davda54 commited on
Commit
0884edc
·
1 Parent(s): 71eddc0
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LtgBertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_ltgbert.LtgBertConfig",
8
+ "AutoModel": "modeling_ltgbert.LtgBertModel",
9
+ "AutoModelForMaskedLM": "modeling_ltgbert.LtgBertForMaskedLM",
10
+ "AutoModelForSequenceClassification": "modeling_ltgbert.LtgBertForSequenceClassification"
11
+ },
12
+ "classifier_dropout": 0.2,
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "intermediate_size": 2048,
16
+ "layer_norm_eps": 1e-07,
17
+ "max_position_embeddings": 512,
18
+ "model_type": "ltgbert",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_all_encoded_layers": true,
22
+ "pad_token_id": 4,
23
+ "position_bucket_size": 32,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.26.0",
26
+ "vocab_size": 16384
27
+ }
configuration_ltgbert.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ LTG-BERT configutation """
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+
21
+
22
+ LTG_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "bnc-bert-span": "https://huggingface.co/ltg/bnc-bert-span",
24
+ "bnc-bert-span-2x": "https://huggingface.co/ltg/bnc-bert-span-2x",
25
+ "bnc-bert-span-0.5x": "https://huggingface.co/ltg/bnc-bert-span-0.5x",
26
+ "bnc-bert-span-0.25x": "https://huggingface.co/ltg/bnc-bert-span-0.25x",
27
+ "bnc-bert-span-order": "https://huggingface.co/ltg/bnc-bert-span-order",
28
+ "bnc-bert-span-document": "https://huggingface.co/ltg/bnc-bert-span-document",
29
+ "bnc-bert-span-word": "https://huggingface.co/ltg/bnc-bert-span-word",
30
+ "bnc-bert-span-subword": "https://huggingface.co/ltg/bnc-bert-span-subword",
31
+
32
+ "norbert3-xs": "https://huggingface.co/ltg/norbert3-xs/config.json",
33
+ "norbert3-small": "https://huggingface.co/ltg/norbert3-small/config.json",
34
+ "norbert3-base": "https://huggingface.co/ltg/norbert3-base/config.json",
35
+ "norbert3-large": "https://huggingface.co/ltg/norbert3-large/config.json",
36
+
37
+ "norbert3-oversampled-base": "https://huggingface.co/ltg/norbert3-oversampled-base/config.json",
38
+ "norbert3-ncc-base": "https://huggingface.co/ltg/norbert3-ncc-base/config.json",
39
+ "norbert3-nak-base": "https://huggingface.co/ltg/norbert3-nak-base/config.json",
40
+ "norbert3-nb-base": "https://huggingface.co/ltg/norbert3-nb-base/config.json",
41
+ "norbert3-wiki-base": "https://huggingface.co/ltg/norbert3-wiki-base/config.json",
42
+ "norbert3-c4-base": "https://huggingface.co/ltg/norbert3-c4-base/config.json"
43
+ }
44
+
45
+
46
+ class LtgBertConfig(PretrainedConfig):
47
+ r"""
48
+ This is the configuration class to store the configuration of a [`LtgBertModel`]. It is used to
49
+ instantiate an LTG-BERT model according to the specified arguments, defining the model architecture.
50
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
51
+ documentation from [`PretrainedConfig`] for more information.
52
+ Args:
53
+ vocab_size (`int`, *optional*, defaults to 16384):
54
+ Vocabulary size of the LTG-BERT model. Defines the number of different tokens that can be represented by the
55
+ `inputs_ids` passed when calling [`LtgBertModel`].
56
+ hidden_size (`int`, *optional*, defaults to 768):
57
+ Dimensionality of the encoder layers and the pooler layer.
58
+ num_hidden_layers (`int`, *optional*, defaults to 12):
59
+ Number of hidden layers in the Transformer encoder.
60
+ num_attention_heads (`int`, *optional*, defaults to 12):
61
+ Number of attention heads for each attention layer in the Transformer encoder.
