--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut-base-sroie-metrics-combined-new-instance-050824-NUM-01 results: [] --- # donut-base-sroie-metrics-combined-new-instance-050824-NUM-01 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4660 - Bleu: 0.0647 - Precisions: [0.8446215139442231, 0.7842696629213484, 0.7422680412371134, 0.7129909365558912] - Brevity Penalty: 0.0841 - Length Ratio: 0.2877 - Translation Length: 502 - Reference Length: 1745 - Cer: 0.7571 - Wer: 0.8220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 0.8919 | 1.0 | 253 | 0.6234 | 0.0484 | [0.7540983606557377, 0.6450116009280742, 0.5962566844919787, 0.5646687697160884] | 0.0761 | 0.2797 | 488 | 1745 | 0.7741 | 0.8528 | | 0.4361 | 2.0 | 506 | 0.5208 | 0.0584 | [0.8161616161616162, 0.7442922374429224, 0.7007874015748031, 0.6635802469135802] | 0.0800 | 0.2837 | 495 | 1745 | 0.7647 | 0.8335 | | 0.2804 | 3.0 | 759 | 0.4764 | 0.0608 | [0.8481781376518218, 0.7803203661327232, 0.7394736842105263, 0.6996904024767802] | 0.0795 | 0.2831 | 494 | 1745 | 0.7568 | 0.8211 | | 0.2261 | 4.0 | 1012 | 0.4660 | 0.0647 | [0.8446215139442231, 0.7842696629213484, 0.7422680412371134, 0.7129909365558912] | 0.0841 | 0.2877 | 502 | 1745 | 0.7571 | 0.8220 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.0 - Datasets 2.19.1 - Tokenizers 0.19.1