--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut-base-sroie-bayesian-optimization results: [] --- # donut-base-sroie-bayesian-optimization This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1396 - Bleu: 0.0196 - Precisions: [0.9883177570093458, 0.9724655819774718, 0.954177897574124, 0.9328467153284672] - Brevity Penalty: 0.0203 - Length Ratio: 0.2043 - Translation Length: 856 - Reference Length: 4190 - Cer: 0.8584 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2010406976282324e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:---:| | 0.021 | 1.0 | 253 | 0.1656 | 0.0194 | [0.9848130841121495, 0.9649561952440551, 0.9420485175202157, 0.9153284671532846] | 0.0203 | 0.2043 | 856 | 4190 | 0.8596 | 1.0 | | 0.0353 | 2.0 | 506 | 0.1501 | 0.0195 | [0.9813736903376019, 0.9588528678304239, 0.9328859060402684, 0.9026162790697675] | 0.0207 | 0.2050 | 859 | 4190 | 0.8595 | 1.0 | | 0.0417 | 3.0 | 759 | 0.1423 | 0.0195 | [0.9871495327102804, 0.9699624530663329, 0.9501347708894878, 0.927007299270073] | 0.0203 | 0.2043 | 856 | 4190 | 0.8586 | 1.0 | | 0.0308 | 4.0 | 1012 | 0.1403 | 0.0193 | [0.9859649122807017, 0.9674185463659147, 0.9460188933873145, 0.9210526315789473] | 0.0202 | 0.2041 | 855 | 4190 | 0.8593 | 1.0 | | 0.0464 | 5.0 | 1265 | 0.1396 | 0.0196 | [0.9883177570093458, 0.9724655819774718, 0.954177897574124, 0.9328467153284672] | 0.0203 | 0.2043 | 856 | 4190 | 0.8584 | 1.0 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.1.0 - Datasets 2.19.0 - Tokenizers 0.19.1