62
+ intermediate_size (`int`, *optional*, defaults to 2048):
63
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
64
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
67
+ The dropout ratio for the attention probabilities.
68
+ max_position_embeddings (`int`, *optional*, defaults to 512):
69
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
70
+ just in case (e.g., 512 or 1024 or 2048).
71
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
72
+ The epsilon used by the layer normalization layers.
73
+ classifier_dropout (`float`, *optional*):
74
+ The dropout ratio for the classification head.
75
+ """
76
+ model_type = "ltgbert"
77
+ def __init__(
78
+ self,
79
+ vocab_size=16384,
80
+ attention_probs_dropout_prob=0.1,
81
+ hidden_dropout_prob=0.1,
82
+ hidden_size=768,
83
+ intermediate_size=2048,
84
+ max_position_embeddings=512,
85
+ position_bucket_size=32,
86
+ num_attention_heads=12,
87
+ num_hidden_layers=12,
88
+ layer_norm_eps=1.0e-7,
89
+ pad_token_id=4,
90
+ output_all_encoded_layers=True,
91
+ classifier_dropout=None,
92
+ **kwargs,
93
+ ):
94
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
95
+
96
+ self.vocab_size = vocab_size
97
+ self.hidden_size = hidden_size
98
+ self.num_hidden_layers = num_hidden_layers
99
+ self.num_attention_heads = num_attention_heads
100
+ self.intermediate_size = intermediate_size
101
+ self.hidden_dropout_prob = hidden_dropout_prob
102
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
103
+ self.max_position_embeddings = max_position_embeddings
104
+ self.output_all_encoded_layers = output_all_encoded_layers
105
+ self.position_bucket_size = position_bucket_size
106
+ self.layer_norm_eps = layer_norm_eps
107
+ self.classifier_dropout = classifier_dropout
modeling_ltgbert.py ADDED
@@ -0,0 +1,797 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch LTG-BERT model."""
17
+
18
+
19
+ import math
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn as nn
24
+ import torch.nn.functional as F
25
+ from torch.utils import checkpoint
26
+
27
+ from .configuration_ltgbert import LtgBertConfig
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.activations import gelu_new
30
+ from transformers.modeling_outputs import (
31
+ MaskedLMOutput,
32
+ MultipleChoiceModelOutput,
33
+ QuestionAnsweringModelOutput,
34
+ SequenceClassifierOutput,
35
+ TokenClassifierOutput,
36
+ BaseModelOutput
37
+ )
38
+ from transformers.pytorch_utils import softmax_backward_data
39
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward
40
+
41
+
42
+ _CHECKPOINT_FOR_DOC = "ltg/bnc-bert-span"
43
+ _CONFIG_FOR_DOC = "LtgBertConfig"
44
+
45
+
46
+ LTG_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
47
+ "bnc-bert-span",
48
+ "bnc-bert-span-2x",
49
+ "bnc-bert-span-0.5x",
50
+ "bnc-bert-span-0.25x",
51
+ "bnc-bert-span-order",
52
+ "bnc-bert-span-document",
53
+ "bnc-bert-span-word",
54
+ "bnc-bert-span-subword",
55
+
56
+ "norbert3-xs",
57
+ "norbert3-small",
58
+ "norbert3-base",
59
+ "norbert3-large",
60
+
61
+ "norbert3-oversampled-base",
62
+ "norbert3-ncc-base",
63
+ "norbert3-nak-base",
64
+ "norbert3-nb-base",
65
+ "norbert3-wiki-base",
66
+ "norbert3-c4-base"
67
+ ]
68
+
69
+
70
+ class Encoder(nn.Module):
71
+ def __init__(self, config, activation_checkpointing=False):
72
+ super().__init__()
73
+ self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
74
+
75
+ for i, layer in enumerate(self.layers):
76
+ layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
77
+ layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
78
+
79
+ self.activation_checkpointing = activation_checkpointing
80
+
81
+ def forward(self, hidden_states, attention_mask, relative_embedding):
82
+ hidden_states, attention_probs = [hidden_states], []
83
+
84
+ for layer in self.layers:
85
+ if self.activation_checkpointing:
86
+ hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
87
+ else:
88
+ hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
89
+
90
+ hidden_states.append(hidden_state)
91
+ attention_probs.append(attention_p)
92
+
93
+ return hidden_states, attention_probs
94
+
95
+
96
+ class MaskClassifier(nn.Module):
97
+ def __init__(self, config, subword_embedding):
98
+ super().__init__()
99
+ self.nonlinearity = nn.Sequential(
100
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
101
+ nn.Linear(config.hidden_size, config.hidden_size),
102
+ nn.GELU(),
103
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
104
+ nn.Dropout(config.hidden_dropout_prob),
105
+ nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
