Commit
·
7481a01
1
Parent(s):
e7d6ba8
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- loc_beyond_words
|
7 |
+
model-index:
|
8 |
+
- name: conditional-detr-resnet-50_fine_tuned_beyond_words
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# conditional-detr-resnet-50_fine_tuned_beyond_words
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the loc_beyond_words dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5892
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 200
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
51 |
+
| 6.674 | 0.28 | 100 | 1.7571 |
|
52 |
+
| 1.4721 | 0.56 | 200 | 1.2737 |
|
53 |
+
| 1.2557 | 0.84 | 300 | 1.1037 |
|
54 |
+
| 1.0781 | 1.12 | 400 | 1.0184 |
|
55 |
+
| 1.0353 | 1.4 | 500 | 0.9988 |
|
56 |
+
| 1.0324 | 1.69 | 600 | 0.9951 |
|
57 |
+
| 0.9131 | 1.97 | 700 | 0.9224 |
|
58 |
+
| 0.8724 | 2.25 | 800 | 0.9692 |
|
59 |
+
| 0.8129 | 2.53 | 900 | 0.8670 |
|
60 |
+
| 0.9 | 2.81 | 1000 | 0.8326 |
|
61 |
+
| 0.7993 | 3.09 | 1100 | 0.7875 |
|
62 |
+
| 0.7907 | 3.37 | 1200 | 0.7517 |
|
63 |
+
| 0.8424 | 3.65 | 1300 | 0.9088 |
|
64 |
+
| 0.7808 | 3.93 | 1400 | 0.8506 |
|
65 |
+
| 0.7469 | 4.21 | 1500 | 0.7928 |
|
66 |
+
| 0.7582 | 4.49 | 1600 | 0.7228 |
|
67 |
+
| 0.7546 | 4.78 | 1700 | 0.7588 |
|
68 |
+
| 0.7842 | 5.06 | 1800 | 0.7726 |
|
69 |
+
| 0.775 | 5.34 | 1900 | 0.7676 |
|
70 |
+
| 0.7263 | 5.62 | 2000 | 0.7164 |
|
71 |
+
| 0.7209 | 5.9 | 2100 | 0.7061 |
|
72 |
+
| 0.7259 | 6.18 | 2200 | 0.7579 |
|
73 |
+
| 0.7701 | 6.46 | 2300 | 0.8184 |
|
74 |
+
| 0.7391 | 6.74 | 2400 | 0.6684 |
|
75 |
+
| 0.6834 | 7.02 | 2500 | 0.7042 |
|
76 |
+
| 0.7098 | 7.3 | 2600 | 0.7166 |
|
77 |
+
| 0.7498 | 7.58 | 2700 | 0.6752 |
|
78 |
+
| 0.7056 | 7.87 | 2800 | 0.7064 |
|
79 |
+
| 0.7004 | 8.15 | 2900 | 0.7090 |
|
80 |
+
| 0.6964 | 8.43 | 3000 | 0.7318 |
|
81 |
+
| 0.682 | 8.71 | 3100 | 0.7216 |
|
82 |
+
| 0.7309 | 8.99 | 3200 | 0.6545 |
|
83 |
+
| 0.6576 | 9.27 | 3300 | 0.6478 |
|
84 |
+
| 0.7014 | 9.55 | 3400 | 0.6814 |
|
85 |
+
| 0.673 | 9.83 | 3500 | 0.6783 |
|
86 |
+
| 0.6455 | 10.11 | 3600 | 0.7248 |
|
87 |
+
| 0.7041 | 10.39 | 3700 | 0.7729 |
|
88 |
+
| 0.6664 | 10.67 | 3800 | 0.6746 |
|
89 |
+
| 0.6161 | 10.96 | 3900 | 0.6414 |
|
90 |
+
| 0.6975 | 11.24 | 4000 | 0.6637 |
|
91 |
+
| 0.6751 | 11.52 | 4100 | 0.6570 |
|
92 |
+
| 0.6092 | 11.8 | 4200 | 0.6691 |
|
93 |
+
| 0.6593 | 12.08 | 4300 | 0.6276 |
|
94 |
+
| 0.6449 | 12.36 | 4400 | 0.6388 |
|
95 |
+
| 0.6136 | 12.64 | 4500 | 0.6711 |
|
96 |
+
| 0.6521 | 12.92 | 4600 | 0.6768 |
|
97 |
+
| 0.6162 | 13.2 | 4700 | 0.6427 |
|
98 |
+
| 0.7083 | 13.48 | 4800 | 0.6492 |
