File size: 3,253 Bytes
b750673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: donut-base-sroie-metrics-combined-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-base-sroie-metrics-combined-new
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1662
- Bleu score: 0.0215
- Precisions: [0.9469914040114613, 0.9204368174726989, 0.8938356164383562, 0.872865275142315]
- Brevity penalty: 0.0237
- Length ratio: 0.2109
- Translation length: 698
- Reference length: 3310
- Cer: 0.7917
- Wer: 0.8253
- Cer Hugging Face: 0.7954
- Wer Hugging Face: 0.8274
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu score | Precisions | Brevity penalty | Length ratio | Translation length | Reference length | Cer | Wer | Cer Hugging Face | Wer Hugging Face |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:|:----------------:|:----------------:|
| 0.5956 | 1.0 | 253 | 0.2372 | 0.0231 | [0.9258741258741259, 0.8890577507598785, 0.8519134775374376, 0.8180147058823529] | 0.0265 | 0.2160 | 715 | 3310 | 0.7922 | 0.8383 | 0.7969 | 0.8412 |
| 0.2509 | 2.0 | 506 | 0.1730 | 0.0213 | [0.9425287356321839, 0.9217527386541471, 0.8969072164948454, 0.88] | 0.0234 | 0.2103 | 696 | 3310 | 0.7928 | 0.8285 | 0.7966 | 0.8306 |
| 0.22 | 3.0 | 759 | 0.1777 | 0.0215 | [0.9469914040114613, 0.9188767550702028, 0.8921232876712328, 0.872865275142315] | 0.0237 | 0.2109 | 698 | 3310 | 0.7914 | 0.8282 | 0.7948 | 0.8306 |
| 0.1687 | 4.0 | 1012 | 0.1662 | 0.0215 | [0.9469914040114613, 0.9204368174726989, 0.8938356164383562, 0.872865275142315] | 0.0237 | 0.2109 | 698 | 3310 | 0.7917 | 0.8253 | 0.7954 | 0.8274 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.1.0
- Datasets 2.19.0
- Tokenizers 0.19.1
|