106
+ )
107
+ self.initialize(config.hidden_size, subword_embedding)
108
+
109
+ def initialize(self, hidden_size, embedding):
110
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
111
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
112
+ self.nonlinearity[-1].weight = embedding
113
+ self.nonlinearity[1].bias.data.zero_()
114
+ self.nonlinearity[-1].bias.data.zero_()
115
+
116
+ def forward(self, x, masked_lm_labels=None):
117
+ if masked_lm_labels is not None:
118
+ x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
119
+ x = self.nonlinearity(x)
120
+ return x
121
+
122
+
123
+ class EncoderLayer(nn.Module):
124
+ def __init__(self, config):
125
+ super().__init__()
126
+ self.attention = Attention(config)
127
+ self.mlp = FeedForward(config)
128
+
129
+ def forward(self, x, padding_mask, relative_embedding):
130
+ attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
131
+ x = x + attention_output
132
+ x = x + self.mlp(x)
133
+ return x, attention_probs
134
+
135
+
136
+ class GeGLU(nn.Module):
137
+ def forward(self, x):
138
+ x, gate = x.chunk(2, dim=-1)
139
+ x = x * gelu_new(gate)
140
+ return x
141
+
142
+
143
+ class FeedForward(nn.Module):
144
+ def __init__(self, config):
145
+ super().__init__()
146
+ self.mlp = nn.Sequential(
147
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
148
+ nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
149
+ GeGLU(),
150
+ nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
151
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
152
+ nn.Dropout(config.hidden_dropout_prob)
153
+ )
154
+ self.initialize(config.hidden_size)
155
+
156
+ def initialize(self, hidden_size):
157
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
158
+ nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
159
+ nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
160
+
161
+ def forward(self, x):
162
+ return self.mlp(x)
163
+
164
+
165
+ class MaskedSoftmax(torch.autograd.Function):
166
+ @staticmethod
167
+ def forward(self, x, mask, dim):
168
+ self.dim = dim
169
+ x.masked_fill_(mask, float('-inf'))
170
+ x = torch.softmax(x, self.dim)
171
+ x.masked_fill_(mask, 0.0)
172
+ self.save_for_backward(x)
173
+ return x
174
+
175
+ @staticmethod
176
+ def backward(self, grad_output):
177
+ output, = self.saved_tensors
178
+ input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
179
+ return input_grad, None, None
180
+
181
+
182
+ class Attention(nn.Module):
183
+ def __init__(self, config):
184
+ super().__init__()
185
+
186
+ self.config = config
187
+
188
+ if config.hidden_size % config.num_attention_heads != 0:
189
+ raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
190
+
191
+ self.hidden_size = config.hidden_size
192
+ self.num_heads = config.num_attention_heads
193
+ self.head_size = config.hidden_size // config.num_attention_heads
194
+
195
+ self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
196
+ self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
197
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
198
+
199
+ self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
200
+ self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
201
+
202
+ position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
203
+ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
204
+ position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
205
+ position_indices = config.position_bucket_size - 1 + position_indices
206
+ self.register_buffer("position_indices", position_indices, persistent=True)
207
+
208
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
209
+ self.scale = 1.0 / math.sqrt(3 * self.head_size)
210
+ self.initialize()
211
+
212
+ def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
213
+ sign = torch.sign(relative_pos)
214
+ mid = bucket_size // 2
215
+ abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
216
+ log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
217
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
218
+ return bucket_pos
219
+
220
+ def initialize(self):
221
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
222
+ nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
223
+ nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
224
+ nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
225
+ self.in_proj_qk.bias.data.zero_()
226
+ self.in_proj_v.bias.data.zero_()
227
+ self.out_proj.bias.data.zero_()
228
+
229
+ def compute_attention_scores(self, hidden_states, relative_embedding):
230
