
|
3 |
from PIL import Image
|
4 |
import requests
|
5 |
import torch
|
6 |
+
import gc
|
7 |
|
8 |
class EndpointHandler:
|
9 |
def __init__(self, path=""):
|
10 |
self.processor = AutoProcessor.from_pretrained(
|
11 |
path,
|
12 |
trust_remote_code=True,
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
device_map='auto'
|
15 |
)
|
16 |
self.model = AutoModelForCausalLM.from_pretrained(
|
17 |
path,
|
18 |
trust_remote_code=True,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
device_map='auto',
|
21 |
+
low_cpu_mem_usage=True
|
22 |
)
|
23 |
|
24 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
25 |
+
# Clear CUDA cache
|
26 |
+
torch.cuda.empty_cache()
|
27 |
+
gc.collect()
|
28 |
+
|
29 |
# Extract inputs from the request data
|
30 |
inputs = data.get("inputs", {})
|
31 |
image_url = inputs.get("image_url")
|
|
|
44 |
|
45 |
# Process the image and text
|
46 |
try:
|
47 |
+
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
|
48 |
inputs = self.processor.process(
|
49 |
images=[image],
|
50 |
text=text_prompt
|
|
|
64 |
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
65 |
generated_text = self.processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
66 |
|
67 |
+
# Clear CUDA cache again
|
68 |
+
torch.cuda.empty_cache()
|
69 |
+
gc.collect()
|
70 |
+
|
71 |
return [{"generated_text": generated_text}]
|
72 |
except Exception as e:
|
73 |
return [{"error": f"Error during generation: {str(e)}"}]
|