|
99 |
+
| 0.6407 | 13.76 | 4900 | 0.6213 |
|
100 |
+
| 0.6371 | 14.04 | 5000 | 0.6674 |
|
101 |
+
| 0.626 | 14.33 | 5100 | 0.6185 |
|
102 |
+
| 0.6442 | 14.61 | 5200 | 0.7180 |
|
103 |
+
| 0.5981 | 14.89 | 5300 | 0.6441 |
|
104 |
+
| 0.629 | 15.17 | 5400 | 0.6262 |
|
105 |
+
| 0.625 | 15.45 | 5500 | 0.6397 |
|
106 |
+
| 0.6123 | 15.73 | 5600 | 0.6440 |
|
107 |
+
| 0.6084 | 16.01 | 5700 | 0.6493 |
|
108 |
+
| 0.6021 | 16.29 | 5800 | 0.6263 |
|
109 |
+
| 0.6502 | 16.57 | 5900 | 0.6254 |
|
110 |
+
| 0.6339 | 16.85 | 6000 | 0.7043 |
|
111 |
+
| 0.5925 | 17.13 | 6100 | 0.8014 |
|
112 |
+
| 0.6453 | 17.42 | 6200 | 0.6385 |
|
113 |
+
| 0.6143 | 17.7 | 6300 | 0.6033 |
|
114 |
+
| 0.6057 | 17.98 | 6400 | 0.6881 |
|
115 |
+
| 0.6386 | 18.26 | 6500 | 0.6366 |
|
116 |
+
| 0.5839 | 18.54 | 6600 | 0.6563 |
|
117 |
+
| 0.6013 | 18.82 | 6700 | 0.5982 |
|
118 |
+
| 0.5999 | 19.1 | 6800 | 0.6064 |
|
119 |
+
| 0.6023 | 19.38 | 6900 | 0.5795 |
|
120 |
+
| 0.5593 | 19.66 | 7000 | 0.6538 |
|
121 |
+
| 0.6375 | 19.94 | 7100 | 0.6991 |
|
122 |
+
| 0.6073 | 20.22 | 7200 | 0.7117 |
|
123 |
+
| 0.596 | 20.51 | 7300 | 0.6034 |
|
124 |
+
| 0.5987 | 20.79 | 7400 | 0.6489 |
|
125 |
+
| 0.5922 | 21.07 | 7500 | 0.6216 |
|
126 |
+
| 0.589 | 21.35 | 7600 | 0.6257 |
|
127 |
+
| 0.6047 | 21.63 | 7700 | 0.6415 |
|
128 |
+
| 0.5775 | 21.91 | 7800 | 0.6159 |
|
129 |
+
| 0.588 | 22.19 | 7900 | 0.6095 |
|
130 |
+
| 0.5844 | 22.47 | 8000 | 0.6373 |
|
131 |
+
| 0.5964 | 22.75 | 8100 | 0.6022 |
|
132 |
+
| 0.5987 | 23.03 | 8200 | 0.6050 |
|
133 |
+
| 0.5605 | 23.31 | 8300 | 0.6083 |
|
134 |
+
| 0.5835 | 23.6 | 8400 | 0.7823 |
|
135 |
+
| 0.5816 | 23.88 | 8500 | 0.6417 |
|
136 |
+
| 0.5757 | 24.16 | 8600 | 0.6324 |
|
137 |
+
| 0.5997 | 24.44 | 8700 | 0.6046 |
|
138 |
+
| 0.5674 | 24.72 | 8800 | 0.6558 |
|
139 |
+
| 0.5703 | 25.0 | 8900 | 0.5819 |
|
140 |
+
| 0.5766 | 25.28 | 9000 | 0.6116 |
|
141 |
+
| 0.5548 | 25.56 | 9100 | 0.5877 |
|
142 |
+
| 0.564 | 25.84 | 9200 | 0.5672 |
|
143 |
+
| 0.548 | 26.12 | 9300 | 0.6073 |
|
144 |
+
| 0.5436 | 26.4 | 9400 | 0.5739 |
|
145 |
+
| 0.6006 | 26.69 | 9500 | 0.6101 |
|
146 |
+
| 0.5519 | 26.97 | 9600 | 0.5869 |
|
147 |
+
| 0.5432 | 27.25 | 9700 | 0.5721 |
|
148 |
+
| 0.5597 | 27.53 | 9800 | 0.5807 |
|
149 |
+
| 0.5254 | 27.81 | 9900 | 0.5849 |
|
150 |
+
| 0.5366 | 28.09 | 10000 | 0.5831 |
|
151 |
+
| 0.5654 | 28.37 | 10100 | 0.5993 |
|
152 |
+
| 0.57 | 28.65 | 10200 | 0.5892 |
|
153 |
+
|
154 |
+
|
155 |
+
### Framework versions
|
156 |
+
|
157 |
+
- Transformers 4.26.1
|
158 |
+
- Pytorch 1.13.0+cu117
|
159 |
+
- Datasets 2.10.1
|
160 |
+
- Tokenizers 0.13.2
|