+ key_len, batch_size, _ = hidden_states.size()
231
+ query_len = key_len
232
+
233
+ if self.position_indices.size(0) < query_len:
234
+ position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
235
+ - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
236
+ position_indices = self.make_log_bucket_position(position_indices, self.position_bucket_size, 512)
237
+ position_indices = self.position_bucket_size - 1 + position_indices
238
+ self.position_indices = position_indices.to(hidden_states.device)
239
+
240
+ hidden_states = self.pre_layer_norm(hidden_states)
241
+
242
+ query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
243
+ value = self.in_proj_v(hidden_states) # shape: [T, B, D]
244
+
245
+ query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
246
+ key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
247
+ value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
248
+
249
+ attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
250
+
251
+ query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(2, dim=-1) # shape: [2T-1, D]
252
+ query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
253
+ key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
254
+
255
+ query = query.view(batch_size, self.num_heads, query_len, self.head_size)
256
+ key = key.view(batch_size, self.num_heads, query_len, self.head_size)
257
+
258
+ attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
259
+ attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
260
+
261
+ position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
262
+ attention_c_p = attention_c_p.gather(3, position_indices)
263
+ attention_p_c = attention_p_c.gather(2, position_indices)
264
+
265
+ attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
266
+ attention_scores.add_(attention_c_p)
267
+ attention_scores.add_(attention_p_c)
268
+
269
+ return attention_scores, value
270
+
271
+ def compute_output(self, attention_probs, value):
272
+ attention_probs = self.dropout(attention_probs)
273
+ context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
274
+ context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
275
+ context = self.out_proj(context)
276
+ context = self.post_layer_norm(context)
277
+ context = self.dropout(context)
278
+ return context
279
+
280
+ def forward(self, hidden_states, attention_mask, relative_embedding):
281
+ attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
282
+ attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
283
+ return self.compute_output(attention_probs, value), attention_probs.detach()
284
+
285
+
286
+ class Embedding(nn.Module):
287
+ def __init__(self, config):
288
+ super().__init__()
289
+ self.hidden_size = config.hidden_size
290
+
291
+ self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
292
+ self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
293
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
294
+
295
+ self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
296
+ self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
297
+
298
+ self.initialize()
299
+
300
+ def initialize(self):
301
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
302
+ nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
303
+ nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
304
+
305
+ def forward(self, input_ids):
306
+ word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
307
+ relative_embeddings = self.relative_layer_norm(self.relative_embedding)
308
+ return word_embedding, relative_embeddings
309
+
310
+
311
+ #
312
+ # HuggingFace wrappers
313
+ #
314
+
315
+ class LtgBertPreTrainedModel(PreTrainedModel):
316
+ """
317
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
318
+ models.
319
+ """
320
+
321
+ config_class = LtgBertConfig
322
+ base_model_prefix = "bnc-bert"
323
+ supports_gradient_checkpointing = True
324
+
325
+ def _set_gradient_checkpointing(self, module, value=False):
326
+ if isinstance(module, Encoder):
327
+ module.activation_checkpointing = value
328
+
329
+ def _init_weights(self, _):
330
+ pass # everything is already initialized
331
+
332
+
333
+ LTG_BERT_START_DOCSTRING = r"""
334
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
335
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
336
+ etc.)
337
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
338
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
339
+ and behavior.
340
+ Parameters:
341
+ config ([`LtgBertConfig`]): Model configuration class with all the parameters of the model.
342
+ Initializing with a config file does not load the weights associated with the model, only the
343
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
344
+ """
345
+
346
+ LTG_BERT_INPUTS_DOCSTRING = r"""
347
+ Args:
348
+ input_ids (`torch.LongTensor` of shape `({0})`):
349
+ Indices of input sequence tokens in the vocabulary.
350
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
351
+ [`PreTrainedTokenizer.__call__`] for details.
352
+ [What are input IDs?](../glossary#input-ids)
353
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
354
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
355
+ - 1 for tokens that are **not masked**,
356
+ - 0 for tokens that are **masked**.
357
+ [What are attention masks?](../glossary#attention-mask)
358
+ output_hidden_states (`bool`, *optional*):
359
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
360
+ more detail.
361
+ output_attentions (`bool`, *optional*):
362
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
363
+ tensors for more detail.
364
+ return_dict (`bool`, *optional*):
365
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
366
+ """
367
+
368
+
369
+ @add_start_docstrings(
370
+ "The bare LTG-BERT transformer outputting raw hidden-states without any specific head on top.",
371
+ LTG_BERT_START_DOCSTRING,
372
+ )
373
+ class LtgBertModel(LtgBertPreTrainedModel):
374
+ def __init__(self, config, add_mlm_layer=False):
375
+ super().__init__(config)
376
+ self.config = config
377
+
378
+ self.embedding = Embedding(config)
379
+ self.transformer = Encoder(config, activation_checkpointing=False)
380
+ self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
381
+
382
+ def get_input_embeddings(self):
383
+ return self.embedding.word_embedding
384
+
385
+ def set_input_embeddings(self, value):
386
+ self.embedding.word_embedding = value
387
+
388
+ def get_contextualized_embeddings(
389
+ self,
390
+ input_ids: Optional[torch.Tensor] = None,
391
+ attention_mask: Optional[torch.Tensor] = None
392
+ ) -> List[torch.Tensor]:
393
+ if input_ids is not None:
394
+ input_shape = input_ids.size()
395
+ else:
396
+ raise ValueError("You have to specify input_ids")
397
+
398
+ batch_size, seq_length = input_shape
399
+ device = input_ids.device
400
+
401
+ if attention_mask is None:
402
+ attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
403
+ else:
404
+ attention_mask = ~attention_mask.bool()
405
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
406
+
407
+ static_embeddings, relative_embedding = self.embedding(input_ids.t())
408
+ contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
409
+ contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
410
+ last_layer = contextualized_embeddings[-1]
411
+ contextualized_embeddings = [contextualized_embeddings[0]] + [
412
+ contextualized_embeddings[i] - contextualized_embeddings[i - 1]
413
+ for i in range(1, len(contextualized_embeddings))
414
+ ]
415
+ return last_layer, contextualized_embeddings, attention_probs
416
+
417
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
418
+ def forward(
419
+ self,
420
+ input_ids: Optional[torch.Tensor] = None,
421
+ attention_mask: Optional[torch.Tensor] = None,
422
+ output_hidden_states: Optional[bool] = None,
423
+ output_attentions: Optional[bool] = None,
424
+ return_dict: Optional[bool] = None,
425
+ token_type_ids=None
426
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
427
+
428
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
429
+ output_hidden_states = (
430
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
431
+ )
432
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
433
+
434
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
435
+
436
+ if not return_dict:
437
+ return (
438
+ sequence_output,
439
+ *([contextualized_embeddings] if output_hidden_states else []),
440
+ *([attention_probs] if output_attentions else [])
441
+ )
442
+
443
+ return BaseModelOutput(
444
+ last_hidden_state=sequence_output,
445
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
446
+ attentions=attention_probs if output_attentions else None
447
+ )
448
+
449
+
450
+ @add_start_docstrings("""LTG-BERT model with a `language modeling` head on top.""", LTG_BERT_START_DOCSTRING)
451
+ class LtgBertForMaskedLM(LtgBertModel):
452
+ _keys_to_ignore_on_load_unexpected = ["head"]
453
+
454
+ def __init__(self, config):
455
+ super().__init__(config, add_mlm_layer=True)
456
+
457
+ def get_output_embeddings(self):
458
+ return self.classifier.nonlinearity[-1].weight
459
+
460
+ def set_output_embeddings(self, new_embeddings):
461
+ self.classifier.nonlinearity[-1].weight = new_embeddings
462
+
463
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
464
+ def forward(
465
+ self,
466
+ input_ids: Optional[torch.Tensor] = None,
467
+ attention_mask: Optional[torch.Tensor] = None,
468
+ output_hidden_states: Optional[bool] = None,
469
+ output_attentions: Optional[bool] = None,
470
+ return_dict: Optional[bool] = None,
471
+ labels: Optional[torch.LongTensor] = None,
472
+ token_type_ids=None
473
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
474
+ r"""
475
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
476
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
477
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
478
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
479
+ """
480
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
481
+
482
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
483
+ subword_prediction = self.classifier(sequence_output)
484
+
485
+ masked_lm_loss = None
486
+ if labels is not None:
487
+ masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
488
+
489
+ if not return_dict:
490
+ output = (
491
+ subword_prediction,
492
+ *([contextualized_embeddings] if output_hidden_states else []),
493
+ *([attention_probs] if output_attentions else [])
494
+ )
495
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
496
+
497
+ return MaskedLMOutput(
498
+ loss=masked_lm_loss,
499
+ logits=subword_prediction,
500
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
501
+ attentions=attention_probs if output_attentions else None
502
+ )
503
+
504
+
505
+ class Classifier(nn.Module):
506
+ def __init__(self, config, num_labels: int):
507
+ super().__init__()
508
+
509
+ drop_out = getattr(config, "classifier_dropout", config.hidden_dropout_prob)
510
+
511
+ self.nonlinearity = nn.Sequential(
512
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
513
+ nn.Linear(config.hidden_size, config.hidden_size),
514
+ nn.GELU(),
515
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
516
+ nn.Dropout(drop_out),
517
+ nn.Linear(config.hidden_size, num_labels)
518
+ )
519
+ self.initialize(config.hidden_size)
520
+
521
+ def initialize(self, hidden_size):
522
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
523
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
524
+ nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
525
+ self.nonlinearity[1].bias.data.zero_()
526
+ self.nonlinearity[-1].bias.data.zero_()
527
+
528
+ def forward(self, x):
529
+ x = self.nonlinearity(x)
530
+ return x
531
+
532
+
533
+ @add_start_docstrings(
534
+ """
535
+ LTG-BERT model with a sequence classification/regression head on top (a linear layer on top of the pooled
536
+ output) e.g. for GLUE tasks.
537
+ """,
538
+ LTG_BERT_START_DOCSTRING,
539
+ )
540
+ class LtgBertForSequenceClassification(LtgBertModel):
541
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
542
+ _keys_to_ignore_on_load_missing = ["head"]
543
+
544
+ def __init__(self, config):
545
+ super().__init__(config, add_mlm_layer=False)
546
+
547
+ self.num_labels = config.num_labels
548
+ self.head = Classifier(config, self.num_labels)
549
+
550
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
551
+ def forward(
552
+ self,
553
+ input_ids: Optional[torch.Tensor] = None,
554
+ attention_mask: Optional[torch.Tensor] = None,
555
+ output_attentions: Optional[bool] = None,
556
+ output_hidden_states: Optional[bool] = None,
557
+ return_dict: Optional[bool] = None,
558
+ labels: Optional[torch.LongTensor] = None,
559
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
560
+ r"""
561
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
562
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
563
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
564
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
565
+ """
566
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
567
+
568
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
569
+ logits = self.head(sequence_output[:, 0, :])
570
+
571
+ loss = None
572
+ if labels is not None:
573
+ if self.config.problem_type is None:
574
+ if self.num_labels == 1:
575
+ self.config.problem_type = "regression"
576
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
577
+ self.config.problem_type = "single_label_classification"
578
+ else:
579
+ self.config.problem_type = "multi_label_classification"
580
+
581
+ if self.config.problem_type == "regression":
582
+ loss_fct = nn.MSELoss()
583
+ if self.num_labels == 1:
584
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
585
+ else:
586
+ loss = loss_fct(logits, labels)
587
+ elif self.config.problem_type == "single_label_classification":
588
+ loss_fct = nn.CrossEntropyLoss()
589
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
590
+ elif self.config.problem_type == "multi_label_classification":
591
+ loss_fct = nn.BCEWithLogitsLoss()
592
+ loss = loss_fct(logits, labels)
593
+
594
+ if not return_dict:
595
+ output = (
596
+ logits,
597
+ *([contextualized_embeddings] if output_hidden_states else []),
598
+ *([attention_probs] if output_attentions else [])
599
+ )
600
+ return ((loss,) + output) if loss is not None else output
601
+
602
+ return SequenceClassifierOutput(
603
+ loss=loss,
604
+ logits=logits,
605
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
606
+ attentions=attention_probs if output_attentions else None
607
+ )
608
+
609
+
610
+ @add_start_docstrings(
611
+ """
612
+ LTG-BERT model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
613
+ Named-Entity-Recognition (NER) tasks.
614
+ """,
615
+ LTG_BERT_START_DOCSTRING,
616
+ )
617
+ class LtgBertForTokenClassification(LtgBertModel):
618
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
619
+ _keys_to_ignore_on_load_missing = ["head"]
620
+
621
+ def __init__(self, config):
622
+ super().__init__(config, add_mlm_layer=False)
623
+
624
+ self.num_labels = config.num_labels
625
+ self.head = Classifier(config, self.num_labels)
626
+
627
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
628
+ def forward(
629
+ self,
630
+ input_ids: Optional[torch.Tensor] = None,
631
+ attention_mask: Optional[torch.Tensor] = None,
632
+ token_type_ids: Optional[torch.Tensor] = None,
633
+ position_ids: Optional[torch.Tensor] = None,
634
+ output_attentions: Optional[bool] = None,
635
+ output_hidden_states: Optional[bool] = None,
636
+ return_dict: Optional[bool] = None,
637
+ labels: Optional[torch.LongTensor] = None,
638
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
639
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
640
+
641
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
642
+ logits = self.head(sequence_output)
643
+
644
+ loss = None
645
+ if labels is not None:
646
+ loss_fct = nn.CrossEntropyLoss()
647
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
648
+
649
+ if not return_dict:
650
+ output = (
651
+ logits,
652
+ *([contextualized_embeddings] if output_hidden_states else []),
653
+ *([attention_probs] if output_attentions else [])
654
+ )
655
+ return ((loss,) + output) if loss is not None else output
656
+
657
+ return TokenClassifierOutput(
658
+ loss=loss,
659
+ logits=logits,
660
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
661
+ attentions=attention_probs if output_attentions else None
662
+ )
663
+
664
+
665
+ @add_start_docstrings(
666
+ """
667
+ LTG-BERT model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
668
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
669
+ """,
670
+ LTG_BERT_START_DOCSTRING,
671
+ )
672
+ class LtgBertForQuestionAnswering(LtgBertModel):
673
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
674
+ _keys_to_ignore_on_load_missing = ["head"]
675
+
676
+ def __init__(self, config):
677
+ super().__init__(config, add_mlm_layer=False)
678
+
679
+ self.num_labels = config.num_labels
680
+ self.head = Classifier(config, self.num_labels)
681
+
682
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
683
+ def forward(
684
+ self,
685
+ input_ids: Optional[torch.Tensor] = None,
686
+ attention_mask: Optional[torch.Tensor] = None,
687
+ token_type_ids: Optional[torch.Tensor] = None,
688
+ position_ids: Optional[torch.Tensor] = None,
689
+ output_attentions: Optional[bool] = None,
690
+ output_hidden_states: Optional[bool] = None,
691
+ return_dict: Optional[bool] = None,
692
+ start_positions: Optional[torch.Tensor] = None,
693
+ end_positions: Optional[torch.Tensor] = None
694
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
695
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
696
+
697
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
698
+ logits = self.head(sequence_output)
699
+
700
+ start_logits, end_logits = logits.split(1, dim=-1)
701
+ start_logits = start_logits.squeeze(-1).contiguous()
702
+ end_logits = end_logits.squeeze(-1).contiguous()
703
+
704
+ total_loss = None
705
+ if start_positions is not None and end_positions is not None:
706
+ # If we are on multi-GPU, split add a dimension
707
+ if len(start_positions.size()) > 1:
708
+ start_positions = start_positions.squeeze(-1)
709
+ if len(end_positions.size()) > 1:
710
+ end_positions = end_positions.squeeze(-1)
711
+
712
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
713
+ ignored_index = start_logits.size(1)
714
+ start_positions = start_positions.clamp(0, ignored_index)
715
+ end_positions = end_positions.clamp(0, ignored_index)
716
+
717
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
718
+ start_loss = loss_fct(start_logits, start_positions)
719
+ end_loss = loss_fct(end_logits, end_positions)
720
+ total_loss = (start_loss + end_loss) / 2
721
+
722
+ if not return_dict:
723
+ output = (
724
+ start_logits,
725
+ end_logits,
726
+ *([contextualized_embeddings] if output_hidden_states else []),
727
+ *([attention_probs] if output_attentions else [])
728
+ )
729
+ return ((total_loss,) + output) if total_loss is not None else output
730
+
731
+ return QuestionAnsweringModelOutput(
732
+ loss=total_loss,
733
+ start_logits=start_logits,
734
+ end_logits=end_logits,
735
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
736
+ attentions=attention_probs if output_attentions else None
737
+ )
738
+
739
+
740
+ @add_start_docstrings(
741
+ """
742
+ LTG-BERT model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
743
+ softmax) e.g. for RocStories/SWAG tasks.
744
+ """,
745
+ LTG_BERT_START_DOCSTRING,
746
+ )
747
+ class LtgBertForMultipleChoice(LtgBertModel):
748
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
749
+ _keys_to_ignore_on_load_missing = ["head"]
750
+
751
+ def __init__(self, config):
752
+ super().__init__(config, add_mlm_layer=False)
753
+
754
+ self.num_labels = getattr(config, "num_labels", 2)
755
+ self.head = Classifier(config, self.num_labels)
756
+
757
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
758
+ def forward(
759
+ self,
760
+ input_ids: Optional[torch.Tensor] = None,
761
+ attention_mask: Optional[torch.Tensor] = None,
762
+ token_type_ids: Optional[torch.Tensor] = None,
763
+ position_ids: Optional[torch.Tensor] = None,
764
+ labels: Optional[torch.Tensor] = None,
765
+ output_attentions: Optional[bool] = None,
766
+ output_hidden_states: Optional[bool] = None,
767
+ return_dict: Optional[bool] = None
768
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
769
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
770
+ num_choices = input_ids.shape[1]
771
+
772
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1))
773
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
774
+
775
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
776
+ logits = self.head(sequence_output)
777
+ reshaped_logits = logits.view(-1, num_choices)
778
+
779
+ loss = None
780
+ if labels is not None:
781
+ loss_fct = nn.CrossEntropyLoss()
782
+ loss = loss_fct(reshaped_logits, labels)
783
+
784
+ if not return_dict:
785
+ output = (
786
+ reshaped_logits,
787
+ *([contextualized_embeddings] if output_hidden_states else []),
788
+ *([attention_probs] if output_attentions else [])
789
+ )
790
+ return ((loss,) + output) if loss is not None else output
791
+
792
+ return MultipleChoiceModelOutput(
793
+ loss=loss,
794
+ logits=reshaped_logits,
795
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
796
+ attentions=attention_probs if output_attentions else None
797
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aae5305fbf3b00bf56a6b84da1c4484ac2d0fe550cb85fe15046cae7061965e5
3
+ size 59350225
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[BOS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[EOS]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "model_max_length": 1000000000000000019884624838656,
3
+ "tokenizer_class": "PreTrainedTokenizerFast"
4
+ }